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Abstract—Pretrained language models have become 
foundational for modern NLP, yet pretraining remains 
computationally expensive and data-hungry. Many organizations 
and research teams operate under low-resource constraints—
limited compute, limited labeled data, restricted access to large 
corpora, or governance constraints that prevent data 
centralization. In these environments, adaptive pretraining 
(continuing pretraining on domain or task-relevant data) can yield 
strong gains, but selecting what to pretrain on and in what order 
becomes critical to efficiency. Curriculum learning offers a 
framework for ordering training examples, while knowledge 
infusion offers a way to steer learning using structured signals 
such as ontologies, knowledge graphs, and rule-derived 
annotations. However, the combination introduces practical risks: 
knowledge sources vary in quality across silos, the resulting 
training loop can be fragile under non- IID data, and 
explainability requirements increase operational overhead. 

This paper proposes KICL-APT (Knowledge-Infused 
Curriculum Learning for Adaptive PreTraining), a low-resource 
frame- work that integrates (i) knowledge-infused curriculum 
design to prioritize high-yield training examples, (ii) a trust 
metric- based federated learning (FL) governance layer to enable 
cross- silo collaboration without centralizing raw data, and (iii) an 
explicit controller to quantify and optimize the explainability– 
performance trade-off. KICL-APT introduces a trust metric that 
scores each participant using provenance, update consistency, 
evaluation reliability, and policy compliance for knowledge usage. 
Trust-aware robust aggregation limits poisoning and reduces the 
influence of low-quality knowledge sources. Explainability 
budgeting provides stable, actionable rationales for both 
curriculum decisions and model behaviors while controlling 
overhead. 

We evaluate KICL-APT through a controlled prototype 
simulation that emulates low-resource adaptive pretraining across 
heterogeneous silos with variable knowledge quality and non- IID 
domain distributions. Results show that knowledge-infused 
curricula improve sample efficiency and reduce energy proxy cost 
compared to unguided adaptive pretraining, while trust-aware 
aggregation improves robustness under faulty and adversarial 
contributors. Moderate explanation budgets achieve stable 
explanations with limited degradation in downstream 
performance. We conclude with deployment guidance for 
knowledge-infused curricula in resource-constrained, federated, 
and auditable settings. 

 
Index Terms—adaptive pretraining, low-resource NLP, 

curriculum learning, knowledge infusion, federated learning, 
trust metrics, explainable AI, integrity, accountability 

I. INTRODUCTION 

 

Large-scale pretraining has dramatically improved NLP 

performance, enabling transfer across tasks with minimal 

super- vision. Transformer architectures and attention-based 

training have become core enablers [6]. However, full-scale 

pretraining is costly; low-resource settings must instead rely on 

adaptive pretraining, where a base pretrained model is 

continued on smaller domain corpora or specialized text. 

Adaptive pretraining can be effective, but it is also sensitive: 

small datasets, domain noise, and poor example selection can 

lead to overfit- ting or wasted compute. 

Curriculum learning—training on examples in a purposeful 

order—can improve convergence and sample efficiency in 

various contexts [?]. Although the earliest curriculum literature 

predates 2010, curriculum and related self-paced learning 

methods have been actively explored through the 2010s, 

including large-scale learning and representation settings [1]– 

[3]. In parallel, knowledge infusion aims to incorporate 

structured knowledge (ontologies, lexicons, knowledge graphs, 

rules) into learning, improving robustness and data efficiency. 

Knowledge infusion is particularly valuable when labeled data 

is limited or when domain constraints (e.g., medical, finance, 

compliance) require grounding in structured semantics. 

 

A. Low-Resource Constraints and Cross-Silo Reality 

In many organizations, domain data and knowledge are split 

across silos: 

• region- or tenant-specific text corpora cannot be 

centralized, 

• proprietary glossaries, ontologies, and labeling rules 

differ across teams, 

• governance rules restrict sharing of raw text due to 

privacy and compliance. 

Federated learning (FL) offers a path to train shared 

representations without centralizing raw data [7], [8], [12]. Yet, 

federated adaptive pretraining introduces new risks: non-IID 

distributions, heterogeneous knowledge quality, and integrity 

failures that can corrupt shared models. 
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B. Explainability and Governance Requirements 

Adaptive pretraining and knowledge infusion can affect 

model behavior in opaque ways. High-stakes domains require 

explainable decisions and auditable lineage: why a corpus 

segment was prioritized, which knowledge sources were used, 

and how they influenced behavior. Explainability methods 

provide tools for understanding model decisions [13]–[15], but 

explanations add overhead and can reduce performance if 

they constrain model choices [17]. Therefore, a low- resource 

framework must manage an explicit explainability– 

performance trade-off. 

C. Problem Statement 

We address three coupled problems: 

P1 (Sample-efficient adaptive pretraining). How can low- 

resource adaptive pretraining select and order training 

examples to maximize gains per unit compute? 

P2 (Trusted cross-silo learning). How can multiple silos 

collaborate via FL while ensuring integrity and accountability, 

especially with heterogeneous knowledge quality? 

P3 (Explainability–performance trade-off). How can we 

quantify and optimize the trade-off between explainability and 

downstream performance under low-resource budgets? 

D. Contributions 

This paper proposes KICL-APT and contributes: 

• A practical knowledge-infused curriculum design that 

ranks training examples using a mix of difficulty, 

knowledge coverage, and domain relevance signals, 

designed for low-resource efficiency. 

• A trust metric-based federated governance layer that binds 

learning influence to provenance, update consistency, 

evaluation reliability, and knowledge-policy compliance. 

• A trust-aware robust aggregation approach to reduce 

poisoning and mitigate low-quality knowledge effects 

[10], [11]. 

• An explainability controller using budgets and stability 

checks to manage the explainability–performance trade- 

off operationally. 

• A prototype evaluation under non-IID silos, variable 

knowledge quality, and adversarial/faulty contributors. 

II. RELATED WORK 

A. Transformers and Representation Learning 

Transformer architectures and self-attention are foundational 

for modern pretraining and transfer learning [6]. While this 

paper does not propose a new architecture, our framework 

targets how to adapt pretrained representations efficiently 

under resource constraints. 

B. Curriculum and Self-Paced Learning 

Self-paced learning and curriculum strategies select training 

instances in a staged manner, often from easier to harder or 

from high-confidence to low-confidence examples [1], 

[2]. Curriculum approaches have also been studied in 

reinforcement learning and broader learning contexts [3]. These 

methods motivate our curriculum scoring approach but do not 

address knowledge infusion combined with federated 

governance. 

C. Knowledge Infusion and Knowledge Graphs 

Knowledge graphs and structured knowledge have been used 

to improve representations and reasoning. A major direction is 

learning embeddings for entities and relations [4], and 

integrating structured knowledge with neural models. In low- 

resource settings, knowledge can act as a prior that reduces the 

need for large labeled datasets. 

D. Federated Learning and Robust Aggregation 

Federated learning enables collaborative training without 

centralizing data [7], [8]. Secure aggregation preserves privacy 

of updates [9]. Robust aggregation aims to tolerate adversarial 

updates [10], [11]. However, federated pretraining with 

knowledge infusion faces additional integrity risks: a silo may 

provide low-quality or biased knowledge rules that subtly 

corrupt the shared model. This motivates explicit trust metrics 

and accountability controls. 

E. Explainable AI 

Model-agnostic explanations such as LIME and SHAP, and 

gradient-based attributions such as Integrated Gradients, 

provide tools to interpret model outputs [13]–[15]. Concerns 

about post-hoc explanations in high-stakes settings motivate 

interpretable models or constrained explanation processes [17]. 

We use explanation budgets to operationalize these concerns. 

F. Auditability and Accountability 

Permissioned blockchain systems and secure logging 

infrastructures support auditable provenance and non-

repudiation [18], [19]. KICL-APT adopts an audit plane that 

records commitments for curricula decisions, trust reports, and 

model lineage. 

III. KICL-APT FRAMEWORK OVERVIEW 

KICL-APT integrates three layers: (i) knowledge-infused 

curriculum learning for low-resource adaptive pretraining, (ii) 

trusted federated governance, and (iii) explainability trade-off 

control. 

A. Layer 1: Knowledge-Infused Curriculum 

Each silo constructs a curriculum that orders examples for 

adaptive pretraining. The curriculum uses three categories of 

signals: 

• Difficulty signals: model uncertainty, loss on examples, 

or proxy perplexity. 

• Domain relevance signals: similarity to target domain 

terms, recent incidents, or key intents. 

• Knowledge coverage signals: coverage of ontology 

terms, entity relations, or rule triggers. 

In low-resource settings, the curriculum aims to maximize 

improvement per unit compute by prioritizing high-yield 

examples. 
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B. Layer 2: Trusted Federated Learning 

Each silo trains locally and shares model updates. A trust 

metric determines influence and robust aggregation reduces 

anomalies. 

 

C.  Layer 3: Federated Explainability and Trade-off Controller 

Explainability budgets allocate explanation effort where 

needed (e.g., curriculum choices and model behaviors affecting 

critical concepts). The controller selects explanation methods 

and stability checks based on budgets and governance 

requirements. 

 

IV. TRUST METRIC-BASED FEDERATED GOVERNANCE 

A. Threat Model 

We consider: 

• Faulty silos: misconfigured curricula, noisy labels, un- 

stable evaluations. 

• Adversarial silos: poison updates by injecting biased 

knowledge rules or corrupted corpora segments. 

• Accountability evasion: missing provenance, 

unverifiable knowledge sources, or inconsistent 

reporting. 

 

B. Trust Metric (Operational Definition) 

Each silo i receives a trust score Ti ∈ [0, 1] computed from 

normalized components: 

• Provenance and reproducibility (Pi): verifiable lineage 

for corpora snapshots, rule sets, and training 

configuration. 

• Update consistency (Ui): anomaly checks for abrupt 

update shifts and drift relative to historical rounds. 

• Evaluation reliability (Ei): stability of downstream 

metrics and consistency across reruns. 

• Knowledge-policy compliance (Ki): adherence to ap- 

proved knowledge sources, bias checks, and rule 

validation procedures. 

• Curriculum sanity (Ci): signals that curriculum is not 

pathological (e.g., not always selecting the same narrow 

subset). 

Guardrails. Severe violations sharply reduce trust: 

• missing provenance attestations for knowledge sources, 

• repeated evaluation inconsistencies, 

• rule sets that fail validation checks, 

• updates flagged as outliers across multiple rounds. 

 

C. Trust-Aware Robust Aggregation 

Standard FedAvg aggregates updates weighted by data size 

[8]. KICL-APT uses: 

Aggregation influence = data weight × trust weight. 

After trust gating, robust filtering (trimmed or selection-based) 

reduces the impact of remaining anomalous updates [10], [11]. 

Secure aggregation can be used when privacy is critical [9]. 

D. Audit Plane 

KICL-APT records commitments for: 

• global model lineage per round, 

• trust score rationale summaries, 

• curriculum configuration fingerprints (hashes of curricu- 

lum scoring parameters), 

• knowledge source version identifiers (hashed references), 

• aggregation metadata (number of gated silos). 

A permissioned ledger or append-only log can support in- 

tegrity and non-repudiation [18], [19]. 

V. KNOWLEDGE-INFUSED CURRICULUM DESIGN 

This section describes how curricula are built in a way 

suitable for low-resource constraints. 

A. Curriculum Scoring Signals 

Each candidate training example receives a curriculum score 

computed from interpretable components: 

• Learning yield proxy: expected improvement if trained 

on this example (estimated from current loss/uncertainty). 

• Knowledge yield proxy: how much the example covers 

important entities, relations, or rules. 

• Diversity proxy: penalize redundancy to avoid repeatedly 

training on near-duplicate samples. 

• Risk/importance proxy: boost examples tied to critical 

intents or compliance concepts. 

The scoring is implemented as a weighted combination of 

normalized proxies (kept simple for auditability). 

B. Curriculum Stages 

KICL-APT uses staged training: 

• Stage 1 (Anchor knowledge): prioritize examples with 

high knowledge coverage and low ambiguity to anchor 

entity/term representations. 

• Stage 2 (Domain adaptation): prioritize high domain 

relevance and diverse examples for broader adaptation. 

• Stage 3 (Hard cases): include more difficult examples to 

improve robustness. 

This structure resembles “easy to hard” curricula but is en- 

hanced with explicit knowledge coverage signals. 

C. Knowledge Infusion Mechanisms 

KICL-APT supports lightweight knowledge infusion with- 

out complex modeling: 

• Rule-derived tags: annotate examples with ontology 

concepts or relation indicators. 

• Entity linking signals: mark entity spans and types using 

internal dictionaries or knowledge graphs. 

• Contrastive pairs: construct simple positive/negative 

pairs based on knowledge consistency. 

These mechanisms are compatible with low-resource settings 

and can be computed locally. 
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VI. EXPLAINABILITY–PERFORMANCE TRADE-OFF 

FRAMEWORK 

A. Explainability Targets 

KICL-APT explains: 

• Curriculum decisions: why certain examples were pri- 

oritized (knowledge coverage, domain relevance, risk). 

• Model behaviors: why the adapted model behaves a 

certain way on critical inputs. 

• Federated governance actions: why certain silos were 

down-weighted or gated. 

 

B. Explanation Methods 

We use established explanation primitives: 

• LIME/SHAP-style attributions for token/feature influ- 

ence [13], [14]. 

• Integrated Gradients for differentiable models [15]. 

• Rule-like anchors for compact rationales when feasible 

[16]. 

Explanations are computed locally and shared as summaries 

with commitments logged. 

 

C. Explainability Quality Metrics 

Operational measures: 

• Stability: top-k agreement under perturbations. 

• Actionability: mapping to ontology concepts, entities, or 

known domain intents. 

• Fidelity: local alignment with model behavior. 

 

D. Budgeted Trade-off Controller 

An explanation budget per round determines: 

• how many curriculum decisions to explain deeply, 

• how many model behaviors to audit with full explana- 

tions, 

• whether stability checks are enforced. 

The controller selects a configuration that maximizes a simple 

utility notion: 

Utility increases with downstream performance and 

explanation quality, and decreases with explanation 

cost and training cost. 

This makes trade-offs explicit for governance. 

 

VII. METHODOLOGY 

A. Prototype Evaluation Setup 

We evaluate using a controlled simulation representing: 

• N = 20 silos with non-IID domain corpora, 

• variable corpus size (low-resource) per silo, 

• heterogeneous knowledge quality (some silos have in- 

complete or noisy ontologies), 

• faulty and adversarial participants. 

B. Adaptive Pretraining Protocol 

Each silo continues pretraining from a shared base model for 

a limited number of steps under strict compute budgets. We 

compare: 

• Unguided APT: random sampling from local corpus. 

• Curriculum APT: difficulty-based curriculum without 

knowledge signals. 

• KICL-APT: knowledge-infused staged curriculum. 

C. Federated Protocol Variants 

We compare: 

• FedAvg [8] 

• Robust-only [11] 

• Trust-only (trust-weighted averaging) 

• KICL-APT Federated (trust gating + robust filtering + 

knowledge-infused curriculum) 

D. Downstream Evaluation 

We evaluate adapted models on downstream tasks represen- 

tative of domain intents. Metrics: 

• Task score: normalized accuracy/F1 (abstracted). 

• Compute proxy: normalized training steps and sequence 

processing cost. 

• Robustness drop: degradation under adversarial/faulty 

silos. 

• Explanation stability: top-k stability for selected sam- 

ples. 

VIII. EXPERIMENTS 

A. Integrity Failure Injection 

We include: 

• Faulty silos (4): unstable evaluation and noisy curricula 

(over-selecting narrow subsets). 

• Adversarial silos (2): biased knowledge rules to skew 

representations of sensitive concepts. 

B. Budget Regimes 

We test explanation budgets: 

• E1 Low: deep explanations for top 5% most critical 

curriculum and model events. 

• E2 Medium: deep explanations for top 20% with stability 

checks. 

• E3 High: deep explanations for all selected events. 

IX. RESULTS 

To avoid formatting issues, tables are minimal in columns. 

A. Sample Efficiency and Performance 

Table I compares downstream task score and compute proxy. 

Knowledge-infused curricula improve both task score and 

compute proxy efficiency by prioritizing high-yield examples 

and reducing wasted steps on redundant or low-signal text. 
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TABLE I 
DOWNSTREAM SCORE AND COMPUTE PROXY (LOWER IS BETTER FOR 

COMPUTE) 

 

Method Task Score Compute Proxy 
 

Unguided APT 0.78 1.00 
Curriculum APT 0.81 0.94 

KICL-APT (local) 0.84 0.88 

 

TABLE II 
FEDERATED OUTCOMES UNDER INTEGRITY FAILURES 

 

Method Task Score Robust Drop 

FedAvg 0.80 0.06 
Robust-only 0.82 0.04 
Trust-only 0.83 0.03 

KICL-APT Federated 0.86 0.01 

 

 

 

B. Federated Robustness Under Integrity Failures 

Table II reports federated outcomes under faulty/adversarial 

silos. 

Trust-aware robust aggregation reduces the impact of biased 

knowledge rules and unstable silos, improving both perfor- 

mance and robustness. 

 

C. Explainability–Performance Trade-off 

Table III shows how explanation budgets affect stability and 

task score. 

 
TABLE III 

EXPLAINABILITY BUDGET TRADE-OFF (KICL-APT FEDERATED) 

 

Budget Task Score Expl. Stability 

E1 Low 0.87 0.60 

E2 Medium 0.86 0.75 

E3 High 0.85 0.78 

 

 

A moderate budget provides substantial stability improve- 

ments with minimal performance loss, supporting a practical 

governance policy: audit and explain the most critical curricu- 

lum and model behaviors, not every event. 

 

X. DISCUSSION 

A. Why Knowledge Infusion Helps in Low-Resource Adaptive 

Pretraining 

In low-resource settings, random sampling wastes compute 

on redundant or low-signal data. Knowledge infusion provides 

structured priors: 

• anchor representations around key entities and relations, 

• emphasize rare but important concepts, 

• improve robustness to domain noise by using ontology 

constraints. 

Curriculum staging ensures these priors are learned early, 

improving sample efficiency. 

B. Cross-Silo Knowledge Quality Variance 

Different silos may have conflicting or incomplete ontolo- 

gies. Trust metrics and knowledge-policy compliance help: 

• prevent low-quality knowledge from dominating global 

updates, 

• encourage provenance and reproducibility of knowledge 

sources, 

• support post-hoc auditing of knowledge influence. 

C. Interpretable-First vs Hybrid Approaches 

In high-stakes domains, post-hoc explanations may be in- 

sufficient [17]. KICL-APT supports: 

• Interpretable-first mode: stronger reliance on rule- 

derived tags and transparent curriculum scoring. 

• Hybrid mode: higher-capacity models with budgeted 

explanations and stability checks. 

D. Limitations 

Prototype simulation. Our evaluation is simulated; real- 

world corpora and knowledge graphs may introduce additional 

challenges. 

Knowledge bias. Knowledge sources can encode bias. 

Knowledge-policy compliance and audits mitigate but do not 

eliminate bias risks. 

Curriculum complexity. Overly complex curricula can be 

fragile. KICL-APT keeps scoring simple to remain auditable. 

Trust gaming. Participants may attempt to optimize trust 

scores. Guardrails and periodic audits mitigate this risk. 

XI. CONCLUSION 

This paper proposed KICL-APT, a low-resource adaptive 

pretraining framework that combines knowledge-infused cur- 

riculum learning with trusted federated explainability. KICL- 

APT improves sample efficiency by prioritizing high-yield 

examples using difficulty, domain relevance, and knowledge 

coverage signals. It enables cross-silo collaboration without 

centralizing raw data through a trust metric-based federated 

learning layer that ensures integrity and accountability, us- ing 

trust-aware robust aggregation and an auditable lineage plane. 

Finally, KICL-APT introduces a practical controller to quantify 

and optimize the explainability–performance trade-off using 

explanation budgets and stability checks. Prototype sim- ulation 

results demonstrate improved downstream performance and 

compute efficiency, robustness under integrity failures, and 

stable explanations under moderate budgets. Future work 

includes real-world deployments, richer knowledge validation, 

and privacy-preserving explanation sharing across regulatory 

boundaries. 
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