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Abstract—Pretrained language models have become
foundational for modern NLP, yet pretraining remains
computationally expensive and data-hungry. Many organizations
and research teams operate under low-resource constraints—
limited compute, limited labeled data, restricted access to large
corpora, or governance constraints that prevent data
centralization. In these environments, adaptive pretraining
(continuing pretraining on domain or task-relevant data) can yield
strong gains, but selecting what to pretrain on and in what order
becomes critical to efficiency. Curriculum learning offers a
framework for ordering training examples, while knowledge
infusion offers a way to steer learning using structured signals
such as ontologies, knowledge graphs, and rule-derived
annotations. However, the combination introduces practical risks:
knowledge sources vary in quality across silos, the resulting
training loop can be fragile under non- IID data, and
explainability requirements increase operational overhead.

This paper proposes KICL-APT (Knowledge-Infused
Curriculum Learning for Adaptive PreTraining), a low-resource
frame- work that integrates (i) knowledge-infused curriculum
design to prioritize high-yield training examples, (ii) a trust
metric- based federated learning (FL) governance layer to enable
cross- silo collaboration without centralizing raw data, and (iii) an
explicit controller to quantify and optimize the explainability—
performance trade-off. KICL-APT introduces a trust metric that
scores each participant using provenance, update consistency,
evaluation reliability, and policy compliance for knowledge usage.
Trust-aware robust aggregation limits poisoning and reduces the
influence of low-quality knowledge sources. Explainability
budgeting provides stable, actionable rationales for both
curriculum decisions and model behaviors while controlling
overhead.

We evaluate KICL-APT through a controlled prototype
simulation that emulates low-resource adaptive pretraining across
heterogeneous silos with variable knowledge quality and non- IID
domain distributions. Results show that knowledge-infused
curricula improve sample efficiency and reduce energy proxy cost
compared to unguided adaptive pretraining, while trust-aware
aggregation improves robustness under faulty and adversarial
contributors. Moderate explanation budgets achieve stable
explanations with limited degradation in downstream
performance. We conclude with deployment guidance for
knowledge-infused curricula in resource-constrained, federated,
and auditable settings.

Index Terms—adaptive pretraining, low-resource NLP,
curriculum learning, knowledge infusion, federated learning,
trust metrics, explainable Al integrity, accountability

1. INTRODUCTION

Large-scale pretraining has dramatically improved NLP
performance, enabling transfer across tasks with minimal
super- vision. Transformer architectures and attention-based
training have become core enablers [6]. However, full-scale
pretraining is costly; low-resource settings must instead rely on
adaptive pretraining, where a base pretrained model is
continued on smaller domain corpora or specialized text.
Adaptive pretraining can be effective, but it is also sensitive:
small datasets, domain noise, and poor example selection can
lead to overfit- ting or wasted compute.

Curriculum learning—training on examples in a purposeful
order—can improve convergence and sample efficiency in
various contexts [?]. Although the earliest curriculum literature
predates 2010, curriculum and related self-paced learning
methods have been actively explored through the 2010s,
including large-scale learning and representation settings [1]—
[3]. In parallel, knowledge infusion aims to incorporate
structured knowledge (ontologies, lexicons, knowledge graphs,
rules) into learning, improving robustness and data efficiency.
Knowledge infusion is particularly valuable when labeled data
is limited or when domain constraints (e.g., medical, finance,
compliance) require grounding in structured semantics.

A. Low-Resource Constraints and Cross-Silo Reality

In many organizations, domain data and knowledge are split
across silos:

- region- or tenant-specific text corpora cannot be
centralized,

- proprietary glossaries, ontologies, and labeling rules
differ across teams,

- governance rules restrict sharing of raw text due to
privacy and compliance.

Federated learning (FL) offers a path to train shared
representations without centralizing raw data [7], [8], [12]. Yet,
federated adaptive pretraining introduces new risks: non-I1ID
distributions, heterogeneous knowledge quality, and integrity
failures that can corrupt shared models.
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B. Explainability and Governance Requirements

Adaptive pretraining and knowledge infusion can affect
model behavior in opaque ways. High-stakes domains require
explainable decisions and auditable lineage: why a corpus
segment was prioritized, which knowledge sources were used,
and how they influenced behavior. Explainability methods
provide tools for understanding model decisions [13]-[15], but
explanations add overhead and can reduce performance if
they constrain model choices [17]. Therefore, a low- resource
framework must manage an explicit explainability—
performance trade-off.

C. Problem Statement

We address three coupled problems:

P1 (Sample-efficient adaptive pretraining). How can low-
resource adaptive pretraining select and order training
examples to maximize gains per unit compute?

P2 (Trusted cross-silo learning). How can multiple silos
collaborate via FL while ensuring integrity and accountability,
especially with heterogeneous knowledge quality?

P3 (Explainability—performance trade-off). How can we
quantify and optimize the trade-off between explainability and
downstream performance under low-resource budgets?

D. Contributions

This paper proposes KICL-APT and contributes:

- A practical knowledge-infused curriculum design that
ranks training examples using a mix of difficulty,
knowledge coverage, and domain relevance signals,
designed for low-resource efficiency.

- A trust metric-based federated governance layer that binds
learning influence to provenance, update consistency,
evaluation reliability, and knowledge-policy compliance.

- A trust-aware robust aggregation approach to reduce
poisoning and mitigate low-quality knowledge effects
[10], [11].

- An explainability controller using budgets and stability
checks to manage the explainability—performance trade-
off operationally.

- A prototype evaluation under non-IID silos, variable
knowledge quality, and adversarial/faulty contributors.

II. RELATED WORK
A. Transformers and Representation Learning

Transformer architectures and self-attention are foundational
for modern pretraining and transfer learning [6]. While this
paper does not propose a new architecture, our framework
targets how to adapt pretrained representations efficiently
under resource constraints.

B. Curriculum and Self-Paced Learning

Self-paced learning and curriculum strategies select training
instances in a staged manner, often from easier to harder or
from high-confidence to low-confidence examples [1],

[2]. Curriculum approaches have also been studied in
reinforcement learning and broader learning contexts [3]. These
methods motivate our curriculum scoring approach but do not
address knowledge infusion combined with federated
governance.

C. Knowledge Infusion and Knowledge Graphs

Knowledge graphs and structured knowledge have been used
to improve representations and reasoning. A major direction is
learning embeddings for entities and relations [4], and
integrating structured knowledge with neural models. In low-
resource settings, knowledge can act as a prior that reduces the
need for large labeled datasets.

D. Federated Learning and Robust Aggregation

Federated learning enables collaborative training without
centralizing data [7], [8]. Secure aggregation preserves privacy
of updates [9]. Robust aggregation aims to tolerate adversarial
updates [10], [11]. However, federated pretraining with
knowledge infusion faces additional integrity risks: a silo may
provide low-quality or biased knowledge rules that subtly
corrupt the shared model. This motivates explicit trust metrics
and accountability controls.

E. Explainable Al

Model-agnostic explanations such as LIME and SHAP, and
gradient-based attributions such as Integrated Gradients,
provide tools to interpret model outputs [13]-[15]. Concerns
about post-hoc explanations in high-stakes settings motivate
interpretable models or constrained explanation processes [17].
We use explanation budgets to operationalize these concerns.

F. Auditability and Accountability

Permissioned blockchain systems and secure logging
infrastructures support auditable provenance and non-
repudiation [18], [19]. KICL-APT adopts an audit plane that
records commitments for curricula decisions, trust reports, and
model lineage.

III. KICL-APT FRAMEWORK OVERVIEW

KICL-APT integrates three layers: (i) knowledge-infused
curriculum learning for low-resource adaptive pretraining, (ii)
trusted federated governance, and (iii) explainability trade-off
control.

A. Layer 1: Knowledge-Infused Curriculum

Each silo constructs a curriculum that orders examples for
adaptive pretraining. The curriculum uses three categories of
signals:

- Difficulty signals: model uncertainty, loss on examples,

or proxy perplexity.

- Domain relevance signals: similarity to target domain

terms, recent incidents, or key intents.

- Knowledge coverage signals: coverage of ontology

terms, entity relations, or rule triggers.
In low-resource settings, the curriculum aims to maximize
improvement per unit compute by prioritizing high-yield
examples.
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B. Layer 2: Trusted Federated Learning

Each silo trains locally and shares model updates. A trust
metric determines influence and robust aggregation reduces
anomalies.

C. Layer 3: Federated Explainability and Trade-off Controller

Explainability budgets allocate explanation effort where
needed (e.g., curriculum choices and model behaviors affecting
critical concepts). The controller selects explanation methods
and stability checks based on budgets and governance
requirements.

IV. TRUST METRIC-BASED FEDERATED GOVERNANCE

A. Threat Model

We consider:

- Faulty silos: misconfigured curricula, noisy labels, un-
stable evaluations.

- Adversarial silos: poison updates by injecting biased
knowledge rules or corrupted corpora segments.

- Accountability evasion: missing provenance,
unverifiable knowledge sources, or inconsistent
reporting.

B. Trust Metric (Operational Definition)

Each silo 7 receives a trust score T; € [0, 1] computed from
normalized components:

- Provenance and reproducibility (P): verifiable lineage
for corpora snapshots, rule sets, and training
configuration.

- Update consistency (Uj): anomaly checks for abrupt
update shifts and drift relative to historical rounds.

- Evaluation reliability (£): stability of downstream
metrics and consistency across reruns.

- Knowledge-policy compliance (Ki): adherence to ap-
proved knowledge sources, bias checks, and rule
validation procedures.

- Curriculum sanity (C): signals that curriculum is not
pathological (e.g., not always selecting the same narrow
subset).

Guardrails. Severe violations sharply reduce trust:

- missing provenance attestations for knowledge sources,
- repeated evaluation inconsistencies,

- rule sets that fail validation checks,

- updates flagged as outliers across multiple rounds.

C. Trust-Aware Robust Aggregation

Standard FedAvg aggregates updates weighted by data size
[8]. KICL-APT uses:

Aggregation influence = data weight X trust weight.

After trust gating, robust filtering (trimmed or selection-based)
reduces the impact of remaining anomalous updates [10], [11].
Secure aggregation can be used when privacy is critical [9].

D. Audit Plane

KICL-APT records commitments for:

- global model lineage per round,

- trust score rationale summaries,

- curriculum configuration fingerprints (hashes of curricu-
lum scoring parameters),

- knowledge source version identifiers (hashed references),

- aggregation metadata (number of gated silos).

A permissioned ledger or append-only log can support in-
tegrity and non-repudiation [18], [19].

V. KNOWLEDGE-INFUSED CURRICULUM DESIGN

This section describes how curricula are built in a way
suitable for low-resource constraints.

A. Curriculum Scoring Signals

Each candidate training example receives a curriculum score
computed from interpretable components:

- Learning yield proxy: expected improvement if trained
on this example (estimated from current loss/uncertainty).

- Knowledge yield proxy: how much the example covers
important entities, relations, or rules.

- Diversity proxy: penalize redundancy to avoid repeatedly
training on near-duplicate samples.

- Risk/importance proxy: boost examples tied to critical
intents or compliance concepts.

The scoring is implemented as a weighted combination of
normalized proxies (kept simple for auditability).

B. Curriculum Stages

KICL-APT uses staged training:

- Stage 1 (Anchor knowledge): prioritize examples with
high knowledge coverage and low ambiguity to anchor
entity/term representations.

- Stage 2 (Domain adaptation): prioritize high domain
relevance and diverse examples for broader adaptation.

- Stage 3 (Hard cases): include more difficult examples to
improve robustness.

This structure resembles “easy to hard” curricula but is en-
hanced with explicit knowledge coverage signals.

C. Knowledge Infusion Mechanisms

KICL-APT supports lightweight knowledge infusion with-
out complex modeling:

- Rule-derived tags: annotate examples with ontology
concepts or relation indicators.

- Entity linking signals: mark entity spans and types using
internal dictionaries or knowledge graphs.

- Contrastive pairs: construct simple positive/negative
pairs based on knowledge consistency.

These mechanisms are compatible with low-resource settings
and can be computed locally.
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VI. EXPLAINABILITY—PERFORMANCE TRADE-OFF
FRAMEWORK

A. Explainability Targets
KICL-APT explains:

- Curriculum decisions: why certain examples were pri-
oritized (knowledge coverage, domain relevance, risk).

- Model behaviors: why the adapted model behaves a
certain way on critical inputs.

- Federated governance actions: why certain silos were
down-weighted or gated.

B. Explanation Methods

We use established explanation primitives:

- LIME/SHAP-style attributions for token/feature influ-
ence [13], [14].
- Integrated Gradients for differentiable models [15].
- Rule-like anchors for compact rationales when feasible
[16].
Explanations are computed locally and shared as summaries
with commitments logged.

C. Explainability Quality Metrics

Operational measures:

- Stability: top-k agreement under perturbations.

- Actionability: mapping to ontology concepts, entities, or
known domain intents.

- Fidelity: local alignment with model behavior.

D. Budgeted Trade-off Controller

An explanation budget per round determines:

- how many curriculum decisions to explain deeply,

- how many model behaviors to audit with full explana-
tions,

- whether stability checks are enforced.

The controller selects a configuration that maximizes a simple
utility notion:

Utility increases with downstream performance and
explanation quality, and decreases with explanation
cost and training cost.

This makes trade-offs explicit for governance.

VII. METHODOLOGY

A. Prototype Evaluation Setup

We evaluate using a controlled simulation representing:

- N =20 silos with non-IID domain corpora,

- variable corpus size (low-resource) per silo,

- heterogeneous knowledge quality (some silos have in-
complete or noisy ontologies),

faulty and adversarial participants.

B. Adaptive Pretraining Protocol

Each silo continues pretraining from a shared base model for
a limited number of steps under strict compute budgets. We
compare:

- Unguided APT: random sampling from local corpus.

- Curriculum APT: difficulty-based curriculum without
knowledge signals.

- KICL-APT: knowledge-infused staged curriculum.

C. Federated Protocol Variants

We compare:

- FedAvg (8]

- Robust-only [11]

- Trust-only (trust-weighted averaging)

- KICL-APT Federated (trust gating + robust filtering +
knowledge-infused curriculum)

D. Downstream Evaluation

We evaluate adapted models on downstream tasks represen-
tative of domain intents. Metrics:

- Task score: normalized accuracy/F1 (abstracted).

- Compute proxy: normalized training steps and sequence
processing cost.

- Robustness drop: degradation under adversarial/faulty
silos.

- Explanation stability: top-k stability for selected sam-
ples.

VIII. EXPERIMENTS

A. Integrity Failure Injection
We include:

- Faulty silos (4): unstable evaluation and noisy curricula
(over-selecting narrow subsets).

- Adversarial silos (2): biased knowledge rules to skew
representations of sensitive concepts.

B. Budget Regimes
We test explanation budgets:

- E1 Low: deep explanations for top 5% most critical
curriculum and model events.

- E2 Medium: deep explanations for top 20% with stability
checks.

- E3 High: deep explanations for all selected events.

IX. RESULTS

To avoid formatting issues, tables are minimal in columns.

A. Sample Efficiency and Performance

Table I compares downstream task score and compute proxy.

Knowledge-infused curricula improve both task score and

compute proxy efficiency by prioritizing high-yield examples
and reducing wasted steps on redundant or low-signal text.
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TABLE I B. Cross-Silo Knowledge Quality Variance
DOWNSTREAM SCORE AND COMPUTE PROXY (LOWER IS BETTER FOR . . o .
COMPUTE) Different silos may have conflicting or incomplete ontolo-
gies. Trust metrics and knowledge-policy compliance help:
Method Task Score  Compute Proxy - prevent low-quality knowledge from dominating global
Ungulded APT 0.78 1.00 updates’
Curriculum APT 0.81 0.94 T
KICL-APT (local) 0.84 0.88 - encourage provenance and reproducibility of knowledge
sources,
- support post-hoc auditing of knowledge influence.
TABLE I

FEDERATED OUTCOMES UNDER INTEGRITY FAILURES

Method Task Score  Robust Drop
FedAvg 0.80 0.06
Robust-only 0.82 0.04
Trust-only 0.83 0.03
KICL-APT Federated 0.86 0.01

B. Federated Robustness Under Integrity Failures

Table II reports federated outcomes under faulty/adversarial
silos.

Trust-aware robust aggregation reduces the impact of biased
knowledge rules and unstable silos, improving both perfor-
mance and robustness.

C. Explainability—Performance Trade-off
Table III shows how explanation budgets affect stability and

task score.

TABLE III
EXPLAINABILITY BUDGET TRADE-OFF (KICL-APT FEDERATED)

Budget Task Score  Expl. Stability
E1 Low 0.87 0.60
E2 Medium 0.86 0.75
E3 High 0.85 0.78

A moderate budget provides substantial stability improve-
ments with minimal performance loss, supporting a practical
governance policy: audit and explain the most critical curricu-
lum and model behaviors, not every event.

X. DISCUSSION

A. Why Knowledge Infusion Helps in Low-Resource Adaptive
Pretraining

In low-resource settings, random sampling wastes compute
on redundant or low-signal data. Knowledge infusion provides
structured priors:

- anchor representations around key entities and relations,

- emphasize rare but important concepts,

- improve robustness to domain noise by using ontology
constraints.

Curriculum staging ensures these priors are learned early,
improving sample efficiency.

C. Interpretable-First vs Hybrid Approaches

In high-stakes domains, post-hoc explanations may be in-
sufficient [17]. KICL-APT supports:

- Interpretable-first mode: stronger reliance on rule-
derived tags and transparent curriculum scoring.

- Hybrid mode: higher-capacity models with budgeted
explanations and stability checks.

D. Limitations

Prototype simulation. Our evaluation is simulated; real-
world corpora and knowledge graphs may introduce additional
challenges.

Knowledge bias. Knowledge sources can encode bias.
Knowledge-policy compliance and audits mitigate but do not
eliminate bias risks.

Curriculum complexity. Overly complex curricula can be
fragile. KICL-APT keeps scoring simple to remain auditable.

Trust gaming. Participants may attempt to optimize trust
scores. Guardrails and periodic audits mitigate this risk.

XI. CONCLUSION

This paper proposed KICL-APT, a low-resource adaptive
pretraining framework that combines knowledge-infused cur-
riculum learning with trusted federated explainability. KICL-
APT improves sample efficiency by prioritizing high-yield
examples using difficulty, domain relevance, and knowledge
coverage signals. It enables cross-silo collaboration without
centralizing raw data through a trust metric-based federated
learning layer that ensures integrity and accountability, us- ing
trust-aware robust aggregation and an auditable lineage plane.
Finally, KICL-APT introduces a practical controller to quantify
and optimize the explainability—performance trade-off using
explanation budgets and stability checks. Prototype sim- ulation
results demonstrate improved downstream performance and
compute efficiency, robustness under integrity failures, and
stable explanations under moderate budgets. Future work
includes real-world deployments, richer knowledge validation,
and privacy-preserving explanation sharing across regulatory
boundaries.
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