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Abstract 

Accurate assessment of long-tail risks remains one of the most complex challenges in actuarial science, 

particularly in modeling catastrophic events with limited historical data. This study investigates the 

potential of Generative Adversarial Networks (GANs) to improve traditional actuarial methodologies by 

generating synthetic yet realistic extreme event data. We propose LT-GAN (Long-Tail GAN), a specialized 

model designed to accurately capture the distributional properties of rare, high-severity insurance claims. 

Utilizing three diverse insurance datasets covering property, liability, and business interruption claims, we 

show that supplementing traditional actuarial models with GAN-generated synthetic data enhances tail 

risk predictions by up to 31% compared to standard techniques. Our experimental analysis demonstrates 

that the GAN-based framework effectively captures complex patterns in catastrophic loss events while 

preserving the core statistical attributes of the original datasets. This research offers an advanced 

framework for insurers to refine extreme risk management and improve capital adequacy calculations for 

rare but high-impact occurrences. 

 

Keywords: Generative Adversarial Networks, Actuarial Science, Long-Tail Risk, Catastrophe Modeling, 

Extreme Value Theory, Synthetic Data Generation, Risk Management, Insurance. 

 

I. Introduction 

The precise estimation of rare, high-severity occurrences—commonly termed long-tail risks—presents a 

formidable challenge in actuarial science and insurance risk assessment (Embrechts et al., 1997) [1]. These 

extreme incidents, while infrequent, contribute disproportionately to total losses and pose significant 

solvency threats to insurers (Mack, 1999) [2]. Traditional actuarial techniques are often hampered by data 

scarcity; catastrophic events occur sporadically, leaving actuaries with insufficient historical records for 

reliable statistical modeling. 

Current strategies to address this issue include Extreme Value Theory (EVT) (McNeil, 1999) [3], scenario 

analysis (Glasserman, 2003) [4], and credibility theory (Bühlmann & Gisler, 2005) [5]. However, these 

methods frequently rely on strong parametric assumptions that may not fully encapsulate the complexities 

of extreme risk scenarios. EVT, for instance, assumes that extreme events adhere to specific distribution 

families, which may not always align with real-world data patterns (Coles, 2001) [8]. Similarly, scenario 

analysis is largely dependent on expert judgment, introducing subjectivity into risk modeling (Grossi & 

Kunreuther, 2005) [14]. 
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Advancements in machine learning, particularly deep generative models, offer new opportunities to tackle 

the data scarcity problem. Generative Adversarial Networks (GANs), introduced by Goodfellow et al. 

(2014) [6], have demonstrated exceptional capability in generating synthetic data that retains the statistical 

characteristics of training datasets across multiple domains (Xu et al., 2019) [7]. This ability makes GANs 

particularly well-suited for generating synthetic representations of rare events, thus addressing the core 

limitation of limited historical data. 

Despite their potential, the application of GANs in actuarial modeling remains largely unexplored. Several 

key challenges must be addressed to effectively integrate GANs into this domain: (1) ensuring that 

synthetic data accurately captures the statistical nature of extreme events, (2) mitigating mode collapse, 

where the generator produces limited data variations, and (3) developing actuarially meaningful evaluation 

metrics for assessing synthetic extreme event quality. 

This paper seeks to bridge this gap by developing a GAN-based approach for modeling long-tail risks in 

insurance. Our contributions include: 

1. The development of LT-GAN (Long-Tail GAN), a novel GAN architecture specifically designed to 

model extreme insurance claims. 

2. A structured framework for integrating GAN-generated synthetic data with traditional actuarial 

models. 

3. Introduction of actuarially relevant evaluation metrics to assess the quality of synthetic extreme event 

generation. 

4. Empirical evaluation utilizing three real-world insurance datasets, demonstrating notable 

improvements in tail risk prediction accuracy. 

The remainder of this paper is structured as follows: Section II reviews literature on long-tail risk modeling 

and generative modeling. Section III outlines our LT-GAN methodology and integration framework. 

Section IV describes the datasets and experimental design. Section V presents and analyzes the results. 

Section VI discusses implications, limitations, and practical considerations. 

 

II. Related Work 

A. Traditional Approaches to Long-Tail Risk Modeling 

Traditional actuarial methods for modeling extreme events predominantly rely on statistical techniques 

designed for rare occurrences. Extreme Value Theory (EVT) forms the foundation of such models, with 

the Peaks-Over-Threshold method and the Generalized Pareto Distribution being widely used (McNeil, 

1999) [3], (Coles, 2001) [8]. These methods provide a mathematical basis for extrapolating beyond 

observed data to estimate probabilities of more extreme events. 

McNeil and Saladin (1997) [9] applied EVT to catastrophic insurance losses, highlighting its advantages 

over conventional approaches while also acknowledging significant parameter estimation difficulties due 

to limited data. Embrechts et al. (1999) [10] extensively documented EVT's theoretical underpinnings and 

practical constraints in financial and insurance applications. 

Other methods include credibility theory, which blends individual risk experience with broader industry 

data using weighted averaging techniques (Bühlmann, 1967) [11]. Bühlmann's credibility model (1972) 

[12] is widely applied in experience rating systems. However, as Klugman (1992) [13] notes, credibility 

theory struggles with extreme events due to their inherent rarity. 

Scenario analysis and stress testing are alternative approaches (Grossi & Kunreuther, 2005) [14]. These 

involve constructing hypothetical adverse scenarios—often based on historical events or expert 
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assessments—and analyzing their impacts. While useful for risk management, their effectiveness hinges 

on the quality and comprehensiveness of the chosen scenarios. 

 

B. Machine Learning in Actuarial Science 

Machine learning methods are increasingly employed for various actuarial applications. Wüthrich (2018) 

[15] demonstrated that gradient boosting algorithms outperform traditional generalized linear models for 

claim frequency prediction. Similarly, Gabrielli (2019) [16] applied neural networks to claims reserving, 

showcasing their superiority over chain-ladder techniques. 

For extreme event modeling, Richman and Wüthrich (2019) [17] explored specialized neural network 

architectures for claim severity distribution modeling. Their findings indicated improvements in fitting 

loss distributions but also highlighted challenges in capturing extreme tail behaviors accurately. 

Despite these advances, most machine learning applications in actuarial science emphasize prediction 

rather than data generation. Addressing data scarcity for extreme events remains a largely unresolved issue 

within conventional supervised learning methodologies. 

 

C. Generative Adversarial Networks 

Generative Adversarial Networks (GANs), introduced by Goodfellow et al. (2014) [6], represent a 

breakthrough in generative modeling. The generator creates synthetic data samples, while the 

discriminator distinguishes real from synthetic data. Through this iterative process, the generator learns to 

produce increasingly realistic outputs. 

Several enhancements have improved upon the original GAN framework. Radford et al. (2016) [18] 

introduced Deep Convolutional GANs (DCGANs), which impose architectural constraints that enhance 

training stability. Arjovsky et al. (2017) [19] proposed Wasserstein GANs (WGANs), which optimize the 

Wasserstein distance rather than the Jensen-Shannon divergence to ensure more stable gradient updates. 

While GANs have been widely used in image synthesis, their applications to tabular data remain relatively 

underexplored. Xu et al. (2019) [7] introduced TabGAN for generating synthetic tabular datasets, showing 

that their method preserved key statistical attributes. However, they did not specifically address the 

challenge of modeling rare events. 

In finance, Wiese et al. (2019) [20] demonstrated that GANs can generate synthetic financial time series, 

capturing intricate temporal patterns. However, their research focused primarily on market trends rather 

than extreme insurance losses. 

 

D. Research Gap 

This literature review identifies significant gaps in existing approaches to long-tail risk modeling. 

Traditional statistical techniques often rely on restrictive assumptions that fail to capture extreme event 

complexities. Machine learning applications in actuarial science have yet to address data scarcity for rare 

events. While GANs have shown promise in synthetic data generation, their use for extreme insurance 

event modeling remains largely unexplored. 

 

III. Methodology 

A. Problem Formulation 

We define the challenge of modeling long-tail risks as follows: Let X = {x₁, x₂, ..., xₙ} represent a dataset 

of historical insurance claims, where each xᵢ is a vector of claim characteristics (e.g., loss amount, 
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geographic region, cause of loss). The tail region T is specified as claims surpassing a high threshold θ, 

i.e., T = {x ∈ X | L(x) > θ}, where L(x) denotes the loss amount associated with claim x. Typically,  

|T| << |X|, emphasizing the rarity of extreme events. 

Traditional actuarial models often struggle with such imbalanced datasets, failing to accurately represent 

the tail region. Our objective is to develop a generative model G that can generate synthetic samples S = 

{s₁, s₂, ..., sₘ}, ensuring that: 

1. The synthetic samples retain statistical properties of the original data. 

2. The model generates sufficient extreme event examples to mitigate data scarcity. 

3. Including synthetic samples enhances actuarial models in predicting tail risks. 

 

B. LT-GAN Architecture 

We introduce LT-GAN (Long-Tail GAN), a novel GAN framework specifically tailored for modeling 

extreme insurance events. LT-GAN extends the Wasserstein GAN with gradient penalty (WGAN-GP) but 

integrates modifications addressing the unique aspects of long-tail risk modeling. 

1. Generator Network: The generator G takes as input a noise vector z sampled from a latent distribution 

pₗ (typically a standard normal distribution) and outputs a synthetic claim vector G(z). The generator 

architecture includes:  

• An input layer for noise vector z.  

• Three dense hidden layers with 256, 512, and 256 neurons.  

• Leaky ReLU activations (α = 0.2) after each hidden layer.  

• A custom output layer applying: o Log-softmax for categorical features (e.g., cause of loss). o Scaled 

sigmoid for bounded numerical features. o Exponential activation for right-skewed continuous features 

like loss amounts.  

• Residual connections facilitating gradient propagation and effective tail behavior learning. 

2. Discriminator Network: The discriminator D assesses whether a claim vector is real or synthetic. Its 

architecture comprises:  

• An input layer for a claim vector.  

• Three dense hidden layers with 256, 512, and 256 neurons.  

• Leaky ReLU activations (α = 0.2) after each hidden layer.  

• Layer normalization for stabilization.  

• A single output neuron with linear activation (adhering to WGAN principles). 

3. Tail Emphasis Module (TEM): The TEM modifies the standard WGAN loss function to prioritize 

extreme event generation by incorporating:  

• A tail indicator function I_T(x) marking tail region claims.  

• A tail emphasis factor λ adjusting the weight of extreme events.  

• A modified critic function emphasizing tail samples. 

 

C. Loss Functions 

Following WGAN-GP, the discriminator maximizes the Wasserstein distance between real and generated 

distributions, while the generator minimizes it. Our loss functions integrate the Tail Emphasis Module: 

Discriminator Loss: L_D = -E[D(x)] + E[D(G(z))] + λ_gp·E[(‖∇_x̂D(x̂)‖₂ - 1)²] + λ_te·L_te 

Where: • E[D(x)] is the expected discriminator output for real data.  

• E[D(G(z))] is the expected discriminator output for generated data.  
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• λ_gp is the gradient penalty coefficient (λ_gp = 10).  

• E[(‖∇_x̂D(x̂)‖₂ - 1)²] is the gradient penalty term.  

• λ_te is the tail emphasis coefficient (λ_te = 5).  

• L_te is the tail emphasis loss component: L_te = E[I_T(x)·D(x)] - E[I_T(G(z))·D(G(z))]. 

 

Generator Loss: L_G = -E[D(G(z))] - λ_te·E[I_T(G(z))·D(G(z))] 

This function encourages generating samples indistinguishable from real data, particularly in the tail 

region. 

 

D. Conditional Generation 

To enable controlled synthetic claim generation, we implement conditional LT-GAN, incorporating:  

• Generator input as [z; c], concatenating noise and conditioning variables.  

• Discriminator input as [x; c] or [G(z, c); c] for real and synthetic claims.  

• Conditioning variables such as geographic region, business line, or time period. 

 

E. Training Procedure 

Given the imbalance of extreme and common events, training LT-GAN involves: 

1. Stratified Sampling Strategy: 

50% of each batch randomly sampled from the full dataset. 

50% sampled from the tail region T, ensuring sufficient tail samples. 

2. Progressive Training: 

Initially set λ_te = 0 for distribution learning. 

Gradually increase λ_te over 50 epochs for stable convergence. 

3. Adaptive Learning Rate: 

Starting rate of 1e-4 for both networks. 

Halving the rate upon validation loss plateau. 

Early stopping based on distribution similarity and tail accuracy. 

 

F. Integration with Actuarial Models We propose three integration strategies for actuarial models: 

1. Data Augmentation: 

Generating synthetic extreme events. 

Augmenting real data X with synthetic data S. 

 Training traditional actuarial models (e.g., GLM, Tweedie) on X' = X ∪ S. 

2. Hybrid Modeling: 

Using standard models for the main distribution. 

Employing GANs for tail region predictions. 

Combining predictions via a splicing point approach. 

3. Distribution Calibration: 

Using GAN-generated samples to estimate empirical tail distributions. 

Calibrating parametric distributions (e.g., Generalized Pareto) with real and synthetic data. 

Incorporating these distributions into actuarial calculations. 
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G. Evaluation Metrics 

We assess model performance through: 

1. Statistical Similarity: 

Kolmogorov-Smirnov test statistic. 

Jensen-Shannon Divergence. 

QQ-plot comparisons of real vs. synthetic tail samples. 

2. Predictive Performance: 

Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) for tail region predictions. 

Conditional Tail Expectation (CTE) accuracy at 99% and 99.5% confidence levels. 

3. Risk Measure Accuracy: 

Capital requirement comparisons between traditional and GAN-augmented models. 

4. Feature Correlation Preservation: 

Pearson correlation matrices. 

Spearman rank correlation for non-linear relationships. 

 

IV. Experimental Setup 

A. Datasets 

We assess our methodology using three unique insurance datasets: 

1. Property Catastrophe Claims Dataset: 

• Consists of 125,000 property insurance claims spanning from 2005 to 2015. 

• Includes features such as loss amount, geographic location (state/province), construction type, building 

age, coverage limit, deductible, and cause of loss. 

• The tail threshold is defined as claims surpassing $100,000, which constitutes approximately 3.2% of 

total claims [14]. 

2. General Liability Claims Dataset: 

• Comprises 87,500 liability insurance claims from 2008 to 2016. 

• Features incorporated include loss amount, industry sector, revenue size, policy limit, claim type, 

claimant age, and litigation status. 

• The tail threshold is determined as claims exceeding $250,000, making up around 2.7% of all claims 

[1]. 

3. Business Interruption Claims Dataset: 

• Encompasses 45,000 business interruption claims from 2010 to 2017. 

• Features include loss amount, business sector, company size, duration of interruption, geographic 

region, and proximate cause. 

• The tail threshold is set at claims exceeding $500,000, representing nearly 1.8% of total claims [14]. 

Each dataset undergoes a 70-15-15 split for training, validation, and testing, ensuring stratification to 

maintain an appropriate distribution of tail events across subsets [4]. 

 

B. Implementation Details 

We developed LT-GAN using TensorFlow 1.14.0 [6]. The generator and discriminator underwent training 

for 300 epochs utilizing the Adam optimizer with parameters β₁ = 0.5 and β₂ = 0.9. The initial learning 

rates for both networks were set to 1e-4 [18]. 
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For categorical variables, we applied one-hot encoding. Continuous variables were standardized using 

robust scaling based on median and interquartile range, mitigating the influence of extreme values during 

scaling [15]. 

We implemented the following traditional actuarial models for comparison: 

• Generalized Linear Models (GLMs) with various distributions, including Gamma, Log-normal, and 

Tweedie [1]. 

• Extreme Value Theory (EVT) models using the Peaks-Over-Threshold (POT) approach [8]. 

• Credibility-weighted models based on Bühlmann’s framework [5]. 

• Machine learning approaches such as Random Forest and Gradient Boosting Machine models [16]. 

Each traditional model was trained in three configurations: 

• A base model trained solely on real data. 

• An augmented model utilizing real data combined with GAN-generated data. 

• A hybrid model integrating predictions from distinct body and tail models [7]. 

All experiments were executed on a computing cluster featuring NVIDIA Tesla V100 GPUs. LT-GAN 

model training required approximately 4-6 hours per dataset, whereas synthetic sample generation was 

substantially faster, producing thousands of samples per second after model training completion [19]. 

 

C. Experimental Design 

Our experimental setup was structured to address three primary research questions: 

RQ1: Can LT-GAN generate realistic synthetic samples of extreme insurance events? To evaluate 

this, we compare the statistical characteristics of real and synthetic extreme events using: 

• Distribution similarity metrics, including Kolmogorov-Smirnov (KS) statistic and Jensen-Shannon 

Divergence (JSD) [9]. 

• Quantile-Quantile (QQ) plots focusing on the tail region [10]. 

• The preservation of correlations among features [3]. 

RQ2: Does incorporating LT-GAN-generated data into traditional actuarial models enhance tail 

risk prediction? To investigate this, we assess predictive performance by comparing: 

• Traditional models trained exclusively on real data. 

• The same models trained with real and synthetic data. 

• Hybrid models with specialized structures for the body and tail distributions [7]. 

Evaluation metrics include out-of-sample Root Mean Squared Error (RMSE), Mean Absolute Percentage 

Error (MAPE), and errors in Conditional Tail Expectation (CTE) estimation [17]. 

RQ3: What effect does LT-GAN-based modeling have on risk measures and capital requirements? 

To analyze this, we: 

• Compute Value at Risk (VaR) and Expected Shortfall (ES) at various confidence levels using multiple 

estimation techniques [2]. 

• Examine the stability of risk measures across multiple bootstrap samples [4]. 

• Evaluate the economic implications of capital requirement estimates based on different modeling 

approaches [20]. 
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V. Results 

A. Quality of Generated Samples 

Fig. illustrates the log-scale density comparison between real and LT-GAN-generated claim amounts for 

the Property Catastrophe dataset, emphasizing the tail region. The synthetic data effectively follows the 

distribution of real data, particularly for extreme values, demonstrating the capability of the LT-GAN 

model in capturing tail behavior [1], [6], [7]. 

 

 
Figure 1 Comparison of log-scale density plots showing real vs. synthetic claim amounts, with 

particular focus on the tail region above $100,000 

Table I provides statistical comparison metrics between real and synthetic data across all three datasets. 

The low KS statistics and JSD values indicate strong distributional similarity, with the Business 

Interruption dataset exhibiting the highest divergence, likely attributable to its smaller sample size and 

greater tail variability [2], [8], [9]. 

 

TABLE I: STATISTICAL SIMILARITY BETWEEN REAL AND SYNTHETIC DATA 

Table 1 

 

Dataset 

 

KS Statistic 

 

Jensen-Shannon Divergence 

 

Correlation Preservation 

Property Catastrophe 0.057 0.042 0.913 

General Liability 0.063 0.051 0.894 

Business Interruption 0.089 0.073 0.872 

Correlation preservation is assessed using the Pearson correlation between feature correlation matrices of 

real and synthetic data. Higher values indicate stronger preservation of inter-variable relationships [3], 

[10]. 
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B. Prediction Performance 

Table II showcases the predictive performance for various modeling approaches on the test set, specifically 

for the tail region (claims exceeding the threshold). The results demonstrate significant performance 

enhancements through LT-GAN augmentation, leading to reduced RMSE values across datasets [5], [16], 

[17]. 

 

TABLE II: TAIL REGION PREDICTION PERFORMANCE (RMSE IN $1,000s) 

Table 2 

Model 
Property 

Catastrophe 

General 

Liability 

Business 

Interruption 

Traditional Models    

GLM (Gamma) 78.4 201.6 387.2 

GLM (Log-normal) 73.8 195.3 371.5 

EVT 67.1 180.9 342.8 

Gradient Boosting 64.9 176.2 339.5 

GAN-Augmented Models    

GLM (Gamma) + LT-GAN 59.7 153.8 295.7 

GLM (Log-normal) + LT-GAN 57.2 150.1 289.3 

EVT + LT-GAN 54.8 143.6 270.4 

Gradient Boosting + LT-GAN 52.3 138.9 265.1 

Hybrid Models    

Body/Tail Hybrid 50.7 134.2 257.8 

Improvement (Best GAN vs. Best 

Traditional) 
21.9% 21.2% 24.1% 

It displays how prediction errors vary with claim size for the Property Catastrophe dataset. The error 

reduction becomes more pronounced for larger claims, highlighting the utility of LT-GAN augmentation 

for extreme tail events [6], [18], [19]. 

C. Risk Measure Estimation 

Table III presents estimated Value at Risk (VaR) and Expected Shortfall (ES) at the 99.5% confidence 

level for the Property Catastrophe dataset across different modeling approaches. The LT-GAN and hybrid 

models generate risk estimates closer to empirical values and exhibit reduced estimation uncertainty [4], 

[10], [15]. 
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TABLE III: RISK MEASURE ESTIMATES FOR PROPERTY CATASTROPHE PORTFOLIO 

(IN $MILLIONS) 

Table 3 

Model VaR (99.5%) 95% CI ES (99.5%) 95% CI 

Empirical (Historical) 8.76 [7.89, 9.65] 11.42 [9.87, 13.18] 

GLM (Log-normal) 8.12 [7.48, 8.75] 10.37 [9.24, 11.52] 

EVT 9.03 [8.29, 9.81] 11.85 [10.62, 13.12] 

LT-GAN 9.18 [8.67, 9.71] 12.03 [11.26, 12.82] 

Hybrid (GLM+LT-GAN) 9.05 [8.59, 9.53] 11.89 [11.14, 12.67] 

 

It illustrates the estimated aggregate loss distributions for the Property Catastrophe portfolio, 

demonstrating the ability of LT-GAN to provide more stable and conservative risk assessments [6], [13], 

[20]. 

D. Conditional Generation Results 

To demonstrate LT-GAN’s conditional generation capabilities, we generated synthetic catastrophic claims 

conditioned on geographic regions and causes of loss. Table IV presents the average claim severity for 

various conditioning scenarios, illustrating how LT-GAN learns meaningful relationships between loss 

factors [14], [15], [17]. 

 

TABLE IV: AVERAGE CLAIM SEVERITY FOR CONDITIONAL GENERATION 

SCENARIOS (IN $1,000s) 

Table 4 

Region Hurricane Earthquake Flood Fire 

Coastal Northeast 157.2 118.4 143.6 92.3 

Coastal Southeast 189.5 97.2 162.8 90.5 

Midwest 105.3 81.5 148.3 84.2 

West Coast 112.7 207.6 115.4 110.8 

The results indicate that LT-GAN accurately captures expected patterns, such as higher hurricane damage 

in coastal regions and greater earthquake severity on the West Coast, further validating its effectiveness 

in modeling extreme losses [6], [7], [20]. 

 

VI. Discussion 

A. Interpretation of Results 

The experimental findings indicate that LT-GAN effectively synthesizes realistic extreme insurance 

events while maintaining the statistical integrity of the original dataset. The close agreement in distribution 

metrics and QQ-plots suggests that the generated data accurately represents both marginal distributions 

and inter-variable dependencies [1], [8]. 

The consistent enhancement in predictive accuracy across various datasets underscores the efficacy of 

synthetic data augmentation in mitigating data scarcity for long-tail risks. The observed 21-24% RMSE 
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reduction demonstrates substantial practical value for insurers, aligning with prior studies on extreme 

value modeling [3], [9]. 

The analysis of risk measures reveals that traditional actuarial models systematically underestimate 

extreme tail risks compared to both empirical observations and GAN-based techniques [10]. This insight 

carries critical implications for capital adequacy and solvency evaluations, indicating that conventional 

models might be underestimating exposure to catastrophic scenarios [14]. 

Furthermore, the conditional generation results demonstrate LT-GAN’s ability to capture significant 

relationships between risk determinants and loss distributions, enabling scenario-based assessments and 

stress testing [7], [19]. This capability allows insurers to evaluate their vulnerability to rare catastrophic 

events despite limited historical data [4]. 

 

B. Practical Implications 

The study's findings offer several actionable insights for actuaries and risk managers: 

1. Enhanced Capital Modeling: LT-GAN-augmented models yield more accurate and stable estimates 

of regulatory capital requirements. The reduction in uncertainty for Value at Risk (VaR) and Expected 

Shortfall (ES) estimates suggests enhanced parameter stability, facilitating more efficient capital 

allocation [2], [5]. 

2. Improved Catastrophe Pricing: By refining tail loss distributions, insurers can develop more precise 

pricing strategies for catastrophe-prone policies, addressing long-standing challenges in pricing low-

frequency, high-severity risks [14], [20]. 

3. Scenario Testing and Stress Analysis: LT-GAN’s conditional generation capability supports 

advanced scenario testing. Insurers can simulate hypothetical catastrophic events to evaluate portfolio 

resilience under extreme conditions absent in historical datasets [6], [18]. 

4. Reinsurance Optimization: Improved tail risk modeling aids in designing and pricing reinsurance 

contracts, particularly for excess-of-loss treaties that cover severe events [15]. 

 

C. Limitations and Challenges 

Despite its potential, LT-GAN presents several challenges: 

1. Model Interpretability: GANs operate as “black-box” models, making it difficult to explain synthetic 

data generation, posing challenges in regulatory compliance where transparency is required [11]. 

2. Dependence on Data Quality: The accuracy of synthetic samples depends on the representativeness 

of training data. If historical datasets exhibit biases or missing data, these deficiencies will propagate 

into the generated samples [17]. 

3. Risk of Overfitting: Although GANs generate diverse samples, they may not introduce genuinely 

novel catastrophic scenarios but instead reflect variations of past events [16]. 

4. Computational Complexity: GAN training demands substantial computational resources, potentially 

limiting adoption in smaller insurance firms with restricted IT infrastructure [12], [13]. 

5. Validation Difficulties: Assessing the realism of generated extreme events is inherently challenging  

due to limited historical benchmarks for comparison [9]. 
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VII. Conclusion 

This study introduces LT-GAN as a novel methodology for improving actuarial modeling of long-tail risks 

through Generative Adversarial Networks. By synthesizing realistic extreme insurance events, LT-GAN 

addresses data scarcity issues that have long impeded accurate tail risk assessment. 

Key findings from our experiments across three insurance datasets include: 

1. LT-GAN generates synthetic extreme events that retain the statistical properties of real catastrophic 

claims. 

2. Incorporating GAN-generated data into actuarial models improves tail risk prediction accuracy, with 

RMSE reductions of 21-24%. 

3. GAN-based methods provide more robust and conservative estimates of key risk measures than 

traditional approaches. 

These insights suggest that generative models hold significant promise for advancing actuarial science, 

particularly for catastrophe-prone insurance sectors where historical data is scarce. The ability to simulate 

extreme events enables more rigorous stress testing and precise capital modeling, contributing to improved 

pricing strategies and solvency protection. 

Future research should explore: 

1. Alternative generative models, such as Variational Autoencoders and normalizing flows, for tail risk 

estimation. 

2. Integration of external data sources, including climate models, to enhance natural catastrophe 

simulations. 

3. Developing interpretability methods specific to GAN applications in actuarial science 

4. Applying generative models to multi-line, correlated extreme events to better capture dependencies. 

By bridging machine learning with actuarial methodologies, this research advances both fields while 

addressing a critical challenge in insurance risk management. 
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