

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21013384 Volume 12, Issue 1, January-March 2021 1

Technical Insights into the zOS file system and

datasets

Chandra mouli Yalamanchili

chandu85@gmail.com

Abstract

The z/OS operating system offers a strong and well- organized dataset management System

that enables the efficient storage, retrieval, and processing of data through high-volume and

mission - critical workloads by large corporations.

This paper delves into the intricacy of the z/OS operating system's file management, more so its

unique but most sophisticated dataset structures and UNIX System Services (USS) file system.

This paper explores various dataset organizations, record structures, and access methods native to

z/OS. This paper also talks about how the traditional z/OS datasets integrate with the hierarchical

file system of USS, with a focus on coexistence and interoperation between the two environments.

This paper aims to comprehensively understand the z/OS file systems and datasets by comparing

similar technologies outside of zOS and using coding examples.

Keywords: z/OS datasets; UNIX System Services file system; VSAM; HFS; zFS; data

management; mainframe storage

Introduction

IBM's z/OS is a robust mainframe computer operating system with unparalleled scalability, security, and

reliability. At the center of its architecture is a sophisticated file management system

that is quite distinct from file systems found in other operating systems.

z/OS employs datasets as its primary data storage entities, each carefully designed to fulfill various data

processing requirements. Alongside UNIX System Services (USS), z/OS has aUNIX-like hierarchical

file system supporting UNIX-based applications.

This paper provides an in-depth exploration of these file systems, explaining their structures,

functionalities, and synergy.

z/OS Storage Architecture

z/OS uses Direct Access Storage Devices (DASD) to manage storage, which provides high-performance

disk storage optimized for enterprises' mission-critical workloads. z/OS uses volume-based allocation

and system-managed storage to provide high efficiency [12].

z/OS also supports tape storage, but DASD remains the primary medium for

file systems and datasets [9,10].

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21013384 Volume 12, Issue 1, January-March 2021 2

DASD and Volume Management

• DASD (Direct Access Storage Device): A disk-based storage system that organizes data into

cylinders and tracks for efficient access. [9, 10]

• Volumes: Each DASD is divided into volumes, which act as logical storage units. Each

volume is uniquely identified by a Volume Serial Number (VOLSER). [9]

• Extent Allocation: When a dataset is created, it is allocated space on a volume in extents,

which are contiguous or non-contiguous blocks of storage. [10]

Storage Management in z/OS

• System Managed Storage (SMS): A policy-based system that simplifies many dataset

operations by automating storage management tasks. SMS helps administrators effectively

manage DASD storage resources based on predefined rules. Below are a few of

the most significant functions of SMS [19]:

• Automated dataset placement: SMS can determine where and how datasets

are placed without storage attribute specification based on preconfigured policies.

[9][10]

• Storage Class assignment: Defines performance attributes (e.g., caching, types of

devices) for datasets.[9][10]

• Management Class: Manages dataset’s retention policies, backup frequency, and

migration rules.[9][10]

• Data Class: Manages records' size, format, and allocation behavior.[9][10]

• Storage Group: SMS groups the volumes for efficient storage management.[9][10]

• Catalogs:

• Master Catalog: The primary catalog that keeps track of all datasets and their

locations. [1][10]

• User Catalogs: Additional catalogs that help manage dataset locations for different

applications and users. [1]

• VSAM and Non-VSAM Storage: VSAM datasets have their own indexing and management,

while non-VSAM datasets are stored directly on DASD volumes [5][9].

z/OS Datasets: Structure and Organization

In z/OS, a dataset is similar to a file in other operating systems, serving as a repository for storing

and managing records. Datasets are characterized by specific attributes that define their

organization, record format, and access methods.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21013384 Volume 12, Issue 1, January-March 2021 3

Dataset Organization (DSORG)

• Physical Sequential (PS): Datasets with a sequential organization where records are stored

one after another. They are ideal for batch processing and are analogous to flat files in other

systems.[1][5]

• Partitioned Organization (PO): Also known as Partitioned Data Sets (PDS), these datasets

contain members, each functioning like a separate sequential dataset. This structure will help

group related datasets, such as program libraries.[1][5]

• Virtual Storage Access Method (VSAM): A sophisticated and advanced access method that

supports different types of data organizations as below:

• Key-Sequenced Data Set (KSDS): Records are organized based on a key field,

facilitating efficient retrieval. [5]

• Entry-Sequenced Data Set (ESDS): Records are stored sequentially as they are

entered.[5]

• Relative Record Data Set (RRDS): Records are accessed based on their relative

position within the dataset.[5]

• Linear Data Set (LDS): Consists of a sequence of pages with no intrinsic record

structure, often used for memory-mapped files. [5]

Record Formats (RECFM)

• Fixed (F): Each record has a fixed length, simplifying processing but potentially leading to

space inefficiencies if record content varies significantly. [5]

• Variable (V): Records can have differing lengths, each preceded by a Record Descriptor

Word (RDW) indicating its size. This format is space-efficient for datasets with records of

varying lengths, but it will add more complexity to processing. [5]

• Undefined (U): Records have no predefined structure, providing more flexibility, but this

format requires more complicated and custom processing logic. [5]

Access Methods

• Queued Sequential Access Method (QSAM): Optimized for sequential processing of datasets,

commonly used for reading or writing large volumes of data in order. [5]

• Basic Direct Access Method (BDAM): Allows direct access to records based on their

physical location on the storage device, suitable for applications requiring rapid, non-

sequential data retrieval. [5]

• Virtual Storage Access Method (VSAM): Provides advanced data management capabilities,

supporting complex dataset structures like KSDS, ESDS, and RRDS. [5]

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21013384 Volume 12, Issue 1, January-March 2021 4

Comparison of Dataset Organizations and Access Methods

Feature

Physical

Sequential

(PS)

Partitioned

Organization

(PO/PDS)

VSAM -

KSDS

VSAM -

ESDS

VSAM -

RRDS

VSAM -

LDS

Structure

Flat file,

sequential

records

Directory-like

structure with

members

Indexed file

with key

lookup

Sequential

records only

Records

accessed

by relative

number

Linear,

page-

based

structure

Use Case

Batch

processing,

logs,

sequential

data

Libraries,

program

storage

Indexed access

for high-

performance

applications

Append-

only logs,

sequential

access

High-

speed

relative

access

Database

and

system

storage

Supports

Random

Access

No
Indirectly via

members
Yes No Yes Yes

Supports

Sequential

Access

Yes Yes Yes Yes Yes No

Table 1: Comparison of different dataset organizations [1][5][9]

Access Method QSAM BDAM
VSAM (KSDS, ESDS,

RRDS)

Primary Use
Sequential file

processing

Direct access to

physical records

Indexed and sequential

data access

Supports Buffering Yes No Yes

Supports Sequential

Access
Yes No Yes

Supports Random

Access
No Yes Yes

Commonly Used

With
PS datasets BDAM datasets VSAM datasets

Table 2: Comparison of different access methods[1][5][9]

Deep Dive into VSAM

The Virtual Storage Access Method (VSAM) is a highly efficient data access method in z/OS

that handles structured data. It is widely used for high-performance record access in

large enterprise applications such as banking and transaction processing. [5]

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21013384 Volume 12, Issue 1, January-March 2021 5

Unlike traditional sequential datasets, VSAM provides indexed and direct access to

records, which improves performance and scalability. It also has advanced storage management

techniques, including Control Intervals (CI), Control Areas (CA), and

buffering algorithms to improve data access.[5]

The following sections describe significant enhancements that improve the features and

availability of VSAM in enterprise environments.

Key Features of VSAM

Control Interval (CI) and Control Area (CA)

Figure 1: Illustrating the general format of a control interval. [5]

Figure 2: General illustration of CA with several CIs

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21013384 Volume 12, Issue 1, January-March 2021 6

• Control Interval (CI): The smallest data transfer unit in VSAM, similar to a block in

traditional file systems. CI is the continuous area of the DASD volume track that

VSAM uses to store the data records, and the control information related to that

record. [5]

▪ A CIDF is a 4-byte field that contains the information about the amount and

location of free space available within CI. There will be on CIDF per CI. [5]

▪ An RDF is a 3-byte field that describes the length of records. For variable size

records, there will be one RDF for each logical record. For fixed length

records there will be two RDFs, one with the length and other with how many

with that length. There will be several RIDFs per CI depending on number of

logical records and their type. [5]

• Control Area (CA): A collection of Control Intervals allocated together for efficient

space management. [5]

• These structures help VSAM datasets achieve high access speeds and minimize data

fragmentation. [5]

System-Managed Storage for VSAM (SMSVSAM)

• SMSVSAM automates VSAM data set storage management. [5]

• It allows for datasets to be dynamically assigned without human intervention. [5]

• Enhances performance by optimizing space utilization and system calibration. [5]

Coupling Facility (CF) for VSAM

Figure 3: RLS in action, illustrating Coupling Facility. [5]

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21013384 Volume 12, Issue 1, January-March 2021 7

• The Coupling Facility enables VSAM datasets to be accessed by multiple Logical

Partitions (LPARs) in a Sysplex setup, supports real-time data performance,

and minimizes the contention on the data [11].

• Above picture reflects a simplified view of VSAM data set being shared between

different address spaces across a different Sysplex. Each z/OS system in the Sysplex

has its own SMSVSAM address space to coordinate the sharing. Sharing Control

Data Set (SHCDS) contains critical information used by various SMSVSAM address

spaces for RLS data set access.

• Coupling facility offer record level locking capabilities as well as caching capabilities

to enable efficient sharing of the VSAM file across different systems. [5]

Record Level Sharing (RLS)

• RLS enables record-level locking instead of dataset-level locking. [5]

• Allows multiple applications to access VSAM datasets concurrently. [5]

• Minimize bottlenecks and improve transaction throughput. [5]

Buffering and Caching

• VSAM datasets use Local Shared Resources (LSR) and Non-Shared Resources

(NSR) to optimize the data buffering/caching.

• LSR is used for high-speed indexed data access, while NSR is suited for batch

processing.

• Buffering mechanisms help to reduce the overhead of disk I/O. [5]

VSAM Cluster Components

A VSAM cluster consists of the following [5]:

• Data Component: Stores actual data records.

• Index Component: Maintains key-based indexing for quick searches and data access

based on partial or full keys.

• Catalog Entry: Manages metadata for dataset organization.

Code Examples

Defining a VSAM KSDS dataset

IBM’s IDCAMS utility can be used to allocate VSAM dataset, below is an example of

how a KSDS (Key-Sequenced Dataset) can be allocated.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21013384 Volume 12, Issue 1, January-March 2021 8

//DEFINEKS JOB (ACCT),'DEFINE KSDS',CLASS=A,MSGCLASS=A

//STEP1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

 DEFINE CLUSTER (NAME(USERID.VSAM.KSDS) -

 INDEXED -

KEYS(10 0) -

RECORDSIZE(100 1000) -

CISZ(4096) -

 VOLUMES(DEV001) -

SHR(2,3))

 DATA (NAME(USERID.VSAM.KSDS.DATA))

 INDEX (NAME(USERID.VSAM.KSDS.INDEX))

/*

Accessing a VSAM KSDS file in COBOL

Below is an example of how a KSDS (Key-Sequenced Dataset) can be access in COBOL

program.

IDENTIFICATION DIVISION.

PROGRAM-ID. VSAM-RW.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 SELECT VSAM-FILE ASSIGN TO 'USERID.VSAM.KSDS'

 ORGANIZATION IS INDEXED

 ACCESS MODE IS SEQUENTIAL

 RECORD KEY IS VSAM-KEY

 FILE STATUS IS WS-FILE-STATUS.

DATA DIVISION.

FILE SECTION.

FD VSAM-FILE.

01 VSAM-RECORD.

 05 VSAM-KEY PIC X(10).

 05 VSAM-DATA PIC X(90).

WORKING-STORAGE SECTION.

01 WS-FILE-STATUS PIC X(2).

01 NEW-RECORD.

 05 NEW-KEY PIC X(10) VALUE 'NEWKEY001'.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21013384 Volume 12, Issue 1, January-March 2021 9

 05 NEW-DATA PIC X(90) VALUE 'This is a new record.'.

PROCEDURE DIVISION.

 OPEN I-O VSAM-FILE.

 DISPLAY 'Writing a new record...'.

 WRITE VSAM-RECORD FROM NEW-RECORD

 INVALID KEY DISPLAY 'Error: Write failed.'

 NOT INVALID KEY DISPLAY 'Record successfully written.'.

 DISPLAY 'Reading records...'.

 PERFORM UNTIL WS-FILE-STATUS = '10'

 READ VSAM-FILE NEXT RECORD

 AT END MOVE '10' TO WS-FILE-STATUS

 NOT AT END DISPLAY 'READ: ' VSAM-RECORD

 END-PERFORM.

 CLOSE VSAM-FILE.

 STOP RUN.

VSAM Summary

VSAM access method provide a powerful, flexible, and high-performance method for managing and

accessing structured data within z/OS. With features like SMSVSAM, Coupling Facility, and Record-

Level Sharing, it ensures scalability, concurrency, and efficient data retrieval for enterprise applications.

UNIX System Services (USS) Integration

With the introduction of USS, z/OS extended its capabilities to support a hierarchical file system similar

to UNIX and Linux-based operating systems. It allows z/OS to natively run UNIX-based applications,

which bridges the gap between traditional mainframe datasets and modern file system designs.

USS File Systems

• HFS: The first implementation of a UNIX-like file system in z/OS, supporting hierarchical

directory structures and POSIX-compliant file operations. However, HFS was limited in

performance and scalability.[2]

• zFS: Being a next-generation file system engineered to overcome HFS limitations, zFS offers

improved performance, scalability, and reliability. It features dynamic growth, concurrent

access, and enhanced recovery mechanisms.[2]

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21013384 Volume 12, Issue 1, January-March 2021 10

Mounting File Systems

In z/OS, file systems like HFS or zFS are mounted to put them within the hierarchical directory

structure. Each file system is typically associated with a specific dataset, and mounting makes its

contents available within the USS environment [2].

Accessing Datasets from USS

USS provides mechanisms to access traditional z/OS datasets, facilitating interoperability between the

two file systems. For instance, UNIX commands can interact with datasets using special path notations.

Example: To list the contents of a PDS member using the cat command:

cat "//'USERID.DATASET(MEMBER)'"

Java code example to read a VSAM KSDS file

The following Java program demonstrates how to read a VSAM KSDS file in USS environment:

import java.io.*;

import java.nio.file.*;

import java.nio.charset.StandardCharsets;

public class VSAMReader {

 public static void main(String[] args) {

 String vsamFilePath = "//USERID.VSAM.KSDS"; // Replace with actual VSAM dataset name

 try (BufferedReaderbr = Files.newBufferedReader(Paths.get(vsamFilePath),

StandardCharsets.UTF_8)) {

 String line;

 while ((line = br.readLine()) != null) {

System.out.println(line);

 }

 } catch (IOException e) {

System.err.println("Error reading VSAM file: " + e.getMessage());

e.printStackTrace();

 }

 }

}

This Java code reads the VSAM KSDS dataset using USS file handling capabilities and prints each

record to the console.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21013384 Volume 12, Issue 1, January-March 2021 11

Java Code Example Using JZOS SDK to Read a VSAM KSDS File

IBM provides JZOS SDK, a set of Java APIs designed specifically for accessing z/OS datasets,

including VSAM files, more efficiently. JZOS integrates with the z/OS system and provides native

access to datasets, making it ideal for large-scale enterprise processing.

The following Java program reads & writes into a VSAM KSDS file using JZOS RecordReader & JZOS

RecordWriter:

import com.ibm.jzos.RecordWriter;

import com.ibm.jzos.TextRecordReader;

import com.ibm.jzos.TextRecordWriter;

import java.io.IOException;

public class JZOSVSAMReadWrite {

 public static void main(String[] args) {

 String datasetName = "//'USERID.VSAM.KSDS'"; // Replace with actual VSAM dataset name

 // Write a record to VSAM

writeToVSAM(datasetName, "NEWKEY003", "This is a new VSAM record using JZOS.");

 // Read all records from VSAM

readFromVSAM(datasetName);

 }

 public static void writeToVSAM(String datasetName, String key, String data) {

 try (RecordWriter writer = new TextRecordWriter(datasetName)) {

 String fullRecord = String.format("%-10s%-90s", key, data); // Ensure key and data fit the

expected format

writer.write(fullRecord);

System.out.println("Successfully written to VSAM: " + fullRecord);

 } catch (IOException e) {

System.err.println("Error writing to VSAM file: " + e.getMessage());

e.printStackTrace();

 }

 }

 public static void readFromVSAM(String datasetName) {

 try (TextRecordReader reader = new TextRecordReader(datasetName)) {

 String record;

System.out.println("Reading records from VSAM...");

 while ((record = reader.read()) != null) {

System.out.println("READ: " + record);

 }

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21013384 Volume 12, Issue 1, January-March 2021 12

 } catch (IOException e) {

System.err.println("Error reading VSAM file: " + e.getMessage());

e.printStackTrace();

 }

 }

}

Why Use JZOS SDK?

• Optimized for z/OS - JZOS provides native integration with mainframe datasets. [7]

• Efficient Dataset Processing -It supports large-scale batch jobs more effectively than standard

Java file I/O. [7]

• Better Performance for VSAM - It avoids issues when using standard Java NIO with VSAM

datasets. [7]

• JZOS provides the ability to read VSAM datasets by key, allowing direct retrieval of records

using indexed access, which standard Java NIO does not support. This capability makes JZOS

essential for applications requiring efficient, direct access to specific records in a VSAM KSDS

dataset.[7]

JZOS is recommended for production-grade applications where performance, scalability, and native

integration with z/OS datasets are critical [7].

Comparisons with Similar Technologies

Below are a few distinctions when comparing z/OS datasets and file systems to those in other operating

systems:

• Windows NTFS and UNIX ext4:

• Both are hierarchical file systems supporting directories and files with various attributes

[1].

• In contrast, z/OS datasets are not inherently hierarchical and are managed through

catalogs [1,5].

• Database Management Systems (DBMS):

• Modern DBMSs handle structured data with complex querying capabilities [5].

• z/OS datasets, especially VSAM datasets, provide foundational data storage mechanisms

that DBMSs can utilize [5].

• Cloud-Based Storage Models (AWS S3, Azure Blob, Google Cloud Storage):

• Cloud storage solutions provide scalable, distributed storage accessible over the internet

[1].

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21013384 Volume 12, Issue 1, January-March 2021 13

• Unlike z/OS datasets, which are tightly integrated with transaction processing and

structured storage management, cloud storage focuses on object-based storage that scales

dynamically with demand [1,9].

• Cloud models offer high availability, redundancy, and accessibility but lack the deep

integration with mainframe transaction processing that z/OS datasets provide [1,5].

Conclusion

z/OS's file management system is a cornerstone of its architecture, offering diverse dataset structures and

access methods tailored for high-performance computing environments. The Virtual Storage Access

Method (VSAM) provides structured data management with support for indexed, sequential, and direct

access methods, while enhancements like SMSVSAM, Coupling Facility, and Record Level Sharing

(RLS) improve scalability and availability. The integration of UNIX System Services (USS) further

enhances flexibility by enabling hierarchical file system support and interoperability with UNIX-based

applications.

Compared to traditional hierarchical storage models like NTFS and ext4, z/OS datasets rely on catalog-

based organization, while cloud-based storage models like AWS S3 offer scalability but lack deep

integration with transactional processing. Future research should focus on optimizing dataset

management for modern workloads, enhancing file system security, and integrating cloud storage

capabilities with z/OS.

To conclude, with its unmatched reliability and scalability, z/OS will continue to be a core foundation for

enterprise data management in the evolving digital landscape.

References

[1] IBM Corporation, "z/OS DFSMS: Using Data Sets", IBM Redbooks, 2020.

[2] IBM Corporation, "z/OS UNIX System Services Overview", IBM Redbooks, 2020.

[3] M. Ebbers, J. Kettner, and W. O'Brien, "Introduction to the New Mainframe: z/OS Basics", IBM

Redbooks, 2019.

[4] IBM Corporation, "z/OS File Systems: Managing and Implementing zFS", IBM Redbooks, 2019.

[5] IBM Corporation, "VSAM Demystified", IBM Redbooks, 2018.

[6] J. Varady, "Advanced VSAM: Techniques for High-Performance Processing", McGraw-Hill, 2017.

[7] IBM Corporation, "JZOS Guide: Java on z/OS", IBM Documentation, 2019.

[8] R. Barker, "Mainframe Storage Management: Best Practices and Strategies", Wiley, 2016.

[9] IBM Corporation, "DFSMS: Managing Storage on z/OS", IBM Redbooks, 2018.

[10] IBM Corporation, "Introduction to DASD Management on z/OS", IBM Redbooks, 2019.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT21013384 Volume 12, Issue 1, January-March 2021 14

[11] C. Yalamanchili, "IBM Mainframe & z/OS: Advanced Insights from A Programmer's Perspective",

International Journal for Multidisciplinary Research (IJFMR), Vol. 2, Issue 3, May-June 2020, doi:

10.36948/ijfmr.2020.v02i03.22604.

[12] C. Yalamanchili, "Technical Insights into the Implementation of z/OS Memory and Address

Spaces", International Journal on Science and Technology (IJSAT), Vol. 11, Issue 4, October-December

2020, doi: 10.5281/zenodo.14288200.

https://www.ijsat.org/

