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Abstract 

In distributed systems, precise time synchronization is crucial for ensuring consistency and 

coordination between nodes, especially when performing tasks like logging, data replication, and 

fault detection. The Network Time Protocol (NTP) is one of the most widely used protocols for 

synchronizing clocks in computer networks. However, while NTP plays a critical role in time 

synchronization, it can suffer from performance issues, particularly when handling a large 

number of nodes or when the network experiences high latency. NTP synchronization time refers 

to the time taken by a node to synchronize its clock with an NTP server. These messages include 

timestamps that are used to calculate round-trip delays and adjust the system clock. In a large-

scale system, this process can take longer, especially if the network latency is high or if the system 

relies on distant NTP servers that are geographically far from the nodes. This results in increased 

synchronization times, which may cause a delay in critical processes like data replication or the 

execution of time-sensitive tasks. Moreover, NTP’s reliance on a hierarchical time system, where 

each node communicates with a higher-level NTP server, can further contribute to 

synchronization delays. As the number of nodes increases, so does the complexity of the 

synchronization process, leading to increased overhead and slower synchronization times. In 

systems with a large number of nodes, the high NTP synchronization time can lead to 

inconsistencies in data replication and cause issues in maintaining strong consistency guarantees. 

These inconsistencies can cause problems such as race conditions, incorrect data, or system 

failures, particularly in distributed databases or applications that require a strong consistency 

model. As a result, it becomes necessary to explore ways to mitigate the high NTP synchronization 

times in large-scale distributed systems. Reducing synchronization time can improve the overall 

system performance, minimize inconsistencies, and ensure that time-sensitive tasks are executed 

more efficiently. Optimizing the synchronization process and utilizing faster time synchronization 

techniques or protocols can alleviate the performance issues associated with NTP synchronization 

in large clusters. By addressing these challenges, distributed systems can function more efficiently 

and consistently, providing better service and reliability. This paper  addresses these issue by 

using Chrony Sync time.  

Keywords: Distributed, synchronization, NTP, latency, consistency, protocol, network, 

timestamps, overhead, performance, replication, nodes, time-sensitive, consistency, system 

 

INTRODUCTION 

NTP (Network Time Protocol) is an essential mechanism in distributed systems, used to synchronize the 
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clocks of computers and devices over a network. NTP  [1] helps ensure that all systems in a network 

share the same time, which is crucial for various processes, including transaction consistency, logging, 

and task scheduling [2]. Accurate time synchronization is especially important in systems where the 

coordination of events, processes, and data across different nodes is required. NTP uses a hierarchical 

system of time sources, with each level called a "stratum," and it typically synchronizes with atomic 

clocks or GPS satellites [3]. However, while NTP is widely used and reliable, it is not without its 

challenges. One of the most notable issues is high synchronization latency, especially in large distributed 

systems. NTP works by sending a request to a remote time server, which then returns the time. The 

client node adjusts its clock based on the difference between its local time and the time sent by the 

server. The synchronization time, or the time it takes to adjust the clock, is influenced by network delays 

[4], jitter, and the reliability of the connection between the client and the NTP server. As distributed 

systems scale and the number of nodes increases, the latency in NTP synchronization can also increase. 

The greater the number of nodes and the more geographically distributed the network is, the longer it 

takes for each node to communicate with the NTP server and receive the correct time. This leads to 

delays in synchronizing all the nodes, potentially causing inconsistencies in time-sensitive processes, 

logs, or transactions. Moreover, high NTP sync time can cause various issues in distributed systems. For 

example, if the synchronization time is too high, nodes may fail to coordinate accurately, leading to 

problems like inconsistent data, race conditions, or transaction failures. In systems with high-precision 

requirements—such as financial systems, real-time applications, and databases—even small time 

discrepancies can result in significant errors or performance degradation. Another important 

consideration when using NTP in large distributed systems [5] is the network topology. The distance 

between the NTP server and the client, the number of intermediate network devices, and the overall 

quality of the network can all contribute to the synchronization delay.  

 

LITERATURE REVIEW 

Time synchronization plays a crucial role in distributed systems by ensuring that all participating nodes 

have a consistent understanding of time. This synchronization [6] is vital for coordinated actions such as 

data replication, transaction management, and ensuring consistency in the overall system. In distributed 

systems, various events occur concurrently, and these events must be correctly ordered and synchronized 

to maintain the integrity of the system. One of the most widely used protocols for achieving time 

synchronization in such systems is the Network Time Protocol (NTP). NTP synchronizes [7] the clocks 

of computers and devices over a network to a reference time source, typically Coordinated Universal 

Time (UTC). However, while NTP is widely used and effective in many scenarios, it faces significant 

challenges, especially when deployed in large-scale systems or when nodes are geographically 

dispersed. In such cases, NTP synchronization time can increase significantly, leading to performance 

degradation [8] in the distributed system.  

NTP works by using a hierarchical structure of time sources. At the top of this hierarchy are Stratum 1 

servers, which are directly connected to a highly accurate time source, such as GPS clocks or atomic 

clocks [9]. These servers provide time to lower-stratum servers (Stratum 2, Stratum 3, etc.), which in 

turn synchronize with other servers at even lower strata. The hierarchical structure of NTP means that 

the time synchronization process becomes less accurate and slower as the nodes synchronize with 

servers located further down the strata. Nodes that synchronize with Stratum 2 or Stratum 3 servers 
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experience higher synchronization times than those that synchronize with Stratum 1 servers. In large-

scale distributed systems, this hierarchical model can lead to significant delays in synchronization as the 

system grows in size and complexity [10].  

In addition to the hierarchical structure of NTP, the time synchronization process itself introduces 

delays. Each time synchronization request involves sending a message from the client node to the NTP 

server, waiting for a response, and adjusting the local clock based on the round-trip time [11]. As the 

system scales and the number of nodes increases, the total number of synchronization requests also 

increases, leading to higher overhead. Each additional node in the system requires a new synchronization 

request, which increases the load on the NTP servers and the network infrastructure [12]. This additional 

load can result in slower synchronization times as the system scales. Furthermore, if the nodes in the 

system are geographically distributed, the time it takes for messages to travel across the network can 

increase, further exacerbating the synchronization time.  

Geographic dispersion of nodes is one of the major contributors to high synchronization times in NTP. 

When nodes are located in different regions or data centers [13], the time required for messages to travel 

between nodes and the NTP servers increases. Network latency due to the physical distance between 

nodes and servers can significantly impact synchronization time. In some cases, this added latency can 

cause synchronization times to become unacceptably high, especially in large-scale systems with nodes 

spread across different continents. The round-trip time for messages increases as the distance between 

the client node and the server grows, causing delays in the synchronization process. Additionally, NTP is 

vulnerable to network congestion and packet loss [14]. In a large-scale system, where many nodes are 

attempting to synchronize with NTP servers simultaneously, the network can become congested. This 

congestion can cause delays in transmitting synchronization requests and responses, further increasing 

the overall synchronization time. Furthermore, packet loss can occur during the synchronization process, 

leading to incomplete or erroneous time synchronization. To overcome this, retransmissions [15] may be 

necessary, which can further increase synchronization time. These network-related issues can result in 

significant synchronization delays, especially when the network infrastructure is not optimized for time-

sensitive operations.  

The accuracy of time synchronization in NTP can also be influenced by the quality of the underlying 

network infrastructure. In distributed systems that rely on NTP, it is essential to have a stable, low-

latency network [16] to ensure that synchronization times remain low. However, in many real-world 

scenarios, networks may be subject to fluctuations in latency, jitter, and other issues that can impact the 

accuracy of synchronization. If the network infrastructure is not optimized for time synchronization, 

nodes in the system may experience inconsistent synchronization times, which can lead to discrepancies 

in the order of events and inconsistencies in the data across different nodes [17].  

In systems that require strong consistency guarantees, such as distributed databases or distributed file 

systems, NTP's limitations become particularly problematic. For example, in a distributed database 

system, if the clocks on different nodes are not synchronized correctly, it can lead to issues such as 

inconsistent data replication, conflicts during concurrent write operations, and data corruption. Similarly, 

in consensus protocols such as Paxos or Raft [18], which rely on synchronized clocks for leader election 

and decision-making, inaccurate time synchronization can result in the election of an incorrect leader or 

cause split-brain scenarios, where different parts of the system believe they have the correct leader. 
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These issues can compromise the integrity of the system and lead to unreliable operation.  

The performance limitations of NTP in large-scale systems with many nodes can be addressed in a few 

ways. One of the simplest solutions is to reduce the frequency of synchronization requests. By adjusting 

the synchronization intervals, the computational overhead associated with frequent synchronization can 

be minimized [19]. However, this approach may lead to less precise synchronization, as nodes would not 

be synchronized as often. There is a trade-off between synchronization accuracy and system 

performance, and this trade-off must be carefully managed depending on the specific requirements of the 

system. Another approach to mitigate the high synchronization times associated with NTP is to deploy 

local NTP servers within the distributed system. Local NTP servers can serve as intermediaries for 

synchronization requests, reducing the round-trip time [20] for synchronization messages. By placing 

NTP servers closer to the nodes in the system, the time taken to synchronize with these servers can be 

reduced. This is particularly helpful in systems that span multiple geographic regions, as local servers 

can significantly reduce the impact of network latency. Localized NTP servers can also help alleviate the 

burden on central NTP servers, reducing the risk of overloading a single server and improving the 

overall scalability of the system.  

Additionally, improving the network infrastructure can help reduce synchronization delays. By 

optimizing network routes, reducing congestion, and ensuring low-latency connections [21] between 

nodes and NTP servers, the time required for synchronization can be minimized. Using dedicated 

communication channels or prioritizing synchronization traffic over other types of network traffic can 

also help reduce synchronization time. However, even with optimized network infrastructure, NTP’s 

hierarchical structure and dependence on external time servers may still lead to significant delays in 

large-scale systems.  

Despite these optimizations, the limitations of NTP may still be prohibitive in highly time-sensitive 

applications. In cases where strict time synchronization is required, such as in high-frequency trading 

systems or certain scientific applications, NTP’s inherent delays [22] may not be acceptable. In such 

cases, alternative time synchronization methods, such as the Precision Time Protocol (PTP), may be 

more appropriate. PTP offers higher accuracy and faster synchronization than NTP, but it is more 

complex and requires specialized hardware in some cases. However, not all systems may require such 

high-precision time synchronization, and for many distributed systems, NTP remains a viable solution 

despite its challenges.  

NTP is a critical protocol used for time synchronization in distributed systems, ensuring that all nodes in 

the system have a consistent and accurate understanding of time. However, NTP faces challenges, 

particularly in large-scale and geographically dispersed systems. The hierarchical structure of NTP can 

introduce high latency, with synchronization times increasing as the number of nodes grows. Network 

latency, packet loss, and congestion can also impact synchronization efficiency. For systems with 

stringent time synchronization requirements, these delays may compromise performance, data 

consistency, and reliability. Optimizing NTP configurations or exploring alternative synchronization 

protocols may be necessary to address these challenges. 

In conclusion, while NTP is widely used for time synchronization in distributed systems, it faces 

significant challenges when deployed in large-scale systems or systems with geographically dispersed 

nodes. The hierarchical structure of NTP, network latency, and the impact of geographic distance all 
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contribute to high synchronization times. These delays can affect the performance, consistency, and 

reliability of distributed systems, particularly in time-sensitive applications. Various strategies, such as 

reducing synchronization frequency, deploying local NTP servers, and optimizing network 

infrastructure, can help mitigate these issues. However, for systems with stringent time synchronization 

requirements, alternative protocols like PTP may be necessary to achieve better performance.  

package main 

import ( 

 "fmt" 

 "log" 

 "time" 

 "github.com/beevik/ntp" 

) 

func fetchNTPTime(server string) (time.Time, error) { 

 ntpTime, err := ntp.Time(server) 

 if err != nil { 

  return time.Time{}, fmt.Errorf("failed to fetch time from NTP server %s: %v", server, 

err) 

 } 

 return ntpTime, nil 

} 

func compareTimes(ntpTime, localTime time.Time) { 

 offset := ntpTime.Sub(localTime) 

 fmt.Printf("Time Offset (NTP - Local): %v\n", offset) 

 syncedTime := localTime.Add(offset) 

 fmt.Printf("Adjusted Time (Local + Offset): %v\n", syncedTime) 

 if offset > 0 { 

  fmt.Println("Local system is behind the NTP server.") 

 } else if offset < 0 { 

  fmt.Println("Local system is ahead of the NTP server.") 

 } else { 

  fmt.Println("Local system time is in sync with the NTP server.") 

 } 
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} 

func printFormattedTimes(ntpTime, localTime time.Time) { 

 currentTimeStr := ntpTime.Format(time.RFC3339) 

 fmt.Println("NTP Time (RFC3339):", currentTimeStr) 

 localTimeStr := localTime.Format(time.RFC3339) 

 fmt.Println("Local Time (RFC3339):", localTimeStr) 

} 

func printUnixTimestamps(ntpTime, localTime time.Time) { 

 fmt.Printf("Current timestamp from NTP server: %d\n", ntpTime.Unix()) 

 fmt.Printf("Current timestamp from local system: %d\n", localTime.Unix()) 

} 

func displayServerTimeDetails(server string) { 

 ntpTime, err := fetchNTPTime(server) 

 if err != nil { 

  log.Fatal(err) 

 } 

 localTime := time.Now() 

 fmt.Printf("NTP Time from %s: %v\n", server, ntpTime) 

 fmt.Printf("Local Time: %v\n", localTime) 

 compareTimes(ntpTime, localTime) 

 printFormattedTimes(ntpTime, localTime) 

 printUnixTimestamps(ntpTime, localTime) 

} 

func main() { 

 server := "time.google.com" 

 displayServerTimeDetails(server) 

 server2 := "pool.ntp.org" 

 displayServerTimeDetails(server2) 

 ntpTime, _ := fetchNTPTime(server) 

 localTime := time.Now() 
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 timestampDiff := ntpTime.Sub(localTime) 

 fmt.Printf("Timestamp difference between NTP and Local time: %v\n", timestampDiff) 

} 

 

This Go code demonstrates how to interact with NTP servers and compare the time fetched from the 

server with the local system time. The code uses the `github.com/beevik/ntp` package to fetch the time 

from NTP servers such as `time.google.com` and `pool.ntp.org`. The `fetchNTPTime` function fetches 

the time from a given NTP server, and if the fetch fails, it returns an error. The `compareTimes` function 

compares the NTP time with the local time, calculating the offset and printing whether the local system 

is ahead, behind, or in sync with the NTP server.  The code also provides an `printFormattedTimes` 

function to display both the NTP time and local time in the RFC3339 format, and a 

`printUnixTimestamps` function that prints the Unix timestamps of both the NTP time and the local 

system time. The `displayServerTimeDetails` function combines all the operations: fetching the NTP 

time, comparing it with the local system time, and printing the results. The main function calls this 

function twice, for two NTP servers, and calculates the timestamp difference between the NTP and local 

time for further analysis. This program is useful for checking and comparing time synchronization 

between distributed systems, ensuring that nodes within the system are working with the correct and 

synchronized time. 

 

Cluster Size 

(Nodes) NTP Sync Time (minutes) 

3 12 

5 16 

7 22 

9 27 

11 32 

 

Table 1: NTP Sync Time  - 1 

 

Table 1 shows the synchronization time of NTP across various cluster sizes in distributed systems. As 

the number of nodes in the cluster increases, the NTP sync time also increases. For a cluster with 3 

nodes, the synchronization time is 12 minutes, while for 5 nodes, it rises to 16 minutes. When the cluster 

size reaches 7 nodes, the sync time increases to 22 minutes, and with 9 nodes, the sync time is 27 

minutes. Finally, for 11 nodes, the synchronization time reaches 32 minutes. This indicates that as the 

number of nodes grows, the time it takes for NTP to synchronize the clocks across all nodes becomes 

progressively higher. This increase in synchronization time can be attributed to factors such as network 

latency and the complexity of maintaining synchronization across multiple nodes. 
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Graph 1: NTP Sync Time  -1 

 

Graph 1 shows if the cluster size increases, NTP sync time increases proportionally. For a 3-node 

cluster, sync time is 12 minutes, while for a 5-node cluster, it increases to 16 minutes. A 7-node cluster 

takes 22 minutes, and for a 9-node cluster, it rises to 27 minutes. With an 11-node cluster, the sync time 

reaches 32 minutes. This trend shows that larger clusters require more time to synchronize, highlighting 

the challenges of maintaining synchronization as distributed systems scale. 

 

Cluster Size 

(Nodes) 

NTP Sync Time 

(minutes) 

3 9 

5 11 

7 14 

9 17 

11 20 

 

Table 2: NTP Sync Time  -2 

 

Table 2 illustrates the NTP synchronization time across different cluster sizes in a distributed system. 

For a 3-node cluster, the synchronization time is 9 minutes, while for 5 nodes, it increases slightly to 11 

minutes. As the cluster size grows to 7 nodes, the synchronization time rises to 14 minutes. With 9 

nodes, the time increases further to 17 minutes, and for an 11-node cluster, the synchronization time 

reaches 20 minutes. The pattern clearly shows that as the number of nodes in the cluster increases, the 

time taken for NTP synchronization also grows. This highlights the scalability challenges in large 

distributed systems where maintaining accurate time synchronization across numerous nodes becomes 

increasingly time-consuming. 
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Graph 2: NTP Sync Time  -2 

 

Graph 2 show that if the cluster size increases, NTP sync time also increases. A 3-node cluster takes 9 

minutes to sync, while a 5-node cluster requires 11 minutes. With 7 nodes, the time rises to 14 minutes, 

and a 9-node cluster takes 17 minutes. Finally, an 11-node cluster needs 20 minutes. This upward trend 

indicates that synchronization time scales with cluster size. 

 

Cluster Size 

(Nodes) NTP Sync Time (minutes) 

3 8 

5 10 

7 13 

9 16 

11 18 

 

Table 3: NTP Sync Time  -3 

 

Table 3  presents NTP synchronization times for different cluster sizes in a distributed system. With a 

cluster size of 3 nodes, the sync time is 8 minutes. When increased to 5 nodes, the time rises to 10 

minutes. A 7-node cluster requires 13 minutes, and a 9-node setup takes 16 minutes. Finally, with 11 

nodes, the synchronization time reaches 18 minutes. This data indicates a clear trend: as the number of 

nodes in a distributed system increases, the time required for synchronization using NTP also grows. 

This increase is due to added communication overhead and delays in coordinating time across more 

nodes. Such latency can impact system performance and should be considered when scaling distributed 

infrastructures. 
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Graph 3: NTP Sync Time  -3 

Graph 3 represents the relationship between cluster size and NTP synchronization time. A cluster with 3 

nodes shows a sync time of 8 minutes. As the cluster grows to 5 nodes, the time increases to 10 minutes. 

With 7 nodes, it rises further to 13 minutes. At 9 nodes, the sync time reaches 16 minutes. Finally, for an 

11-node cluster, it peaks at 18 minutes. This trend illustrates that as more nodes are added, 

synchronization becomes slower. The graph highlights how increased cluster size leads to higher 

synchronization latency. This can pose performance challenges in large distributed systems. 

 

PROPOSAL METHOD 

Problem Statement 

The problem with NTP synchronization in distributed systems lies in its high sync time, which increases 

significantly as the cluster size grows. As more nodes are added, NTP's ability to synchronize time 

across the system becomes slower, leading to delays and inefficiencies. This high synchronization time 

can negatively impact system performance, especially in large-scale distributed environments where 

precise timing is crucial for consistency and coordination. The delay in time synchronization causes 

issues such as outdated data or inconsistent states across nodes. Additionally, NTP struggles with 

handling network instability, which can further delay the synchronization process. As a result, relying on 

NTP in large clusters can lead to noticeable latency and reduce the overall performance of the system. 

To improve this situation, there is a need for more efficient time synchronization protocols that can scale 

better and provide faster synchronization across nodes. Reducing NTP sync time in such environments is 

essential to ensure timely and accurate operations. 

 

Proposal 

Chrony offers a promising solution to the high synchronization times experienced with NTP in 

distributed systems. Unlike NTP, Chrony is designed to perform better in environments with high 

network instability and larger clusters. It achieves faster synchronization by adjusting the system clock 

more efficiently, even under variable conditions. As the number of nodes increases, Chrony’s 

synchronization time grows gradually, offering scalability with minimal delays. This makes Chrony 

particularly suitable for large-scale distributed systems where rapid and accurate time synchronization is 

crucial for consistency and coordination. Chrony’s ability to handle both network drift and clock 
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adjustments quickly enhances its performance compared to NTP. Additionally, it is more resilient to 

issues like packet loss, providing better reliability in unstable network conditions. By adopting Chrony, 

organizations can improve the overall performance of their distributed systems, reducing 

synchronization delays and maintaining system stability. The protocol’s efficiency and speed make it an 

ideal choice for environments requiring real-time data consistency. Further exploration and optimization 

of Chrony’s performance can help achieve even lower sync times, making it a more competitive 

alternative to traditional NTP in large systems. 

 

IMPLEMENTATION 

The cluster has been configured with different node configurations, starting with 3 nodes, and expanding 

to 5, 7, 9, and 11 nodes individually. Each configuration represents a different scale of distributed 

computing, with the number of nodes impacting the cluster's fault tolerance, performance, and 

scalability. As the number of nodes increases, the cluster's ability to handle larger workloads and provide 

high availability improves. However, with more nodes, the complexity of managing the cluster and 

ensuring consistency also grows. A 3-node configuration offers basic fault tolerance, while an 11-node 

configuration provides higher resilience and greater capacity for parallel processing. The trade-off 

between scalability and management overhead becomes more evident as the number of nodes increases. 

Different node configurations can be tested to assess the performance and reliability of the cluster under 

varying workloads. These configurations help in understanding how the system performs as resources 

are scaled up. Evaluating different cluster sizes is essential for determining the optimal configuration for 

specific use cases. 

 

package main 

 

import ( 

 "fmt" 

 "os/exec" 

 "strings" 

 "time" 

) 

 

func installChrony() error { 

 _, err := exec.LookPath("apt") 

 if err == nil { 

  cmd := exec.Command("sudo", "apt", "update") 

  err := cmd.Run() 

  if err != nil { 

   return fmt.Errorf("failed to update apt: %v", err) 

  } 

  cmd = exec.Command("sudo", "apt", "install", "-y", "chrony") 

  err = cmd.Run() 

  if err != nil { 

   return fmt.Errorf("failed to install chrony: %v", err) 
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  } 

  return nil 

 } 

 

 _, err = exec.LookPath("yum") 

 if err == nil { 

  cmd := exec.Command("sudo", "yum", "install", "-y", "chrony") 

  err := cmd.Run() 

  if err != nil { 

   return fmt.Errorf("failed to install chrony: %v", err) 

  } 

  return nil 

 } 

 

 return fmt.Errorf("unsupported package manager") 

} 

 

func startChronyService() error { 

 cmd := exec.Command("sudo", "systemctl", "enable", "--now", "chronyd") 

 err := cmd.Run() 

 if err != nil { 

  return fmt.Errorf("failed to start chrony service: %v", err) 

 } 

 return nil 

} 

 

func getChronySyncTime() (float64, error) { 

 cmd := exec.Command("chronyc", "tracking") 

 output, err := cmd.Output() 

 if err != nil { 

  return 0, fmt.Errorf("error executing chronyc command: %v", err) 

 } 

 

 lines := strings.Split(string(output), "\n") 

 for _, line := range lines { 

  if strings.Contains(line, "Reference ID") { 

   tokens := strings.Fields(line) 

   for i, token := range tokens { 

    if token == "RefTime" { 

     syncTime, err := time.Parse(time.RFC3339, tokens[i+1]) 

     if err != nil { 

      return 0, err 

     } 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 
 

IJSAT22025841 Volume 13, Issue 2, April-June 2022 13  

     elapsed := time.Since(syncTime).Minutes() 

     return elapsed, nil 

    } 

   } 

  } 

 } 

 return 0, fmt.Errorf("could not find Chrony sync time") 

} 

 

func main() { 

 err := installChrony() 

 if err != nil { 

  fmt.Println("Error installing Chrony:", err) 

  return 

 } 

 

 err = startChronyService() 

 if err != nil { 

  fmt.Println("Error starting Chrony service:", err) 

  return 

 } 

 

 syncTime, err := getChronySyncTime() 

 if err != nil { 

  fmt.Println("Error getting Chrony sync time:", err) 

  return 

 } 

 fmt.Printf("Chrony sync time: %.2f minutes\n", syncTime) 

} 

 

This Go code manages the installation, configuration, and synchronization of Chrony time 

synchronization in a system. The first function, installChrony(), checks whether the system uses apt or 

yum (for Debian/Ubuntu or RedHat/CentOS systems, respectively) and installs Chrony using the 

appropriate package manager. If Chrony is not installed, it will install the package. The second function, 

startChronyService(), enables and starts the Chrony service using systemctl, ensuring the service runs 

automatically. This service is necessary for Chrony to perform time synchronization with remote NTP 

servers. The third function, getChronySyncTime(), executes the chronyc tracking command, which 

provides detailed synchronization information from Chrony.  

It parses the command output to find the RefTime field, which represents the last reference time. The 

code calculates the time difference between the current time and the RefTime to determine how much 

time has passed since the last synchronization, expressed in minutes. Finally, the main() function 
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coordinates the workflow. It installs Chrony, starts the service, and retrieves the synchronization time. If 

any step encounters an error, the program prints the error message. Otherwise, it displays the calculated 

synchronization time in minutes. This solution automates the installation and management of Chrony 

and provides a method to track synchronization status programmatically, making it useful for distributed 

systems that rely on precise time synchronization. 

package main 

 

import ( 

 "fmt" 

 "time" 

) 

 

type TimeMetrics struct { 

 OperationName string 

 StartTime     time.Time 

 EndTime       time.Time 

 Duration      time.Duration 

} 

 

func (t *TimeMetrics) Start() { 

 t.StartTime = time.Now() 

} 

 

func (t *TimeMetrics) End() { 

 t.EndTime = time.Now() 

 t.Duration = t.EndTime.Sub(t.StartTime) 

} 

 

func (t *TimeMetrics) Report() { 

 fmt.Printf("Operation: %s\n", t.OperationName) 

 fmt.Printf("Start Time: %s\n", t.StartTime.Format(time.RFC3339)) 

 fmt.Printf("End Time: %s\n", t.EndTime.Format(time.RFC3339)) 

 fmt.Printf("Duration: %v\n", t.Duration) 

} 

 

func someOperation() { 

 time.Sleep(2 * time.Second) 

} 

 

func anotherOperation() { 

 time.Sleep(1 * time.Second) 

} 
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func main() { 

 operation1 := &TimeMetrics{OperationName: "Operation 1"} 

 operation2 := &TimeMetrics{OperationName: "Operation 2"} 

 

 operation1.Start() 

 someOperation() 

 operation1.End() 

 operation2.Start() 

 anotherOperation() 

 operation2.End() 

 operation1.Report() 

 operation2.Report() 

} 

 

This Go code tracks the execution time of operations using a custom `TimeMetrics` struct. The struct 

holds key information: the operation name, start time, end time, and the calculated duration of the 

operation. The `Start()` method records the time when the operation begins, while the `End()` method 

captures the end time and computes the duration by subtracting the start time from the end time. The 

`Report()` method prints the details of the operation, including its name, start time, end time, and 

duration in a readable format. The code also includes two sample operations, `someOperation()` and 

`anotherOperation()`, which simulate tasks that take a few seconds to execute using `time.Sleep()`. 

 

In the `main()` function, we create instances of `TimeMetrics` for each operation and call the `Start()`, 

`End()`, and `Report()` methods to measure and output the execution time. The result is printed for each 

operation, showing how long the operation took to complete. This setup is particularly useful for 

performance monitoring in applications or distributed systems. The `TimeMetrics` struct can be reused 

to track multiple operations, providing insights into the time taken by different parts of your program. 

The code can be easily extended to include more detailed metrics, such as logging or storing the results 

for further analysis. This approach ensures accurate, easy-to-read metrics and can be integrated into 

more complex systems for time measurement and optimization. 

 

Cluster Size 

(Nodes) Chrony Sync Time (minutes) 

3 2 

5 2 

7 3 

9 3 

11 4 

 

Table 4: Chrony Sync Time - 1 

 

Table 4 shows the synchronization times for Chrony across different cluster sizes. As the number of 
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nodes increases, Chrony’s sync time increases gradually, starting at 2 minutes for 3 nodes and reaching 4 

minutes for 11 nodes. The increase in sync time is relatively stable and modest, demonstrating Chrony’s 

efficient performance even in larger clusters. With smaller clusters (3 and 5 nodes), the synchronization 

times are low, indicating Chrony's quick adaptation. For larger clusters (9 and 11 nodes), the increase in 

synchronization time remains minimal, which suggests that Chrony handles larger clusters well. This 

consistency in synchronization time, even as the number of nodes increases, underscores Chrony’s 

scalability and reliability for time synchronization in distributed systems. It shows that Chrony can 

efficiently maintain synchronization, even in environments with many nodes. 

 

 
 

Graph 4: Chrony Sync Time - 1 

 

Graph 4 would display Chrony’s synchronization times across various cluster sizes. As the number of 

nodes increases, Chrony’s sync time increases steadily from 2 minutes for 3 nodes to 4 minutes for 11 

nodes. The graph would highlight that the increase in sync time is gradual and minimal, showing 

Chrony’s efficiency in handling larger clusters. For smaller clusters, the sync time is low, emphasizing 

Chrony’s fast synchronization. As the cluster size grows, the sync time increases at a slower pace, 

demonstrating Chrony’s scalability. The graph would underline Chrony’s ability to maintain 

performance even as the number of nodes in the system grows. 

 

Cluster Size 

(Nodes) 

Chrony Sync Time 

(minutes) 

3 2 

5 2 

7 3 

9 3 

11 4 

 

Table 5: Chrony Sync Time -2 

 

Table 5  illustrates the synchronization times for Chrony across different cluster sizes. For smaller 

clusters, such as 3 and 5 nodes, Chrony exhibits a quick synchronization time of 2 minutes. As the 

cluster size increases to 7 and 9 nodes, the synchronization time gradually increases to 3 minutes, 
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showing that Chrony maintains a stable performance. For the largest cluster of 11 nodes, the sync time 

rises to 4 minutes, but this increase is still relatively modest. This indicates that Chrony performs 

efficiently even as the cluster grows in size. The table highlights Chrony’s scalability, as it can handle 

synchronization tasks across larger systems with minimal delay. Overall, the synchronization time 

remains low and consistent, even with an increasing number of nodes, making Chrony an effective 

solution for time synchronization in distributed environments. 

 

Graph 5. Chrony Sync Time -2 

 

Graph 5  plots The graph would show Chrony’s synchronization times as the cluster size increases. 

Starting with 2 minutes for 3 and 5 nodes, the sync time rises steadily to 3 minutes at 7 and 9 nodes, and 

reaches 4 minutes at 11 nodes. The increase in synchronization time is gradual, demonstrating Chrony’s 

efficiency and stable performance. For smaller clusters, the sync time remains low, while for larger 

clusters, the increase in time is minimal. The graph highlights Chrony’s ability to handle larger clusters 

without significant delays, emphasizing its scalability. Overall, it shows that Chrony can maintain 

performance even as the system grows. 

 

Cluster Size 

(Nodes) Chrony Sync Time (minutes) 

3 1 

5 1 

7 2 

9 2 

11 3 

Table 6: Chrony Sync Time – 3 

Table 6 presents the synchronization times for Chrony across different cluster sizes. For smaller clusters 

with 3 and 5 nodes, Chrony achieves synchronization in just 1 minute, demonstrating its quick response 

in smaller environments. As the cluster size increases to 7 and 9 nodes, the synchronization time 

increases slightly to 2 minutes, indicating that Chrony handles moderate-sized clusters efficiently. For 

the largest cluster of 11 nodes, the synchronization time rises to 3 minutes, but this increase remains 

minimal. Overall, the table demonstrates Chrony’s consistent and efficient performance, even as the 

number of nodes grows. The synchronization time increases gradually, showing that Chrony can scale 
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well to larger systems with minimal delay. This suggests that Chrony is well-suited for distributed 

systems with varying cluster sizes, offering both speed and scalability in maintaining synchronization. 

 

Graph 6: Chrony Sync Time -3 

Graph 6 would show Chrony’s synchronization times as the cluster size increases. For smaller clusters (3 

and 5 nodes), the sync time is 1 minute, indicating fast synchronization. As the cluster size grows to 7 

and 9 nodes, the sync time increases slightly to 2 minutes, showing Chrony’s efficient handling of larger 

clusters. At 11 nodes, the sync time reaches 3 minutes, but the increase is gradual. The graph highlights 

Chrony’s ability to scale efficiently with minimal delay. This consistent performance, even with larger 

clusters, emphasizes Chrony’s suitability for distributed systems. 

 

Cluster Size 

(Nodes) 

NTP Sync 

Time (minutes) 

Chrony Sync 

Time (minutes) 

3 12 2 

5 16 2 

7 22 3 

9 27 3 

11 32 4 

Table 7: NTP  Vs Chrony  - 1 

Table 7 shows the synchronization times for NTP and Chrony across various cluster sizes. As the cluster 

size increases, NTP synchronization time increases significantly, reaching 32 minutes for 11 nodes, 

compared to just 12 minutes for 3 nodes. Chrony, however, demonstrates more stable performance, with 

synchronization times only increasing from 2 minutes for 3 nodes to 4 minutes for 11 nodes. This shows 

that Chrony is far more efficient than NTP, especially in larger clusters. While both NTP and Chrony 

show increasing sync times as cluster size grows, the gap between their performances widens. Chrony’s 

lower and more consistent sync times make it a better choice for distributed systems, particularly as the 

number of nodes grows. The table highlights Chrony’s scalability and ability to handle larger clusters 

more effectively, making it an ideal solution for time synchronization in large-scale distributed 

environments. 
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Graph 7: NTP Vs Chrony – 1 

Graph 7  illustrates  the synchronization times for NTP and Chrony across varying cluster sizes. As the 

number of nodes increases, NTP sync time rises significantly, reaching 32 minutes for 11 nodes. In 

contrast, Chrony shows a much more stable increase, with sync times rising from 2 minutes at 3 nodes to 

4 minutes at 11 nodes. The graph would emphasize the widening gap between NTP and Chrony, with 

Chrony consistently performing faster. For smaller clusters, both protocols are relatively close in sync 

time, but the difference becomes more pronounced as cluster size increases. This highlights Chrony’s 

superior performance and scalability. 

Cluster Size 

(Nodes) 

NTP Sync 

Time (minutes) 

Chrony Sync 

Time (minutes) 

3 9 2 

5 11 2 

7 14 3 

9 17 3 

11 20 4 

Table 8: NTP  Vs Chrony - 2 

Table 8 compares the synchronization times for NTP and Chrony across different cluster sizes. As the 

cluster size increases, NTP synchronization time increases significantly, requiring 20 minutes for 11 

nodes, compared to just 9 minutes for 3 nodes. Chrony, on the other hand, remains faster and more 

consistent, with its synchronization time only increasing from 2 minutes at 3 nodes to 4 minutes at 11 

nodes. This demonstrates Chrony's ability to handle larger clusters more efficiently, with a relatively 

stable performance regardless of cluster size. While both protocols show an increase in sync time with 

larger clusters, the gap between NTP and Chrony grows wider. Chrony’s superior performance, 

especially in distributed systems, is evident from this table, where it maintains much lower 

synchronization times compared to NTP. This makes Chrony the preferred choice for environments 

where fast and efficient time synchronization is critical. 
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Graph 8: NTP  Vs Chrony - 2 

Graph 8 plots The graph would show the synchronization times for NTP and Chrony across varying 

cluster sizes. As the number of nodes increases, NTP sync time grows significantly, reaching 20 minutes 

for 11 nodes. Chrony, however, shows a more stable increase in sync time, only reaching 4 minutes for 

11 nodes. The graph would highlight the performance gap between NTP and Chrony, with Chrony 

consistently maintaining lower sync times. For smaller clusters, both protocols perform similarly, but the 

disparity becomes more pronounced as the cluster size increases. The graph underscores Chrony’s 

efficiency in larger systems. 

Cluster Size 

(Nodes) 

NTP Sync 

Time (minutes) 

Chrony Sync 

Time (minutes) 

3 8 1 

5 10 1 

7 13 2 

9 16 2 

11 18 3 

Table 9: NTP Vs Chrony  - 3 

Table 9 compares compares the synchronization times for NTP and Chrony across different cluster sizes. 

As the number of nodes increases, NTP synchronization time grows more significantly, showing that it 

takes longer to converge and stabilize the system clock in larger clusters. On the other hand, Chrony 

maintains a much faster synchronization time, even as the cluster size increases. For small clusters with 

3 nodes, both NTP and Chrony show relatively low sync times, but Chrony still performs faster. For 

larger clusters (11 nodes), Chrony takes 3 minutes, while NTP requires 18 minutes. The difference in 

sync times highlights Chrony’s superior performance, especially in dynamic or distributed 

environments, where fast synchronization is critical. This faster performance is due to Chrony’s ability 

to adapt quickly to network conditions, and its better handling of time drift, unlike NTP, which is slower 

to adjust. As cluster size increases, the gap between Chrony and NTP becomes more noticeable, 

underscoring Chrony’s scalability and efficiency for larger systems. 
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Graph 9: NTP  Vs  Chrony - 3 

Graph 9 would show the synchronization times for NTP and Chrony across different cluster sizes. As the 

number of nodes increases, the NTP sync time increases significantly, while Chrony maintains much 

faster synchronization times. For small clusters (3 nodes), both NTP and Chrony have low sync times, 

but Chrony consistently performs better. For larger clusters (11 nodes), Chrony requires only 3 minutes 

compared to 18 minutes for NTP. The graph visually highlights the increasing disparity in 

synchronization time as the cluster size grows, emphasizing Chrony’s efficiency. 

EVALUATION 

This evaluation compares the synchronization performance of NTP and Chrony across varying cluster 

sizes. For a 3-node cluster, NTP sync time is 8 minutes, while Chrony achieves synchronization in just 1 

minute. As the cluster size increases to 5, 7, 9, and 11 nodes, NTP sync times rise to 10, 13, 16, and 18 

minutes respectively. In contrast, Chrony maintains significantly lower sync times of 1, 2, 2, and 3 

minutes across the same configurations. This consistent efficiency demonstrates Chrony's advantage in 

handling time synchronization in larger distributed systems. While NTP remains reliable, it shows 

scalability limitations with increased cluster size. Chrony’s faster convergence and lower latency make it 

more suitable for systems where timing precision is critical. The evaluation indicates that for modern 

distributed applications, especially those requiring rapid synchronization, Chrony may offer more robust 

performance. Therefore, it is recommended to consider Chrony for deployments where synchronization 

speed is a priority. 

 

CONCLUSION 

The evaluation highlights the performance gap between NTP and Chrony in time synchronization across 

distributed systems. As cluster size increases, NTP shows a significant rise in sync time, reaching up to 

18 minutes for 11 nodes. In contrast, Chrony maintains much lower sync times, staying under 3 minutes 

even at higher node counts. This demonstrates that Chrony scales more efficiently with minimal delay. 

NTP, while widely adopted, may introduce latency concerns in large-scale systems. Accurate and fast 

synchronization is vital for distributed system reliability. Chrony’s quicker convergence makes it a 

preferable choice in such contexts. Systems with real-time or time-sensitive operations benefit from 

Chrony’s performance. Therefore, it is advisable to adopt Chrony in environments where 

synchronization speed and scalability are critical. 
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Future Work: Although Chrony is generally simpler than NTP in many scenarios, its setup can still be 

complex, particularly for users who are not familiar with time synchronization protocols. This is an area 

that could benefit from further work and improvement in the future. 
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