

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 1

Policy-Driven Infrastructure Automation for

Microservices: A Unified Framework Combining

Infrastructure as Code and Policy as Code in

Cloud-Native Environments

Nagateja Alugunuri

Principal DevOps Engineer

nagateja4224@gmail.com

Abstract

With the cloud-native applications era, microservices architecture is now the de facto standard

because it is scalable, flexible, and modular. However, it's extremely challenging to orchestrate the

underlying infrastructure for such a distributed system, such as complexity, consistency, and

governance at scale. To address these, automation through Infrastructure as Code (IaC) has

emerged as a front-runner, allowing for declarative provisioning of infrastructure, while Policy as

Code (PaC) enforces security, compliance, and operational policy governance through codified

policies. This study tries to provide a holistic model that combines IaC and PaC to automate

infrastructure provisioning and policy enforcement in a consistent way throughout the

deployment pipeline. Through the use of solutions like Terraform for infrastructure and Open

Policy Agent (OPA) to enforce policy, the model is proposed to enhance the speed of deployment,

reduce human error, and achieve policy compliance.

Keywords: Infrastructure as Code, Policy as Code, Terraform, Open Policy Agent and Cloud-

native Applications.

1. Introduction:

Cloud-native applications have revolutionized software development by allowing developers to develop

scalable, fault-tolerant, and flexible systems based on the microservices architecture paradigm.

Microservices break down complex applications into loosely coupled, individually deployable services

that exchange information with one another over networks [1]. This philosophy allows for agility,

shortened development cycles, and ease scalability, which are ideal for today's distributed landscapes

like public clouds, hybrid clouds, and container orchestration environments like Kubernetes. It is

extremely difficult to manage the underlying infrastructure running these microservices at scale [2-3].

The management, configuration, and maintenance of cloud resources become more complex with

service and environment size. This maturity tends to cause inconsistencies, configuration drift, and

security breaches. Furthermore, human processes for managing infrastructure are prone to human fault

and slow down deployment cycles, affecting overall agility and reliability [4].

https://www.ijsat.org/
mailto:nagateja4224@gmail.com

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 2

To correct these issues, automation using IaC became the rule of thumb, enabling infrastructure to be

programmatically described, versioned, and managed [5]. Though IaC simplifies provisioning, it does

not natively support enforcing organization policies like security controls, compliance rules, and

governance policies during deployment [6-7]. It can result in violations that put the integrity and security

of cloud infrastructure at risk. PaC fills this void by converting policies into executable codes that are

automatically checked at the time of deployment [8-9]. PaC enables constant policy enforcement

through infrastructure changes, which enforces compliance and minimizes the likelihood of

misconfigurations. The motivation in this regard is to bring Infrastructure as Code and Policy as Code

together into one system where infrastructure is deployed automatically with strong policy enforcement

[10-13]. This convergence is focused on speeding up deployment time, eliminating human errors,

enhancing security and compliance, and enhancing auditability and reproducibility for cloud-native

microservices environments [14].

1.1 Problem Statement:

Microservices infrastructure scaling is the largest challenge because the architectures are dynamic and

distributed in nature and need instant provisioning, perpetual updates, and smooth scaling across a wide

variety of cloud environments. Security, compliance, and governance grow more complicated as the

organization must implement consistent policies to protect resources, control access, and ensure

compliance with regulations while preventing deployment latency. Further, it is difficult to maintain

consistency across a variety of environments such as development, testing, and production because of

configuration drift, human error, and a lack of a point of control, causing unpredictable behavior and

operational risk. These challenges require an automated policy-based solution that combines

infrastructure provisioning with continuous policy enforcement to provide secure, compliant, and

dependable microservices infrastructure at scale.

1.2 Objectives:

• To develop an automated infrastructure deployment framework that integrates seamlessly

embedded policy enforcement to ensure that all infrastructure changes adhere to predefined

security and governance requirements across the deployment life cycle.

• To improve the auditability of infrastructure changes through keeping detailed logs and

traceability of infrastructure and policy compliance actions, allowing easier auditing and

compliance verification.

• To enhance the cloud-native microservices environments' maintainability by reducing manual

interventions and configuration drift through automation validation and enforcement

mechanisms.

• To enhance the overall security stance of deployments by actively detecting and preventing

policy breaches before and at runtime, thus mitigating risks due to misconfiguration and

unauthorized changes.

The paper is organized as follows: Section 2 is the related work; Section 3 is where the unified

framework workflow and architecture are proposed; Section 4 is where the implementation and

experimental setup, evaluation measures, comparative evaluation, results and challenges discussion, and

future work are outlined; and lastly, Section 5 concludes the paper with the main takeaways.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 3

2. Literature review:

Dimitrios Kallergis et al. [1] presented a CAPODAZ, which is a containerized authorisation and policy-

controlled microservices architecture for access control in hybrid cloud and IoT scenarios. The approach

provides fine-grained policy control and enhances the system's performance in latency, throughput, and

request success rate. It is, however, challenged with distributed policy administration and complexity of

container orchestration across heterogeneous platforms. Joanna Kosińska and Krzysztof Zielinski [2]

developed AMoCNA, a model for policy-driven autonomic management of cloud-native applications on

top of Model Driven Architecture (MDA). The approach utilizes high-level policies and rule engines to

provide self-managing dynamic cloud environments while trying to decrease management complexity

and operational expenditure. Benefits are technology-agnostic meta-models and enhanced automation

without constant human intervention. The framework, nevertheless, might incur some overhead on

system performance and must be carefully analyzed. The authors Michael Wurster et al. [3] suggested a

way to determine key features that must be present in deployment technologies for general cloud-native

applications based on automation, scalability, and adaptability. This approach is an initial framework for

comparing and classifying deployment technologies. The positive aspect is that it gives precise criteria

to oversee technology selection and promote superior deployment practices in cloud-native applications.

The disadvantage is that it is still a first, thought step with no fully developed or empirically grounded

general framework, so its pragmatic usefulness is limited in the near future. Satheesh Reddy Gopireddy

[4] gave a Compliance as Code (CaC) as an automated process of injecting compliance controls into the

DevOps pipeline to address the complexities of multi-jurisdictional cloud implementations. This allows

organizations to monitor and enforce compliance continuously, which supports smooth and effective

management of diverse regulatory requirements. The most important advantage of CaC is the ability to

automate the process of compliance verification, reducing the utilization of manual auditing and

lowering operation risk in high-speed deployment cycles. Nevertheless, there are issues, such as dealing

with the complexity of disparate regulation in multiple jurisdictions and integrating compliance into

existing DevOps processes seamlessly. Bhavin Desai and Asit Patil [5] suggest the integration of Zero

Trust security with micro-segmentation with the assistance of Software-Defined Networking (SDN) as

an attempt to provide secure cloud-native applications. This solution imposes rigorous access control

and persistent authentication with the assistance of dynamic workload isolation. The major benefit is

improved security and breach containment, while the major drawback is the complexity in managing and

scaling policy in dynamic environments.

3. Proposed Unified Framework

To meet the increasing demands and complexities of secure, compliant, and scalable microservices

deployment in cloud-native ecosystems, this study suggests an integrated framework that finds a balance

between IaC and PaC. The basic intent of the framework is to provision, configure, and manage

infrastructure and microservices automatically while maintaining consistency, repeatability, and

compliance from development through production. Infrastructure is announced, versioned, and deployed

via IaC tools like Terraform or Pulumi. At the same time, PaC solutions like OPA with Rego offer

application- and infrastructure-level policy rules. Due to this close integration, policies can be enforced

at all phases of the CI/CD pipeline, ensuring prevention of misconfiguration and security breaches ahead

of runtime. The combined framework allows businesses to implement DevSecOps more efficiently by

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 4

integrating security and governance as a part of automation pipelines, finally making operations more

efficient, minimizing risk, and delivering faster in cloud-native environments.

3.1 Overview of Architecture: The combined framework has a modular architecture, which automates

the deployment of infrastructure as well as enforces compliance to policies at each level. It integrates

IaC and PaC tools into one end-to-end pipeline from commit of developer code to version-controlled

repositories. CI/CD pipeline invokes validation and execution with a policy engine verifying compliance

prior to deployment. Ultimately, services are managed and runtime policies enforced by orchestration

layers such as Kubernetes. Layered architecture facilitates consistency, security, and agility in the

infrastructure life cycle. The structure commonly consists of the following layers:

i) Developer Layer: The application and configuration logic all stem from the Developer Layer. In this,

the developers need to write the IaC scripts using the tools such as Terraform, Pulumi, or AWS Cloud

Development Kit (CDK). The scripts provide a declarative or programmatic declaration of cloud

resources such as networks, databases, virtual machines, and Kubernetes clusters. Simultaneously,

developers also describe PaC in policy languages such as Rego, which is applied solely in conjunction

with OPA. Policies place requirements like access controls, naming constraints, or compliance

restrictions. Developers incorporate policy definitions together with infrastructure code to ensure

security and governance are embedded right from the start, following a "shift-left" approach in

DevSecOps practices.

ii) Source Control Layer: All IaC and PaC script versions are retained and managed in the Source

Control Layer using tools like GitHub, GitLab, or Bitbucket. Version control, collaboration, and

traceability are offered by means of this layer. The repositories hold the infrastructure definitions,

application code, and policy rules in folders. All modifications regardless of whether it is a new

infrastructure deployment or a new policy are carried out with commits and pull requests to ensure

openness and accountability. This layer also assists in automatically triggering downstream CI/CD

pipelines upon code changes so continuous integration and delivery principles can be developed. In

addition to this, with branch protection rules and code review workflows, teams have the ability to

enforce policy compliance prior to code being merged into production branches.

iii) CI/CD Pipeline Layer: The CI/CD Pipeline Layer takes charge of automating the deployment life

cycle from validation and testing to provisioning and release. GitHub Actions, GitLab CI/CD, Jenkins,

or ArgoCD are examples of tools that watch for source control layer changes and trigger pipelines as

needed. Once IaC code has changed, the pipeline starts validation procedures like syntax, linting, and

terraform plan runs. At the same time, PaC policies are tested to validate that the suggested

modifications align with organizational policy. In case validation succeeds, infrastructure is allocated by

employing the suitable IaC tool and applications are released. In case of found violations, deployment is

stopped by the pipeline and informs stakeholders, guaranteeing security and governance enforcements

prior to runtime.

iv) Policy Engine Layer: The Policy Engine Layer is the gatekeeper of compliance which checks

changes in infrastructure with pre-determined rules. It makes use of agents such as OPA or HashiCorp

Sentinel to enforce declarative language policies (e.g., Rego). When the CI/CD pipeline suggests

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 5

infrastructure modifications, they are sent through the Policy Engine for inspection. This layer allows

configurations to conform to organizational standards like secure networking, resource tagging,

encryption requirements, and environment isolation. Policies can be applied at different stages pre-

deployment, plan validation and post-deployment offering a multi-stage protection. When policies fail,

deployment is prevented or rolled back, offering automated governance model with less human error and

more trust in automated processes.

v) Orchestration & Runtime Layer: The Orchestration & Runtime Layer deals with the provision,

deployment, and lifecycle management of application workloads in actuality. It is where Kubernetes,

Docker Swarm, or Nomad fills the gap. Kubernetes, specifically, is widely employed to orchestrate

container-based applications and handle resources such as pods, services, and volumes. It also employs

OPA Gatekeeper as a runtime policy enforcer that checks live resources on an on-going basis to ensure

ongoing compliance. It integrates with the output from the IaC and CI/CD layers, provisioning services

based on approved policies and configurations. It offers scalability, availability, service discovery, auto-

healing, and load balancing for microservices in a production environment.

3.1.1 IaC and PaC Tool Integration Points:Integrations between IaC and PaC tools are the pillars of

secure, automated, and compliant cloud infrastructure deployment. Integrations ensure that infrastructure

provisioning is not only automated but also governed by security and compliance policies during the

development process.

i) IaC Integration: Tools like Terraform, Pulumi, or AWS Cloud Development Kit (CDK) define,

provision, and manage cloud infrastructure through code. These enable developers and DevOps teams to

model infrastructure elements such as virtual machines, networks, databases, Kubernetes clusters, and

load balancers as human-readable, version-controlled scripts. By plugging IaC into the CI/CD pipeline,

one can automatically create and update cloud resources with consistency and reproducibility across

environments (e.g., dev, staging, prod). Such IaC tools generate an execution plan (such as terraform

plan) that offers a full preview of the changes to be executed, which is critical for policy checking before

deployment.

ii) PaC Integration: Policy as Code mechanisms like OPA are important to guarantee that any

modification specified by IaC is in line with organizational policies and security rules. Rules like

resource naming conventions, access control, encryption needed, network limitations, or cost control

policies are defined in languages like Rego. PaC tools are natively plugged into CI/CD pipelines and

cloud orchestration environments (e.g., Kubernetes using OPA Gatekeeper) to run pre-deployment and

runtime validations. The two-stage validation offers layered confidence, guaranteeing that neither

misconfigured nor insecure infrastructure is deployed or allowed to remain undetected at runtime.

iii) Pipeline Hooks: Pipeline Hooks are necessary integration tools in the CI/CD cycle that facilitate

proactive enforcement of IaC and PaC standards. These hooks are operationally positioned at various

phases of the deployment pipeline to validate infrastructure changes against security, compliance, and

operational policies both prior to and post-deployment. During the pre-deployment phase, utilities such

as Terraform create an execution plan (terraform plan) which is intercepted by the policy engine in most

cases OPA to check against defined rules. When violations are encountered (e.g., creation of public

storage buckets or provisioning of resources without encryption), the pipeline stops right away, blocking

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 6

insecure deployments. During the post-deployment or runtime stage, solutions like OPA Gatekeeper

check live infrastructure for policy non-compliance or drift, for example, containers running at elevated

privilege or lacking resource limits. If problems arise, automated alerts, remediation steps, or rollbacks

can be initiated. These pipeline hooks guarantee constant security, operational consistency, and

governance through seamless policy enforcement integration into the DevOps lifecycle.

Figure 1:A Unified Framework for IaC-PaC Integrated Cloud-Native Compliance

3.2 Framework Components: Four fundamental components are used in the envisioned unified

framework, which work together to support automated policy-compliant microservices deployment. The

IaC engine, with the help of tools like Terraform, Pulumi, or AWS CDK, provisioned cloud resources

like virtual machines, storage, and networking automatically. These tools facilitate version-controlled,

reproducible, and testable deployment and can guarantee consistency between development, test, and

production environments. For instance, a Terraform script declaratively defines an entire Kubernetes

Developer layer

Pac (OPA/Rego)

Iac

(Terraform/Pulu

mi)

Source control

layer

PaC Repo

IaC Repo

Commit

Iac/Pac

definitions

Syntax

validation

Policy enforcement

Infra provisioning

Allow if compliant

Orchestration and runtime layer

Kubernetes

Microservices

Runtime policy hooks

Post deployment

policy check

Enforce/monitor

compliance

Policy engine layer

OPA (Plan phase)

OPA (Runtime phase)

Deploy microservices

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 7

cluster configuration along with network and storage components. Furthermore, the PaC engine strongly

rooted in OPA and its Rego language declares and enforces security, resource quota, and operational

best-practice policies. These policies will avoid misconfigurations such as public S3 buckets or resource

over-allocation and can be used along with CI/CD pipelines or executed as sidecars in Kubernetes

environments for continuous checks. CI/CD pipeline's orchestration layer, managed through tools such

as GitHub Actions, GitLab CI/CD, Jenkins, or ArgoCD, automates the entire deployment cycle. It tracks

source control changes, runs infrastructure plans, enforces changes within-built policy checks, and

handles testing and rollbacks in case of failure. In the deployment core, the container orchestration tool,

Kubernetes, controls the life cycle of microservice containers, performing tasks like scaling, service

discovery, and load balancing. It also offers integration with OPA Gatekeeper for enforcing runtime

policies to achieve ongoing compliance even after deployment. Together, these components are a single

automation platform that enhances security, scalability, and governance within cloud-native applications

Here, the process from code commit to live deploy, encompassing both IaC and PaC components, is

explained.

Figure 2: Unified Infrastructure and Policy Automation Framework for Microservices Deployment

CI/CD pipeline

 GitLab

CI/CD

GitHub

actions

Jenkins ArgoC

D

Infrastructure as code Cloud resources

Terraform Pulumi

AWS CDK

Policy as code

<>

Rego Open policy

agent

Storage
Virtual

machines

Networking

Provision

resources

Create/up

date

Pre deployment

policy checks

Enforce/valida

te policies

Runtime enforcement

Deploy microservices

Kubernetes

OPA

gatekeeper

Microservices

Continuous

compliance

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 8

3.3 Workflow Description: Here, the end-to-end process from code commit to live deploy,

incorporating both IaC and PaC elements, is described.

3.3.1 Step-by-Step Automation Flow

i) Code Commit: The Code Commit phase initiates the automation cycle, wherein developers create IaC

scripts such as Terraform or Pulumi and application code changes, pushing them into a version control

repository such as GitHub or GitLab. In addition to these, policy definitions in languages like Rego (for

OPA) are also version-controlled for traceability and shared management of compliance rules. These

policies can be kept in the same repository as the code or separately, allowing modular policy

enforcement and effortless integration with CI/CD pipelines.

ii) CI Pipeline Triggered:The CI Pipeline Triggered is one of the most important automation phases in

the DevOps process, where a CI pipeline is programmatically triggered upon a developer's activity like

pushing a commit or opening a pull request. This is generally handled by CI tools like GitHub Actions,

GitLab CI, Jenkins, or CircleCI, which are set to watch version control repositories for modifications.

Once invoked, the pipeline runs a pre-defined sequence of actions that can include infrastructure

planning, code compilation, static code analysis, policy validation, automated testing, and so on. This

upfront and automated run guarantees that code modifications are properly validated at all times,

lessening the risks of introducing errors or non-compliant configurations into subsequent stages of the

deployment process. It also supports quicker feedback to the developers and ensures the reliability and

security of the application codebase and infrastructure.

iii)Terraform Plan Execution: Terraform Plan Execution is an important step in the infrastructure

deployment process, whereby the IaC solution normally Terraform executes the terraform plan

command to output an execution plan. This plan offers an in-depth preview of what changes will be

implemented to the infrastructure if the deployment goes forward, for example, resources to be created,

updated, or deleted. It acts as a secure checkpoint whereby teams can check the repercussions of code

changes prior to application. After the plan is created, its output is sent to a PaC engine like OPA to be

assessed against specified security and compliance rules. This phase helps prevent the proposed change

from breaking organizational policies (e.g., exposing a public-facing database or crossing resource

thresholds). By incorporating policy validations at this early point, the system is able to avoid

misconfigurations and enforce governance prior to any actual modification to the live environment.

iv) Policy Validation:Policy Validation is an essential step to guarantee that all changes to the

infrastructure adhere to pre-established security, compliance, and operations standards prior to

deployment. In this step, the PaC engine typically OPA evaluates the changes to be made that were

suggested by the execution plan of the IaC tool. Such policies, expressed in a declarative syntax like

Rego, specify what should and shouldn't happen, for example, preventing public access to storage

buckets, imposing naming conventions, or limiting resource types and sizes. In case the PaC engine

identifies any non-compliance like an open firewall rule or non-existent encryption settings it raises the

issue, and the CI/CD pipeline is stopped on the spot. This ensures non-compliant configurations do not

make it to the production environment, minimizing the risk of security breaches, service outages, or

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 9

regulatory non-compliance. By integrating policy validation at an early stage in the deployment pipeline,

organizations can enforce ongoing compliance and keep governance at scale.

V) Approval Gates:Approval Gates are checkpoints in the deployment pipeline, particularly for

sensitive or critical infrastructure changes. They can be set to demand manual approval from involved

stakeholders like security teams, architects, or managers or automated checks that impose further

validations prior to continuing. The intent of approval gates is to introduce an additional level of control

and monitoring to ensure that high-impact modifications are properly reviewed and approved. This

prevents unintended or unauthorized changes that might jeopardize security, stability, or conformance.

Through the use of approval gates as part of the CI/CD process, organizations meet automation needs

with appropriate human intervention, enhancing risk management without dramatically hampering the

deployment process.

vi) Infrastructure Deployment: Infrastructure Deployment takes place after all the previous validations

and approvals are successfully done. In this phase, the IaC tool runs the apply command (e.g., terraform

apply), which actually provisions the cloud resources defined like virtual machines, network, and storage

as per the intended configuration. After provisioning the infrastructure, application services are rolled

out to platforms like Kubernetes, employing tools such as Helm charts or YAML manifests to deploy

containerized microservices. In this way, the deployment is automated so that the infrastructure and

applications are properly and reliably configured in the destination environment, ready to use, and kept

in accordance with the approved configuration and policies.

viii) Post-Deployment Hooks: Post-Deployment Hooks refer to the automated verification and

validation that follows after the deployment of infrastructure and applications. These hooks carry out

further validation to verify that the live environment reflects the desired configuration and still adheres

to organizational policies. Runtime policy enforcement tools such as OPA Gatekeeper goes a step

further and actually checks running resources for drift in the shape of unauthorized configs or security

vulnerabilities. On detection of a breach, such tools can initiate notification or run remediation

automatically. This ongoing validation ensures security, compliance, and stability across deployed

infrastructure and application life cycle.

ix) Application Deployment: Application Deployment is the deployment of microservices as

containerized applications using Kubernetes YAML manifests or Helm charts for template-based

deployment. In this phase, the CI/CD pipeline not only deploys but also implements application-specific

policies in order to ensure security as well as compliance. For instance, it can check whether the

container images are from whitelisted registries, are not vulnerable, or adhere to prescribed security

standards. This multi-dimensioned design ensures a secure and dependable application environment and

provides automation of the delivery process.

x) Monitoring and Feedback Loop:Monitoring and Feedback Loop provides end-to-end visibility into

the health and security of applications and infrastructure deployed by gathering metrics, logs, and alerts

using observability tools. This information enables real-time monitoring of system performance as well

as policy adherence. Should any runtime violations or discrepancies like unauthorized configuration drift

or security vulnerabilities be found, the system automatically notify the operations team and, while in

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 10

configuration mode, automatically execute rollback or remediation processes to bring the environment

back into compliance. Such closed-loop feedback is important for ensuring reliability, security, and

operational effectiveness within dynamic cloud-native environments.

3.3.2 Policy Validation Checkpoints: Policy Validation Checkpoints offer varying levels of security

and compliance check throughout the infrastructure deployment life cycle. First, Pre-Plan Validation

statically analyzes IaC files prior to making modifications and detects errors early. Second, Plan

Validation validates the output of terraform plan command to ensure the proposed infrastructure changes

comply with policies defined. Once deployed, Post-Apply Validation guarantees that resources are

properly provisioned and stay compliant at runtime. Lastly, Runtime Enforcement using tools such as

Kubernetes Gatekeeper continually monitors live resources and enforces policy compliance, blocking or

warning on policy non-compliance automatically. All these verifications in totality secure and make the

infrastructure compliant from development to production.

3.3.3 Automated Deployment and Rollback Handling: Automated rollback and deployment handling

is an important mechanism to ensure system stability and compliance while changing infrastructure. If a

deployment fails or breach pre-established policies, the system automatically rolls back to the original

stable state to avoid interruption and ensure business continuity. Notifications are also sent in the process

to DevOps or Site Reliability Engineering (SRE) teams for the issue to be addressed forthwith. During

this process, detailed audit records are created and retained for compliance as well as to facilitate careful

inspection and review of deployment events. Furthermore, tools like ArgoCD provide GitOps that

improves reliability through continuous health checking of the online environment and automated

reconciliation of the online state with the desired state as defined in version-controlled manifests, all for

safe and consistent handling of infrastructure.

4. Result and discussion:

This section gives the technical execution of the unified framework as proposed. It outlines the

technologies and tools used, setup of environments, an example case study for experimentation, and

some illustrative policies enforced in experimentation

4.1 Implementation and Experimental Setup

Execution of the proposed unified IaC and PaC deployment framework is on current DevOps tools and

cloud-native technology to provision secure and compliant infrastructure automatically. The

technologies and tools utilized are IaC with Terraform, PaC with OPA and Rego, container orchestration

with Kubernetes, and CI/CD pipelines based on Git and driven by ArgoCD or Jenkins. The setup of the

environment was done on a cloud provider (e.g., AWS or GCP), where multiple Kubernetes clusters

were provisioned using Terraform. OPA Gatekeeper was deployed in the clusters to offer runtime policy

enforcements. The model was tested with a case study use case that involved deploying a distributed

microservices application with frontend, backend, and database services. The application was deployed

continuously via GitOps workflows, where every commit caused automatic plan validation, policy

enforcement, and deployment of infrastructure. Sample policies that were enforced at deploy time were

CPU and memory resource quotas, network access constraints (e.g., blocking open ingress), and RBAC

policies for namespace-based access. These policies ensured that deployments were safe, resource-

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 11

effective, and compliant with organizational policies, thereby establishing the practical feasibility and

robustness of the proposed integrated model.

4.2 Metrics Evaluated:The evaluation of the proposed integrated model is centered around some key

metrics that collectively measure its performance, dependability, and policy compliance in automating

infrastructure deployment of microservices. These measures give an indication of how efficiently the

framework automates deployment activities, dictates governance, and reduces human mistakes. In the

first place, Average Deployment Time measures the speed at which infrastructure and microservices are

provisioned and deployed. A lower deployment time shows greater efficiency and accelerated delivery

pipelines. Policy Compliance Rate is the rate at which deployments are adhering to rules of operation

and security established in advance, reflecting how much the framework is holding governance in place

through inbuilt PaC mechanisms like OPA. Manual Steps required is the quantity of human steps

needed, with lower figures implying greater automation and lesser opportunity for human error.

Rollback Efficiency captures the speed at which the system can roll back to a stable state from the

failure of a deployment, showing resilience and disaster recovery capacity. Human Errors per

Deployment captures misconfigurations or policy errors caused by manual intervention, showing the

capacity of the framework in avoiding such errors with automation. Consistency across Environments

quantifies the degree to which the model enforces consistency between development, test, and

production environments, a factor of dependability. Auditability looks at how open and traceable the

work done at deployment is, required for security audits and compliance. Infrastructure Drift Likelihood

measures the chance of the live environment being different from its intended state, which the model

avoids with continuous validation and reconciliation with GitOps. Resource Optimization takes into

account to what extent the system enforces resource tagging, quotas, and usage policies in order to

manage costs and performance. Finally, the Scalability and Maintainability Score reflects how

effectively the framework will be in supporting growing workloads and dynamically changing

operational requirements, essential for modern cloud-native systems. These collectively aptly certify the

competency of the combined framework in delivering secure, compliant, and high-efficiency

infrastructure deployments specifically for microservices-based architectures.

4.3 Comparative Analysis

The comparative analysis comprehensively indicates the advantages of using the Unified IaC + PaC

deployment model fusing Infrastructure as Code (Terraform) and Policy as Code (OPA). The model

significantly excels over traditional manual deployment and IaC-alone practices on major operational

performance metrics. Deploying time is significantly decreased from 90 minutes with manual

configurations to as just as 18 minutes, with policy compliance levels increasing from 60% to 98%,

reflecting greater security and governance. Policy validations through Rego throughout the deployment

lifecycle at plan, pre-deployment, and runtime phases ensure strict adherence to organizational policies.

Moreover, the quantity of manual actions and human errors are reduced to a minimum, reinforcing the

advantage of automation and reducing operational overhead. Rollback performance is also enhanced by

virtue of automated CI/CD and policy-based reversions for faster recovery from failures. The proposed

model is also characterized by high consistency across environments, complete auditability, and

enhanced scalability and maintainability, thus making it a suitable choice to run complex microservices-

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 12

based cloud-native applications. These results confirm the framework to deliver secure, compliant, and

robust infrastructure automation in accordance with GitOps principles.

Table 1: Comparative Analysis

Evaluation Metric Manual

Deployment

IaC Only

Deployment

Unified IaC + PaC

Deployment

Average Deployment Time

(minutes)

90 35 18

Policy Compliance Rate (%) 60% 80% 98%

Manual Steps Required 10+ 3–4 1–2

Rollback Efficiency (mins) 40 15 <5 (automated)

Human Errors per 10

Deployments

4 2 0–1

Consistency Across

Environments

Low Medium High

Auditability (Logs, Traces) Limited Partial Full (Git + Policy Logs)

Infrastructure Drift Likelihood High Medium Low

Resource Optimization (e.g.,

tagging, limits)

Low Medium High

Scalability and Maintainability

Score

2.5/5 3.5/5 5/5

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 13

Figure 3: Comparative analysis of deployment models

4.4 Discussion: The combined IaC and PaC model's test results display considerable performance gains

in deployment efficiency, policy compliance, and system reliability compared to standard and IaC-only

models. The combined model saves time on deployment, erases human error, and boosts auditability

with automated policy checks integrated throughout several steps. All these advantages favor secure,

consistent, and scale-out deployments of microservices on cloud-native platforms. That being said, the

adoption of this integrated model comes with challenges such as the preliminary complexity of

configuring the CI/CD pipeline with policy enforcement, the learning curve for Rego policy language,

and policy updates across environments. In addition, while the model enhances governance and

minimizes drift, it depends to a large extent on soundly kept policy definitions and version control

habits. The prototype under development is conceptual, and actual performance is dependent on

implementation details, versions of tools, and organization readiness, which is one important limitation

that will be addressed in subsequent work.

4.5 Future work:

The future course for the envisioned unified framework sees further strengthening of its capacities and

flexibility to enhance support for dynamic, large-scale, and mission-critical cloud-native installations.

One such area is taking the framework to run seamlessly across multiple providers including AWS,

Azure, and GCP, as well as hybrid infrastructures, to provide cross-platform portability and cut vendor

lock-in. The adoption of service meshes such as Istio or Linkerd will enable secure service-to-service

communication, sophisticated traffic routing, and observability between microservices. Adding

observability tools like Prometheus, Grafana, Loki, and Jaeger will also enable real-time visibility into

policy enforcement, resource utilization, and system activity. Moreover, incorporation of real-time

policy feedback loops on the basis of methods like Kubernetes admission webhooks or Kafka triggers

will enable dynamic policy adaptation at runtime. The framework will also leverage remediation

methods at scale like auto-scaling, redeploy, or isolating non-compliant services to keep downtime and

operator effort to a minimum. Besides, using formal verification to apply to Rego policies can give

mathematical correctness and dependability proofs, which is essential for high-confidence deployment

spaces. Lastly, developing a community-run, centralized repository of reusable Rego policies will

enhance standardization, ease policy reuse, and impose governance principles across various deployment

spaces.

5 Conclusion:

This research discusses the problem of increasing complexity in managing microservices-based cloud-

native environments through hypothesizing one framework to combine IaC and PaC. The reason for this

is to address the requirement to automate infrastructure provisioning and provide standardized

governance, compliance, and security. The practice to adopt is using Terraform for declarative

infrastructure deployment and OPA for policy enforcement at pre-deployment and runtime stages.

Though deployment is hypothetical, the suggested architecture has immense potential to enhance the

speed of deployment, minimize human mistakes, and maximize auditability and scalability. Combining

IaC and PaC not only streamlines DevOps workflows but also emphasizes the reliability and

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 14

maintainability of cloud operations in general. The architecture provides a good platform for future

evolution towards secure, automated, and policy-based management of cloud infrastructure.

References:

[1] Kallergis, D., Garofalaki, Z., Katsikogiannis, G., & Douligeris, C. (2020). CAPODAZ: A

containerised authorisation and policy-driven architecture using microservices. Ad Hoc Networks, 104,

102153.

[2] Kosińska, J., & Zieliński, K. (2020). Autonomic management framework for cloud-native

applications. Journal of Grid Computing, 18, 779-796.

[3] Wurster, M., Breitenbücher, U., Brogi, A., Leymann, F., & Soldani, J. (2020). Cloud-native Deploy-

ability: An Analysis of Required Features of Deployment Technologies to Deploy Arbitrary Cloud-

native Applications. In CLOSER (pp. 171-180).

[4] Desai, B., & Patil, A. (2020). Zero Trust with Micro-segmentation: A Software-Defined Approach to

Securing Cloud-Native Applications. Annals of Applied Sciences, 1(1).

[5] D.F. Ferraiolo, V. Atluri, S.I. Gavrila, The policy machine: a novel architecture and framework for

access control policy specification and enforcement, J. Syst. Archit. Embed. Syst. Des. 57 (4) (2011)

412–424 Elsevier, doi:10.1016/j.sysarc. 2010.04.005.

[6] G. Katsikogiannis, S. Mitropoulos, C. Douligeris, An identity and access man‐ agement approach

for SOA, in: Proceedings of the 16th IEEE Symposium on Signal Processing and Information

Technology (ISSPIT2016), Limassol, Cyprus, 2016, pp. 126–131,

doi:10.1109/ISSPIT.2016.7886021. 12‐14 December.

[7] S. Cirani, M. Picone, P. Gonizzi, L. Veltri, G. Ferrari, IoT‐OAS: an OAuth‐based authorisation

service architecture for secure services in IoT scenarios, IEEE Sens. J. 15 (2) (2015) 1224–1234,

doi:10.1109/JSEN.2014.2361406.

[8] W. She, I.‐L. Yen, B. Thuraisingham, E. Bertino, Policy‐driven service composi‐ tion with

information flow control, in: Proceedings of the 8th IEEE Interna‐ tional Conference on Web Services,

Miami, USA, 2010, pp. 50–57, doi:10.1109/ ICWS.2010.37. 5‐10 July.

[9] Y. Sinjilawi, M. Al‐Nabhan, E. Abu‐Shanab, Addressing security and privacy is‐ sues in cloud

computing, J. Emerg. Technol. Web Intell. 6 (2) (2014) 192–199, doi:10.4304/jetwi.6.2.192‐199.

[10] IETF RFC 7049 (2013). Concise Binary Object Representation (CBOR). 10.17487/RFC7049

doi:10.17487/RFC7049.

[11] O. Ethelbert, F. Moghaddam, P. Wieder, R. Yahyapour, A JSON token – based authentication and

access management schema for cloud SaaS applications, in: Proceedings of the IEEE 5th Conference

on Future Internet of Things and Cloud, Prague, Czech Republic, 2017, pp. 47–53,

doi:10.1109/FiCloud.2017.29. 21 23 Aug.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT22035966 Volume 13, Issue 3, July-September 2022 15

[12] S. Gusmeroli, S. Piccione, D. Rotondi, A capability‐based security approach to manage access

control in the Internet of Things, Math. Comput. Model. 58 (5 6) (2013) 1189–1205 Elsevier,

doi:10.1016/j.mcm.2013.02.006.

[13] Sun Microsystems Laboratories, XACML. http://sunxacml.sourceforge.net, 2019 (accessed

20.12.2019).

[14] JBoss Community Archive, PicketBox XACML. https://community.jboss.org/wiki/

PicketBoxXACMLJBossXACML, 2019 (accessed 20.12.2019)

https://www.ijsat.org/

