

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677● Website: www.ijsat.org● Email: editor@ijsat.org

IJSAT22041128 Volume 13, Issue 4, October-December 2022 1

Data Quality using WAP Pattern for Data

Pipelines

Arjun Reddy Lingala

arjunreddy.lingala@gmail.com

Abstract

One of the major problems in batch and real- time data pipelines in making sure data is

accurate. Without data quality at every step of batch pipeline, it is tough to build reliable

analytics and decision-making platforms. In this paper, we discuss an approach based on WAP

(Write, Audit and Publish) pattern to improve data quality across each step of data pipeline

processing. Many organizations use different batch processing approaches and WAP pattern

facilitates all approaches systematic data transformation, validation and storage to mitigate quality

issues such as inconsistencies, missing values, and outliers. WAP pattern eliminates downstream

processing pipelines from consuming incorrect data and also eliminates re-processing of data to fix

the incorrectness. The WAP pattern structures the data flow into three distinct phases: Write,

where data is ingested and processed; Audit, where quality checks and validations are conducted;

and Publish, where verified data is made available for downstream pipelines or frameworks. Usage

of WAP pattern in real-world scenarios have enhanced traceability, accountability, and

consistency through batch pipelines and also saves the compute by eliminating the need of re-

running pipelines to address data incorrectness. This paper provides a modular approach to data

quality that is adaptable to various pipeline structures, highlighting its practical relevance in data

engineering workflows.

Keywords: Data Quality, Batch Pipelines, Data Anamolies, Audit- Ing, Fault Tolerance,

Monitoring, Observability, Streaming Pipelines

I. INTRODUCTION

The rapid growth in data volume and variety has increased the challenges associated with maintaining

data quality. En- suring quality of data flowing through pipelines is critical. Organizations rely on batch

data processing pipelines to ingest, process, and deliver vast amounts of data for analytics use- cases.

Data pipelines often face challenges such as schema changes, inconsistencies, incomplete records which

compro- mise the reliability of downstream insights. The Write(W), Audit(A) and Publish(P) pattern is

systematic and scalable approach to address these challenges in batch data process- ing for analytics.

WAP pattern divides the batch processing pipelines into three phases: Write – data ingestion and initial

processing occur in this phase. Raw, semi-processed or fully transformed data is stored in this stage,

preserving its original state for traceability; Audit – data quality checks are performed in this phase which

include schema validation, completeness checks, anomaly detection, and consistency verification. This

phase ensures that data meets predefined quality thresholds before proceeding; Publish – once validated,

data is formatted as needed and made available to downstream users. This phase emphasizes making only

high quality data is accessible to ensure analytics and decision making. WAP enables structured

https://www.ijsat.org/
mailto:arjunreddy.lingala@gmail.com

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677● Website: www.ijsat.org● Email: editor@ijsat.org

IJSAT22041128 Volume 13, Issue 4, October-December 2022 2

approach to monitoring and maintaining data quality and separation of each step in the pipeline has

clear responsibilities and well-defined quality controls. By isolating the Audit phase, the WAP pattern

enhances traceability, accountability, and maintainability of data pipelines.

II. BACKGROUND

Data pipelines are engineered to process data from var- ious sources such as streaming systems,

database changes, transactional databases batch workloads, APIs, external third- party systems. These

pipelines process and transform data into various formats that are suitable for analytics and decision

making use cases. However, without proper data quality mod- ern data pipelines introduce challenges

due to dynamic nature and complexity of data. Few examples of issues that may arise due to lack of data

quality are:

1) Schema Changes: Data pipelines usually process data from multiple sources or applications which

support end users and are tend to many changes based on the application needs. Frequent changes in

the structure of the source data can disrupt downstream processes. Few examples include changes to

column names, data types or new/removal of fields leading to data pipeline failures.

2) Missing Data: Upstream system failures or data extrac- tion errors can cause missing records or fields

during ingestion and these errors can be propagated through the pipeline, reducing the accuracy of

data pipelines.

3) Data Anomalies: Datasets sometimes have anomalous data and can cause outliers, duplicate records

which can degrade the quality of insights. When anomalous data is processed further downstream it

will cause incorrect insights and requires re-processing the data pipelines which will incur cost.

III. WRITE-AUDIT-PUBLISH (WAP) PATTERN

The Write-Audit-Publish (WAP) pattern provides a struc- tured approach to mitigate data quality

challenges in modern batch processing pipelines by dividing the pipeline lifecycle into three distinct

phases which emphasizes modularity and accountability.

A. Write Phase

In this phase, data is ingested or stored into staging layer in its raw form or as transformed data.

This stage provides traceability and a fallback mechanism for reprocessing in the event of downstream or

upstream issues. Without WAP pattern, data is write phase is usually used for downstream processing as

soon as the data is landed.

B. Audit Phase

Audit phase is the main phase which validates whether the data stored in write phase can be consumed

by downstream pipelines. This phase performs a series of quality checks and validations. Few example

include:

• Schema validation to check if there is any schema changes from the previous version of the data and

vali- date if there are any changes, they are compatible with previous version and doesn’t break

downstream pipelines.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677● Website: www.ijsat.org● Email: editor@ijsat.org

IJSAT22041128 Volume 13, Issue 4, October-December 2022 3

• Checks to validate if there are any missing fields that are required for downstream

• In modern data pipelines using distributed systems, data in write phase is written as multiple

partitions and few partitions might fail validation checks. Audit phase checks and validates data for

each partition based on rules and thresholds predefined. Failed partitions are marked for remediation,

marked as not to use for further investigation and making sure only high quality data is processed by

next steps

C. Publish Phase

In publish phase, data that passes audit phase is published to a signal table and is made available for

downstream use. This phase ensures only high quality data is available to downstream consumers.

Fig. 1. Data Quality using WAP Pattern

IV. IMPLEMENTATION DETAILS

The implementation of the WAP pattern can leverage a combination of open-source and service based

tools based on data processing pipeline requirements. The core principles of WAP pattern are a)

Ownership: Each phase operates indepen- dently, isolating concerns and responsibilities. b) Scalability:

Horizontal scaling in various phases of the pipeline enables the pipeline to handle growing data

volumes. c) Resilience: Fault tolerance and data integrity are preserved throughout the pipeline life

cycle d) Cost: Saving cost by eliminating the need to reprocess data pipelines in case of failures. WAP

pattern includes building an additional table called signal table which captures the partitions of high

quality data. Downstream consumers of data only consume from signal tables instead of

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677● Website: www.ijsat.org● Email: editor@ijsat.org

IJSAT22041128 Volume 13, Issue 4, October-December 2022 4

main or staging table. Signal tables doesn’t consume lot of space or cost as it only saves metadata in the

table. In this section, we deep dive into implementation of WAP pattern, covering architecture,

workflows, and operational considera- tions.

A. Write Phase

Write phase is responsible for ingesting raw data from upstream systems and storing it in staging area

in raw or transformed format. Key objectives of write phase are to ensure data is stored in its original

format for traceability, preserve metadata for lineage and audit purposes, and pro- viding a reprocessing

mechanism in case of errors. Write phase includes ingestion, storage, metadata collection, and fault

tolerance.

1) Ingestion: Ingestion of data into data processing

pipelines could be done in multiple ways. For streaming systems, real time ingestion is performed

using tools like Apache Kafka [1], Google Pub/Sub, Amazon Kinesis [5]. For batch processing

systems, ingestion pipelines run as sched- uled per hour or day using tools like Apache Spark [2] for

data transformations, Apache Sqoop for extracting data from databases or custom ETL scripts which

either pull data from databases or perform transformations.

2) Storage: Cloud based object stores like Amazon S3,

Google cloud storage are used for storing huge amount of data. In addition to that, On-premise

storage solutions like HDFS [3] can also be used for high volume data processing. Input data is

usually organized by source, schema version, and partitioning is used by time of the arrival of the

data.

3) Metadata & Fault Tolerance: Incoming data should be

tagged with new attributes like time, source system informa- tion, schema version using metadata

based tools like Apache Atlas. In some cases schema versioning can be handled by file formats [10]

like Avro which send the schema with data and different versions are validated during reading or

writing the data. All new fields added to file formats like Avro should be made optional as old

versions might not have systems updated and may not these fields. Write phase pipelines should be

idempotent and enable retries for failed jobs or re-processing the data.

B. Audit Phase

Audit phase is responsible for validating the data written in write phase with predefined rules and

thresholds and make only high-quality data is available to downstream pipelines. Key objectives of audit

phase include: identify and flag invalid, incomplete or inconsistent data, isolate problematic records for

re-processing and generate reports for auditing purposes.

1) Validation Rules: Validation rules for each pipeline

should be predefined based on the expectations of the input data and processing pipeline. Tools like

Great Expectations

[6] can be used to check schema compatibility for schema validation. Few validation rules include

completeness checks to make sure mandatory fields are not missing, verify column values are within

acceptable limits, and checking foreign key relationships.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677● Website: www.ijsat.org● Email: editor@ijsat.org

IJSAT22041128 Volume 13, Issue 4, October-December 2022 5

2) Anomaly Detection: Implementing anomaly detection is one of the key areas of auditing phase. Due

to upstream issues, there is very high chance of either data being dropped completely or more data

being sent to downstream pipelines. This will be impact pipeline processing and misrepresentation of

analytics. Using statistical methods like Z-scores for outlier detection or quantile based thresholds is

best approach in this case.

3) Auditing: Traceability and lineage are key areas of WAP pattern. Logs should be generated for each

validation step, pro- viding traceability to failures to upstream pipeline owners and help in avoiding

similar errors in future. Structured logging formats like JSON, Avro and these logs will be integrated

with monitoring systems like Splunk, Datadog which will be easier to analyze the logs.

C. Publish Phase

Publish phase publishes signals for validated and high qual- ity data to be consumed by downstream

systems for processing in desired formats. Key objectives of publish phase include ensuring only high

quality data is consumed by downstream consumers, maintain a signal table and ensure that information

is populated to signal table properly. All downstream con- sumers pull data from the signal table

partitions published by publish phase. Published partitions define high quality data and is safe to

consume by downstream users.

V. METRICS

Capturing metrics for various steps of WAP pattern helps understand how many fault records are

flowing through pipeline and helps in properly tracking them. Below are few areas of metrics that are

best suitable to monitor and scale processing

1) Fault Tolerance: Using WAP pattern to store interme- diate results into staging tables enable

recovery in case of failures. Distributed check-pointing can be used in streaming pipelines to recover

from transient failures.

2) Monitoring & Observability: Tools like CloudWatch [4] help collect pipeline throughput, latency,

and error metrics Tools like Grafana and Tableau can be used to visualize metrics and fault or

anamolies rates. Real-time alerts can be integrated with tools like PagerDuty, Slack when validation

of data or thresholds are breached.

3) Batch & Stream pipelines: For batch pipelines, ingestion is scheduled using cron jobs or orchestration

tools like Apache Airflow, validation or Auditing can be applied using Spark jobs, and publishing

results as signal tables can be done as data warehouse tables.

CONCLUSION

Ensuring data quality is critical to the success of data engineering projects, as it directly impacts

analytics, decision- making initiatives. The Write-Audit-Publish (WAP) pattern provides a structured

framework to tackle the complexities of maintaining data quality in modern data pipelines. By dividing

the pipeline into distinct phases—Write, Audit, and

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677● Website: www.ijsat.org● Email: editor@ijsat.org

IJSAT22041128 Volume 13, Issue 4, October-December 2022 6

Publish—this approach ensures clear roles for ingestion, val- idation, and delivery, enhancing both

pipeline robustness and maintainability. The WAP pattern emphasizes strict quality control during the

Audit phase, where data undergoes com- prehensive validation and anomaly detection. This ensures that

only accurate, consistent, and complete data is passed on to the Publish phase for downstream

consumption. The separation of raw or transformed, validated, and processed data in distinct layers also

enhances traceability, allowing for efficient debug- ging and compliance adherence. Adaptability is a

key strength of the WAP pattern. Whether implemented in batch workflows or real-time streaming

pipelines, it offers scalability, fault tolerance, and flexibility. Coupled with modern tools such as Apache

Kafka [1], Great Expectations [6], and cloud-native storage systems, this pattern addresses challenges

like data volume growth, schema changes, and the need for operational efficiency.

REFERENCES

[1] Kreps, J., Narkhede, N., Rao, J. (2011). ”Kafka: A Distributed Messag- ing System for Log

Processing.” In Proceedings of the 6th International Workshop on Networking Meets Databases

(NetDB), Athens, Greece, 2011, pp. 1-7.

[2] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J., Shenker, S.,

Stoica, I. (2012). ”Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory

Cluster Com- puting.” In Proceedings of the 9th USENIX Conference on Networked Systems

Design and Implementation (NSDI), San Jose, CA, 2012, pp. 1-14.

[3] Shvachko, K., Kuang, H., Radia, S., Chansler, R. (2010). ”The Hadoop Distributed File System.” In

2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), Incline Village,

NV, USA, 2010, pp. 1-10. doi: 10.1109/MSST.2010.5496972.

[4] Amazon Web Services, Inc. ”Amazon CloudWatch – Observe and monitor resources and

applications on AWS, on premises, and on other clouds.” Available:

https://aws.amazon.com/cloudwatch/.

[5] Amazon Web Services, Inc. ”Amazon Kinesis – Collect, pro- cess, and analyze real-time

video and data streams.” Available: https://aws.amazon.com/kinesis/.

[6] Great Expecations - A Data Quality tool. Available: https://greatexpectations.io/.

[7] Dbt Labs. ”Dbt - Power everything in your business with high-quality, trusted, and reliable data.”

Available: https://www.getdbt.com/

[8] S. Challita, F. Zalila, C. Gourdin and P. Merle, ”A Precise Model for Google Cloud Platform,”

2018 IEEE International Conference on Cloud Engineering (IC2E), Orlando, FL, USA, 2018, pp.

177-183, doi: 10.1109/IC2E.2018.00041.

[9] Balamurugan Balusamy; Nandhini Abirami R; Seifedine Kadry; Amir H. Gandomi, ”Driving Big

Data with Hadoop Tools and Technologies,” in Big Data: Concepts, Technology, and Architecture ,

Wiley, 2021, pp.111-160, doi: 10.1002/9781119701859.ch5.

[10] A. Gohil, A. Shroff, A. Garg and S. Kumar, ”A Compendious Research on Big Data File Formats,”

2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS),

Madurai, India, 2022, pp. 905-913, doi: 10.1109/ICICCS53718.2022.9788141.

https://www.ijsat.org/
http://www.getdbt.com/

