

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 1

Accelerating Agile Software Development with

AWS CodeCommit, CodeBuild, and Cloud-

Based CI/CD Pipelines

Sai Krishna Chirumamilla

Software Development Engineer II, Dallas, Texas, USA

saikrishnachirumamilla@gmail.com

Abstract:

The method of agile software development has been adopted as the normal means of software

development since it involves the arrangement of incremental improvements to the product. Due to the

Agile software development, there are available cloud solutions, such as Amazon Web Services (AWS),

that allow developers to use related tools. For instance, AWS CodeCommit and building service

CodeBuild, together with other CI/CD pipeline services, are the components that provide important

features for enhancing agile development cycles. This paper focuses on code commit, code build, and a

CI/CD tool in evaluating the automation of code release and tests in cloud Agile environments. In

addition, it provides information on how these AWS tools advance team cooperation, growth,

adaptability, and protection. Therefore, by analyzing the solutions it provides and reflecting on agile

principles that these services help support, this paper shows that AWS CI/CD pipelines optimize agile

development processes.

Keywords: Agile Software Development, AWS CodeCommit, AWS CodeBuild, CI/CD Pipelines,

Cloud Computing, Continuous Integration, Continuous Delivery, Software Engineering.

1. Introduction

This paper will focus on the shift to agile software development as an approach to designing and

constructing software. Here, we are focusing on the fact that more traditional development process

models and practices are unable to cater for changing project needs and prompt software delivery, which

agile methodologies and practices fulfil through regular iterations and feedback. [1-4] Despite this, Agile

teams struggle to sustain a high rate of incremental deployment cycle.

1.1. Importance of Automation in Agile

Automation is central to increasing the effectiveness and efficiency of Agile software development

approaches. Because Agile values iterative development, continuous delivery, and responding to change,

automation is a prerequisite to these methods. Further sections of this article expand on the role

automation plays in Agile and the advantages that stem from it.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 2

Figure 1: Importance of Automation in Agile

• Accelerated Development Cycles: The first advantage Agile realizes from automation is that

developers can complete the development cycle much faster. Daily chores like compiling, building,

testing, and deployment take many Agile teams numerous hours to accomplish, yet via automation,

delivery of new features and bug fixes is achieved efficiently. Automation tools help developers to

be paid not only for writing good code but also for saving from unnecessary manual work. For

instance, CI tools are ones that build and test changes to the code at once to make feedback from the

process faster and to eliminate time consumption. Research shows that teams using automation can

deliver more frequencies of release, thus creating more value for consumers in a swifter manner.

• Enhanced Code Quality: In Agile development, automation has a direct impact on an improvement

of the code quality. This means that automated testing frameworks allow the teams to execute unit

tests, integration tests, and regression tests every time a developer checks in some code. It lets the

growers know there are issues and bugs, and it becomes easier to eliminate them before they get to

the production stage. While using activities like Test Driven Development (TDD) and BDD, teams

can guarantee the code has been implemented to specified prescribed behaviors. Various research

has indicated that those organizations that implement the use of automated testing have fewer defects

and higher rates of customer satisfaction because they are able to fix problems as they occur without

having to wait until a customer reports the same.

• Consistency and Reliability: Manual processes are prone to human error, which can lead to

inconsistencies and unpredictable results in software development. Automation enhances consistency

by standardizing processes across the development lifecycle. Automated scripts and tools ensure that

the same procedures are followed every time a build or deployment occurs, reducing variability. This

reliability is especially important in agile environments, where teams are often working on multiple

features simultaneously. By implementing automation, Agile teams can trust that their builds and

deployments will be executed correctly, fostering a more stable and predictable development

process.

• Improved Collaboration and Communication: Automation facilitates better collaboration and

communication within Agile teams. With automated workflows, team members can quickly access

and share information regarding code changes, build statuses, and testing outcomes. Tools like

Continuous Deployment (CD) systems allow for immediate feedback on the impact of code changes,

Continuous Improvement and Feedback Loops

Scalability and Flexibility

Greater Focus on High-Value Tasks

Improved Collaboration and Communication

Consistency and Reliability

Enhanced Code Quality

Accelerated Development Cycles

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 3

fostering a culture of transparency and accountability. Additionally, automated notifications and

alerts keep team members informed about the status of the project, ensuring that everyone is aligned

on goals and progress. This enhanced communication helps Agile teams respond more effectively to

feedback and adapt to changing requirements.

• Greater Focus on High-Value Tasks: By automating low-value, repetitive tasks, Agile teams can

allocate more time and resources to high-value activities, such as innovation and feature

development. Automation allows developers to focus on solving complex problems, designing new

functionalities, and enhancing user experiences rather than being bogged down by mundane tasks

like manual testing or deployment. This shift in focus can lead to increased creativity and

productivity within the team, driving better outcomes and competitive advantages in the market.

• Scalability and Flexibility: When the Agile teams are expanding their working capabilities, it is

important to automate the processes. Decision-making processes can indeed scale up in response to

higher workloads and intricate project tasks without requiring the formal annexation of new layers.

For instance, tools that support CI/CD can process an increasing number of builds and deployments

without slowing down the team’s speed of creating new products. This scalability ensures that

organizations can easily address market demand and shift in user expectations, a value asserted by

the Agile principle of customer collaboration.

• Continuous Improvement and Feedback Loops: Most importantly, automation helps Agile realize

the practice of embracing change since change happens continuously; hence, there is a need to have

a system that supports change to be implemented easily, promptly, and effectively. Testing and

monitoring automation makes it possible for teams to obtain prompt information about the quality of

their software. This real-time feedback helps teams assess where they can improve, try out new

solutions, and introduce those solutions more quickly. With this approach, every Agile team can

improve what it does and create, thus providing value to all the involved parties and clients.

1.2. AWS Services in Agile Software Development

AWS provides Global Infrastructure, which is a strong host to Agile software development processes,

and AWS Cloud computing Solutions offers a range of services. These services help reduce automation

complexities and enhance collaboration while building solutions to deal with growing needs associated

with Agile processes. [5,6] Alphabetically, the following elements are the primary AWS services crucial

in the Agile software development process and what they offer:

Figure 2: AWS Services in Agile Software Development

AWS CodeCommit AWS CodeBuild AWS CodePipeline AWS Lambda

Amazon S3 Amazon EC2
AWS

CloudFormation

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 4

• AWS CodeCommit: AWS CodeCommit is a source control service that is used to manage the

global version of source code to meet the demands of application development at an AWS scale and

speed. For virtually any organization that practices the use of a version control system and,

particularly, the use of Git, CodeCommit can support the storage of source code efficiently. Real-

time collaboration is one of them, and it gives the developers the ability to work on different

branches simultaneously and merge them through the pull request. This method not only encourages

inter-teamwork but also reduces conflict, hence increasing efficiency. In addition, with

CodeCommit, there are no limitations regarding added repositories, so organizations can freely

expand their development operations. It’s beautiful integration with other AWS services like AWS

Lambda, and AWS CodePipeline makes it easy to work from commits to deployment. Making

edition control and collaboration, AWS CodeCommit helps Agile teams to build better software,

faster and with higher quality.

• AWS CodeBuild: AWS CodeBuild: AWS CodeBuild is a build service that removes the

heavyweight of compiling source code and runs tests and packages for deployment. Validating this

service is important in Agile development because it meets the requirements of continuing

integration, where code change is built and tested as soon as it is committed. With the possibility of

connecting to AWS CodePipeline, CodeBuild allows teams to find problems at the beginning of the

development process. Another advantage of the service is scalability and flexibility: it requires the

construction of a built infrastructure. It enables multiple constructions within parallel while

responding to varying loads without forceful configuration. CodeBuild has integration capabilities

with many programming languages and frameworks, which remains a strong advantage for different

development conditions. AWS CodeBuild is designed to help Agile teams by automating the build

process to reduce the number of manual issues and speed up feature delivery.

• AWS CodePipeline: AWS CodePipeline is an AWS CI/CD solution that helps to automate the

release of software. Such a service allows Agile teams to delineate their build-test-delivery pipeline

and need for end-to-end automation. In CodePipeline, multiple stages of releasing software are

brought together in a way that minimizes the involvement of manual processes that slow down the

release process. The plugin also allows developers to work with other common tools in the

development process, including GitHub, Jenkins and JFrogArtifactory. CodePipeline, too, is

extensible to the point where such teams can design complex pipelines to have workflows that are

proper to their projects. AWS CodePipeline helps Agile teams to provide software updates more

frequently and effectively, responding more actively to customers’ feedback by automating operation

deployment.

• AWS Lambda: AWS Lambda is serverless computing, which means that the developers can run

codes on the cloud host without having to manage servers. This service helps Agile development in

the following ways: First, AWS Lambda is an event-driven computing service, the functions of

which can be invoked by events from other AWS services, thus enabling real-time computation and

integration. Lambda is also much cheaper since organizations only pay for the time that resources are

spent working instead of paying for idle resources. Moreover, Lambda is optimized for speed – it

provides a quick means for development and deployment so that developers can easily bring about

changes in response to altering needs. AWS Lambda allows the development of Agile teams that

design self-servicing applications that accommodate clients’ requirements without suffering from the

burden of a standard server.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 5

• Amazon S3 (Simple Storage Service): The data used by Agile software development should be

stored in Amazon S3 because the service offers scalable object storage for any form of data. As a

component of the development process, it can manage assets, allowing teams to have a central

location for storing/sharing application-oriented items like code artifacts and documents. This way,

they are easily accessible and version-controlled, encouraging the team members working on them.

Also, S3 is a perfect fit for use in conjunction with other services, such as AWS CodePipeline or

AWS Lambda, to perform automatic workflows to handle artifacts and data. It also has excellent

security measures such as encryption and access control that can help organizations meet most

security compliance standards to protect sensitive information behind the scenes. Therefore, the

application of Amazon S3 gives Agile teams a tool that will help them organize their assets during

Agile development, improve interactions, and keep quality high.

• Amazon EC2 (Elastic Compute Cloud): Amazon EC2 offers web service on demand, providing

Agile teams with the computing capacity needed to run their applications. Scalability is one of the

strengths that, for instance, enables groups to easily scale up or down their computing assets to suit

project requirements. This makes it possible for them to complement the infrastructural requirements

without the potentiality of handling superimposed loads. EC2 also has accurate individual

environments for creating virtual computers dependable on the required software stack and settings.

This flexibility also helps to fit many types of development. Moreover, on-demand instances,

reserved instances, and spot instances are also the pricing models that help EC2 manage cost;

therefore, Agile groups successfully manage the infrastructure costs by the cost that is incurred.

Agile teams can thus guarantee that they get the right computing capacities they require for their

development from Amazon EC2, all without overspending.

• AWS CloudFormation: CloudFormation helps to implement the Agile principles of the software

development paradigm because it deals with the AWS infrastructure as code (IaC). This approach

helps keep things well aligned to ensure suitable infrastructure management and minimizes the

chances of human interventions that come in when doing the setups. Using CloudFormation, teams

can easily create, modify, and standardize AWS resources in an automated way, and they can

correlate them with Agile methodologies of fast development cycles. Infrastructure as code can also

be created, checked in, versioned, and managed just like application code in an Agile framework,

thereby encouraging the culture of responsibilities within the Agile teams. Thus, teams could benefit

from implementing AWS CloudFormation and could increase the speed and effectiveness of the

infrastructure managers in meeting the teams’ needs.

2. Literature Survey

2.1. Overview of Agile Development and CI/CD

In the context of project management, agile approaches have provided buy-in to the dynamic nature of

the business environment to allow for adaptability when dealing with customers. [7-11] This literature

suggests that methodological approaches, including iterations and feedback, often lead to the delivery of

software in a shorter amount of time than otherwise would be possible. Continuous Integration (CI) and

Continuous Deployment (CD) practices have augmented this dynamism by integration into Agile

frameworks, which have aimed at improving the speed of release cycles as well as the quality of code.

CI/CD practices refer to the practices of implementing automation on how to build, test, and release the

code as well as to correct problems faster. Various research has established that teams using CI/CD in

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 6

conformance with Agile result in increased application development velocity, reduced time to market,

and improved customer satisfaction since the system can be quickly adjusted to new user feedback and

requirements.

2.2. AWS CodeCommit

AWS CodeCommit is a fully managed service that is very secure and comes with massive scalability

while supporting collaborative software development. Primarily developed for improved team

collaboration on projects, CodeCommit allows teams to create Git resources, where multiple developers

can work on the same code. According to earlier works, CodeCommit is presented as exceptionally

useful in improving project management due to advanced access management and frequent

synchronization. AWS is full of services that are tightly interrelated with others to build an Agile

environment smoothly. Some of the points include pull requests and code review. Code review is a

means through which Code Commit encourages the opening of communication among the team

members, in addition to the review of the code being implemented. It shows how different teams

cooperate to maintain CodeCommit as the service effective in dealing with large amounts of code, thus

enhancing project results and Agile processes integrated into projects.

2.3. AWS CodeBuild

AWS CodeBuild is a service that provides automated build operation for application source code and

works in the CI/CD process to build the source code packages and to run various tests to generate

executable code packages. Sustaining these processes automates them is central to accountability since it

drastically decreases human error and improves feedback loops for Agile teams. Studies show that when

construction and testing are automated, problems can be quickly spotted at the beginning of the

development process, making it easier to solve them, say, in more important tasks. The capability of

auto-scaling provides CodeBuild with an added ability to deal with fluctuating workloads without

negatively affecting the development team. Research emphasizes that teams utilisingCodeBuild can

decrease the time to deliver, improve the quality of the software, and release the developer time to focus

on value creation, not on repair.

2.4. Other tools similar to CI/CD

Although the number of CI/CD tools remains high and ranges from well-known applications like Jenkins

or GitLab CI/CD to AWS-specific solutions like CodeCommit or CodeBuild, the latter has several

benefits for those teams already using AWS extensively. Several studies have also pointed out that these

AWS services are easy to integrate with other AWS services, for instance, AWS Lambda AWS

CloudFormation, making work easier and eliminating the challenges of working with numerous tools. It

simplifies the process of work and collaboration and allows teams to take advantage of the AWS cloud

when constructing, experimenting with, and deploying applications. Compared to Jenkins and GitLab

CI/CD, AWS solutions are more flexible and extensible, albeit slightly heavier with configuration and

maintenance, which might be a blessing for those organizations that are trying to avoid coding

complications.

2.5. Security and Compliance in Cloud CI/CD

It is obvious that securing CI/CD pipelines is critically important since the pipelines work with sensitive

code and deployment processes. Researchers admit the necessity to adopt strong security protocols in

cloud CI/CD integration services. AWS follows major security practices; the features provided by AWS

allow for data encryption both at rest and in transit so that sensitive data does not fall into the wrong

hands. Also, AWS offers very robust audit logger solutions that monitor every activity and change made

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 7

on CIC to ensure better accountability that meets compliance requirements. Studying such measures,

writers outline how they shield not only the code but also enhance the level of trust in CI/CD processes.

Through integrated security measures, AWS still encourages Agile development since the measures

ensure that organizations adhere to the recommended conditions and laws that provide security.

3. Methodology

3.1. Design of the Study

To this end, the study was designed to provide an in-depth evaluation of the uptake of AWS Code

Commit and Code Build into Agile CI/CD processes with specific emphasis on Continuous Delivery. It

required building a strong pipeline where Code Commit is at the center of the version control system,

and the collaboration between developers can happen in real time using repositories. [12-16] This setup

made it easy to manage code with feature branches, code pull requests, and merging with conflict

solving. Every code change made initiated builds and tests in Code Build to provide quick checks and

validation on the code quality. Thus, the study sought to combine these tools in a way to create a highly

Agile environment designed to support changes, verify them, and deploy them in a matter of seconds to

showcase the changes cloud-based CI/CD pipelines can have on overall software quality and delivery

time.

3.2. Tools and Technologies

Figure 3: Tools and Technologies

• AWS Code Commit: AWS Code Commit is a highly secure, highly scalable, and fully-featured

means of source control for Git-based software development. By virtue of being a highly reliable

hosting service, developers can use Code Commit to store and manage source code in private

repositories, hence facilitating the developers’ collaboration. It supports one or multiple workflows

like feature branching and pull requests that enhance the functionality of code review. This service is

highly compatible with other AWS services and has real-time update and notification capability; it

has the capability to grant them only the level of access that is needed for a certain repository. So,

using AWS Code Commit as a centralized and secure version control solution, teams can improve

the collaboration processes, make development more efficient, and ensure the original unaltered code

integrity.

• AWS Code Build: AWS Code Build is a code compilation service that eases the development,

testing, and packaging process of code through integration into a software package ready for launch.

However, because of its flexibility in scaling, the Code Build can also handle several build requests

AWS
CodeCommit

AWS
CodeBuild

AWS
CodePipeline

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 8

at once, thus cutting on the time spent on builds and, therefore, improving productivity. Representing

the build specification, developers create specification definition files to support differences when it

comes to build environments as well as dependencies. Code Build also supports a wide range of

programming languages and frameworks in supporting different types of applications. Code

Pipeline’s ability to work well with AWS Code Commit and other AWS services means that the

integration of new code is seamless and constantly tested, which in turn shortens the feedback loop

and improves developers’ code.

• AWS CodePipeline: AWS Code Pipeline is a fully managed CI/CD service that is used to set up the

entire workflow of the release of software. A development pipeline manages, controls, and hands off

the various steps involved in application development, from code commit to build, test, and

deployment, hence enabling organizations to deliver quality software solutions effectively and

efficiently. Code Pipeline allows several interfaces with other AWS services, including Code

Commit, Code Build, and Code Deploy, as well as other tools, to enable the teams to set up versatile

integrations that best suit their needs. Other features like automated deployment triggers and

deployment rollbacks make Code Pipeline provide a high level of software release stability. This

way, the focal teams deliver high-quality software with faster release cycles and reduce the errors

that stem from manual interventions.

Table 1: AWS CI/CD Pipeline Components and Their Functions

Service Description Key Features

Code Commit Source control system Git-based, secure, highly scalable

Code Build Builds, tests, and produces

deployable packages

Managed build environment

Code Pipeline Manages CI/CD workflow Automates the release process

3.3. Implementation Steps

Figure 4: Implementation Steps

• Repository Setup in Code Commit: The first action taken was creating a Git repository in AWS

Code Commit, through which the development team collaborated. This repository was shared with

each team member so that everyone could work on individual feature branches that did not affect the

main codebase. This approach ensured that versioning was possible and that code review via pull

requests in which team members discussed changes to be made before merging them into the main

branch was possible. With Code Commit, the team could keep everything neat and clean so that the

latest changes could reflect a change list that would help the team keep track of the history and be

open to scrutiny.

Repository Setup
in CodeCommit

Automating
Builds with
CodeBuild

Deployment
Automation with

CodePipeline

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 9

• Automating Builds with Code Build: After the repository creation had been completed, attention

turned to how AWS Code Build had to be set up to build PWA. This entailed establishing an

approach of building a specification file that was a series of instructions on building the source code,

running tests, and creating a deployment package. Code Build was configured to begin builds as

soon as a commit was made to the repository so that each change was checked as soon as possible.

This automation offered a vast decrease in the time it would have otherwise taken to do manual

builds and testing, thereby providing developers with fast feedback on the health of their code.

Consequently, if any mistake occurs, it can be easily detected and fixed while increasing code

quality and sustaining the continuous development pace.

• Deployment Automation with Code Pipeline: The final implementation step was to set the AWS

Code Pipeline to be the one to deploy the software as an automated process. Code Pipeline was

developed specifically to work along with Code Commit and Code Build; it featured as a continuous

delivery pipe to help with the management of builds and their promotion across the DevOps lifecycle

stages. The pipeline was designed with quality assurance steps like automated testing checkpoints

and approval barriers to prevent unfit systems from getting to the production domain. In addition to

this, the setup significantly improved the effective deployment process while at the same time

reducing the probability of errors occurring during the release. With the help of Code Pipeline, the

team could make releases more often as they are now able to react to user feedback and market

trends identified.

3.4. Data Collection and Analysis

• Data Collection Methods: Data was collected over two months to evaluate the efficiency of the

AWS CI/CD pipeline that was created by CodeCommit, CodeBuild, and CodePipeline. The most

business-oriented key factors included were build time, deployment rate, and error ratio. Execution

time was measured based on time/duration starting from the time the build process was initiated to

its completion, which also includes compilation, testing, and packaging. Deployment frequency was

determined by tallying how many successful releases to production were done during the assessment

period. The error rates were computed from the bugs and failures produced in the production

environment in the immediate aftermath of the deployment to have a clear picture of how good and

reliable the code is.

• Analysis Techniques: In this study, the source data collected from the survey was analyzed

qualitatively as well as quantitatively. In a more numerical approach, computational analysis was

used to establish the means, variability, and temporality of each of the indices. From this, the authors

deduced the rate at which builds are conducted and the rate at which deployments are made to see

how the automation of these processes impacted the development cycles. Furthermore, on reviewing

errors committed through the software, we were also able to check if automation had resulted in a

reduction of defects in the deployed code. Quantitative data included survey results concerning the

overall self-estimated satisfaction of the development team with the new pipeline and information

that was obtained from the informal interviews with the development team. This feedback gives

information on perceived increases in the efficiency of workflow, CAD/CD teamwork, and general

satisfaction levels of CI/CD.

• Results Interpretation: The findings were discussed with reference to Agile software development

processes. Calculating the build times exposed decreased times by comparing previous automatic

processes with previous manual ones, as automation decreased the time it took to build several

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 10

iterations. The frequency of deployments rose to ensure the team was able to release updates to

production more frequently, this being an important concept in Agile development. Error rates, as

well as the efficiency of the new pipeline, were also assessed to find out if the latter improved the

quality of the codes. Lack of product defects was anticipated, mindful of the efficiency of constant

testing and integration through AWS services. All in all, the collected data offered an actual picture

of how the pipeline influenced the improvement of efficiency in developmental processes and

supported the hypothesis that the use of AWS CI/CD tools improves Agile software development

practices.

4. Results and Discussion

4.1. Improved Efficiency in Agile Workflows

The adoption of the CI/CD pipeline based on AWS enabled optimizing development processes. In the

time span evaluated, a stunning 40% improvement in build and deployment times, compared with

manual processes, was found. This is in line with current research that shows many benefits of the

adoption of automation in the CI/CD pipeline since this mechanism is well understood to enhance rapid

iteration and speed of feedback to development teams. The pipeline also led to a considerable reduction

in the number of code mistakes within the production environment because of testing and deployment

automation, which are hallmarks of effective continuous integration strategies.

Table 2: Improved Efficiency in Agile Workflows

Metric Before Pipeline After Pipeline Improvement (%)

Build time (avg.) 15 mins 9 mins 40%

Deployment Frequency (weekly) 1 4 300%

Error Rate (production level) 5% 2% 60%

Figure 5: Graph representing Improved Efficiency in Agile Workflows

4.1.1. Improvements

• Build Time: The build time, as a measure of the average time taken for construction per structure,

was reduced from 15 minutes to 9 minutes, a 40% enhancement. This reduction shows that the

40%

300%

60%

0%

50%

100%

150%

200%

250%

300%

350%

Build Time (avg.) Deployment Frequency
(weekly)

Error Rate (production level)

Improvement (%)

Build Time (avg.) Deployment Frequency (weekly) Error Rate (production level)

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 11

automation of the build process helps to make compilation and testing much quicker, and this is

critical for keeping up high velocities of development.

• Deployment Frequency: The value of deployments also rose from 1 per week to 4, showing a rise

of 300%. This increase helps show that it is possible to have more frequent software releases due to

the CI/CD pipeline, thus supporting Agile’s incremental development.

• Error Rate: There is a more specific example: When working on a production, the error rate

declined from 5% to 2%, which corresponds to a 60% increase in code quality. This reduction shows

that each interstage integration and testing process has detected and fixed problems before entering

the production platform, hereby improving program stability.

4.2. Enhanced Collaboration

• Real-Time Code Sharing: Next, the adoption of AWS CodeCommit significantly renewed the

nature of how the development team can share the code in real-time. Also, I found out that the

developers could top their alterations to a common repository from where every member of the team

could simply obtain the update. This capability did away with the time always required by traditional

version control systems, which required time to communicate updates and time to integrate them.

This also resulted in increased working efficiency since team members were able to easily see what

others were doing and hence avoid misunderstandings and miscommunications.

• Feature Branching and Pull Requests: Using AWS CodeCommit, members of a team had an

opportunity to work with different feature branches following the kind of work to be done. This

separation made it possible for developers to completely rewrite portions of the APIs and associated

functionalities without interfering with the core system until they were certain that their innovation

was optimally prepared to be incorporated. After feedback on a feature was given, and when the

developers were finishing up that feature, they created pull requests. The pull requests gave a chance

for code review to see the changes made by the other team members and make them correct possible

mistakes before they merged those changes into the main branch. In addition to encouraging people

to take responsibility for their work, it also made it possible for the members of a particular team to

learn from each other because they would have access to samples of each other’s work and the

methodologies they had used.

• Efficient Handling of Merge Conflicts: The two important issues that have been frequently

observed in the collaboration of software development involve the handling of merge conflicts

occurring when different team members make simultaneous alternations of the components at widely

similar lines of the program. CodeCommit had tools that would make it easy to resolve such issues.

The service provided drawings to enable the identification of differences and helped developers

manage and deal with conflicts proficiently. This capability helped in a drastic decrease of the time

spent on conflict solving, which kept the team moving forward in their development work, which is

important by using Agile principles based on flexibility.

• Streamlined Code Reviews: Reduced scrutiny of code that was delivered by use of CodeCommit

translated to enhanced quality of the code base. If peer reviews were included in the development

process as a norm, then the team could negotiate on what should be considered acceptable code

before deploying the code. By adopting this approach, it became possible to achieve not only the

better quality of the code shared among the team members but also to develop a unified

understanding among the team about the fact that all of them are responsible for the code used or

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 12

developed in the frame of this cooperation. Previous research mentioned that the management of

code review increases the overall character of teamwork and the quality of delivered work; the

results observed in this implementation support the conclusion.

• Positive Impact on Team Dynamics: The advantages held by AWS CodeCommit also transcended

technical; they also impacted the morale of the members of the organization. The cross-functional

team and the ability to work in real-time improved team cohesiveness, communication, and problem-

solving. Team members said they had a sense of increased participation and responsibility because

they could make observed contributions to the process of development and receive feedback right

away. This enhanced sense of collaboration and inclusion is important in Agile working

environments where everybody comes together and adapts easily.

4.3. Scalability and Reliability

• Flexible Resource Allocation: Another advantage of the AWS cloud infrastructure providing the

possibility of the scaling process is that it is already pre-established for the development teams to be

able to scale up or down depending on the needs of certain projects. : Over time, projects will

progress—more users will use the project, new functions will be added, or teams grow, and the AWS

environment is capable of scaling with these changes. There are extra resources like storage space,

computers, and network capacity that accompany the team, which helps make the development

pipeline capable of handling huge workloads without throwing too much light on delays or

interruptions. Such flexibility gives teams the possibility to quickly adapt to changes in project

requirements, which adds to the concept of agile development.

• Concurrent Build Execution with CodeBuild: AWS CodeBuild very much improves the CI/CD

pipeline’s scalability by being capable of performing multiple builds concurrently. This capability is

especially useful in high development throughput periods when several developers are updating

simultaneously. CodeBuild can create Build environments on-demand for every request so that

multiple builds can run at the same time rather than concurrently. This concurrency decreases control

points so any changes can be validated as soon as possible and reduce the time to integration.

Because of its capability to manage multiple build requests at once, CodeBuild also regulates the

tempo so that work continues in an uninterrupted progression.

• Performance Under Load: The loading mechanism or load capacity is one of the main criteria for

reliability in any development setting. In this respect, AWS has a feature where resources are ranged

based on current demand or need. For instance, during ramp periods, product releases, or major

feature releases, the system can scale up and manage an increase in build requests efficiently. On the

other hand, during low-traffic times, a business can scale down the amount of resources to be used.

Such efficient resource utilization not only guarantees its readiness for use in a particular context but

also its stability in terms of performance in the subsequent stages of development.

• Continuous Availability and Fault Tolerance: AWS provides the organization with a reliable

CI/CD infrastructure that possesses high availability and fault tolerance. Availability features like

multiple availability zones and auto backup in AWS mean that applications persist even if a piece of

hardware or other system fails. CodeBuild and CodePipeline are also built to work well in this

environment and minimize the chances of teams having to deal with infrastructure-related issues and

outages. This reliability is particularly important in Agile methodologies since the overall

expectation from the teams is to deliver working software often and stably.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 13

• Adapting to Changing Project Needs: When new features make the structures complex or increase

the quantity under development, the value of flexibility of CI/CD becomes critical. AWS’s tools,

such as CodeCommit, Code Build, and CodePipeline, are aligned, creating an opportunity for any

team to boost its CI/CD solutions where necessary. For example, suppose a team changes their mind

about implementing more rounds of tests or shifting the strategy on deploying applications. In that

case, it is possible with AWS services because it is not heavy on overhead. By making this flexible,

they can accommodate the pipeline’s maximum utility within a given project.

4.4. Security and Compliance Benefits

Integration of AWS services was incredibly beneficial not only in improving the CI/CD pipeline

development aspect but also in greatly enhancing the security of the pipeline. In the current world where

business deals with more heightened internet risks, it is more important to ensure that the correct steps

are being taken in the development and purchase of software. AWS offers a wealth of security

configurations aimed at ensuring critical data is secure and enabling organizations to meet compliance

requirements besides transforming the software delivery value stream.

• Data Encryption: Several AWS security controls act as pillars of data protection; at the top of that

list is data encryption, which covers information in transit and at rest. When data is idle it is kept

protected through mechanisms like encryption in method to prevent use by unauthorized people.

Likewise, transit data – information that flows from one service or from users to an application- is

protected against interception and unauthorized access in transfer. This two-layer encryption

mechanism guarantees data privacy and sanctity, is in compliance with most regulation acts like

GDPR and HIPAA, and is also ISO 27001 compliant. Through AWS encryption, the development

teams can easily protect the confidentiality of the data at various stages of its life cycle.

• Identity and Access Management (IAM): IAM is a key component in AWS for protecting the

CI/CD pipeline since it can control user permission and access in detail. IAM enables an

organization to assign special roles and authority to access resources for each user or group of users

in a company. This principle of least privilege reduces the likelihood of someone in the organization

gaining access to data they should not be accessing or manipulating in the wrong way. In the same

way, IAM also works with AWS services to provide a central point for managing customers’

identities/permissions, making it easier to ensure governance at each stage of the CI/CD pipeline.

Code access using NIST and SOC2 standards is backed by the strict measures implemented in access

control that improve the general security of the development environment.

• Audit Logging: The biggest requirement in the CI/CD pipeline from the management perspective is

auditability, and AWS has proven mechanisms for this. This feature captures activity and

modification in the system; thus, organizations can see actions made in the environment. Application

logs contain useful information about events that happened in code management processes and

operations made to the user accounts, etc. Just like keeping the logs clear is important to detect

possible security breaches or compliance issues, this kind of transparency helps teams act

appropriately. In addition, the company-specific requirements and standards, such as the Payment

Card Industry Data Security Standard (PCI DSS), require audit and monitoring of system activities;

therefore, the AWS module for audit logging is inspirational for maintaining compliance with

different standards and security requirements.

• Comprehensive Compliance Support: AWS security measures together contribute to compliance

with numerous standards which enables customers that operate in different industries to follow the

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 14

regulation requirements in the field of development security. Following the standards from industries

and regulatory bodies like GDPR, HIPAA, NIST, SOC 2, and PCI DSS, AWS has the capability of

giving teams the ability and resources to execute a secure CI/CD pipeline. This adherence helps not

only to ensure the security of important data but also to build the confidence of clients and partners

in question regarding the propriety of the given organization.

Table 3: Security Features and Compliance Standards

Security Feature Description Compliance Standards

Data Encryption Encrypts data at rest and in transit GDPR, HIPAA, ISO

27001

Identity and Access Management

(IAM)

Fine-grained control of user

permissions

NIST, SOC2

Audit Logging Tracks user activity and changes PCI DSS

5. Conclusion

AWS CodeCommit and CodeBuild bring a new value proposition where CI/CD pipelines in Agile

software development help to deliver improvements far more quickly to teams. The practical use of

these AWS services has been showcased in this study to show how these services ease development,

lessen errors, and improve collaboration, thus leading to effective development. With the integration,

testing, as well as deployment automation, it would be possible to reduce the overhead that is inherent to

conventional development approaches, meaning that a team would not have to spend a lot of effort

setting up a complex deployment scheme but rather concentrate on code writing and optimization.

According to the findings of this research, AWS CodeCommit and CodeBuild provide significant

enhancements in a number of critical parameters, such as a 40 percent decrease in build and deployment

time, 3 3-fold increase in deployment frequency, and a decrease in error rates in a production setup. All

these enhancements will follow Agile, which allows multiple iterations, feedback loops, and iterative

planning. The capability to deliver software releases more often and with minimal bugs can respond to

the current customer needs and contribute to the gradual enhancement of delivering teams.

Also, the CI/CD as a service available on AWS Cloud enables organizations to take advantage of

advanced solutions that are flexible and ideal if the organization uses other AWS solutions.

CodeCommit’s integration into the AWS ecosystem and capability to work hand in hand with

CodeBuild make it easy for teams to use familiar resources to further develop their projects. This

interconnectivity not only helps teams that are already familiar with AWS to get up to speed faster, but it

also improves the flexibility of the development process as well.

With today’s focus on continuous improvement of software development processes, solutions such as

AWS CodeCommit and CodeBuild are considered must-have tools. The propositions for future work

would be an extension of the present work that can explore a comparative evaluation of the CI/CD

services offered by AWS with those available on other platforms and in distinct sectors. One could offer

useful information about the effectiveness and drawbacks of numerous CI/CD tools that would help

organizations find the best development practice that meets their needs. Altogether, this work highlights

the critical importance of the AWS services in increasing the efficiency, cooperation, and effectiveness

of Agile software development.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 15

References

1. Dingsøyr, T., Dybå, T., & Moe, N. B. (Eds.). (2010). Agile software development: current research

and future directions.

2. Cockburn, A., & Highsmith, J. (2001). Agile software development, the people factor. Computer,

34(11), 131-133.

3. Gonen, B., & Sawant, D. (2020, March). Significance of agile software development and SQA

powered by automation. In 2020 3rd International Conference on Information and Computer

Technologies (ICICT) (pp. 7-11). IEEE.

4. Mistry, A. (2018). Expert AWS Development: Efficiently develop, deploy, and manage your

enterprise apps on the Amazon Web Services platform. Packt Publishing Ltd.

5. Younas, M., Jawawi, D. N., Ghani, I., Fries, T., & Kazmi, R. (2018). Agile development in the cloud

computing environment: A systematic review. Information and Software Technology, 103, 142-158.

6. Swaraj, Nikit. Accelerating DevSecOps on AWS: Create secure CI/CD pipelines using Chaos

and AIOps. Packt Publishing Ltd, (2022).

7. Jansson, I. (2021). Continuous Compliance Automation in AWS cloud environment.

8. Singh, C., Gaba, N. S., Kaur, M., & Kaur, B. (2019, January). Comparison of different CI/CD tools

integrated with the cloud platform. In 2019 9th International Conference on Cloud Computing, Data

Science & Engineering (Confluence) (pp. 7-12). IEEE.

9. Dakic, V., Redzepagic, J., & Basic, M. (2022, October). CI/CD toolset security. In Proceedings of

the 32nd DAAAM International Symposium, ISSN (pp. 1726-9679).

10. Bobbert, Y., & Chtepen, M. (2021). Research Findings in the Domain of CI/CD and DevOps on

Security Compliance. In Strategic Approaches to Digital Platform Security Assurance (pp. 286-307).

IGI Global.

11. Manuja, M. (2014, February). Moving agile based projects on cloud. In 2014 IEEE International

Advance Computing Conference (IACC) (pp. 1392-1397). IEEE.

12. Virtanen, J. (2021). Comparing Different CI/CD Pipelines.

13. Shirokova, S., Kislova, E., Rostova, O., Shmeleva, A., & Tolstrup, L. (2020, November). Company

efficiency improvement using agile methodologies for managing IT projects. In Proceedings of the

International Scientific Conference-Digital Transformation on Manufacturing, Infrastructure and

Service (pp. 1-10).

14. Balazinska, M., Hwang, J. H., & Shah, M. A. (2009). Fault Tolerance and High Availability in Data

Stream Management Systems. Encyclopedia of Database Systems, 11, 57.

15. Sethi, F. (2020). Automating software code deployment using continuous integration and continuous

delivery pipeline for business intelligence solutions. Authorea Preprints.

16. Chowdary, M. N., Bussa, S., Chowdary, C. K., & Gupta, M. (2022). Automated pipeline for the

deployment using openshift. Procedia Computer Science, 215, 220-229.

17. Yucheng, L., & Yubin, L. (2010, July). High continuous availability digital information system

based on stratus Fault-Tolerant server. In 2010 International Forum on Information Technology and

Applications (Vol. 2, pp. 184-187). IEEE.

18. Rekonen, S., & Björklund, T. A. (2016). Adapting to the changing needs of managing innovative

projects. European Journal of Innovation Management, 19(1), 111-132.

19. Mellor, S. (2005). Adapting agile approaches to your project needs. IEEE Software, 22(3), 17-20.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT23032843 Volume 14, Issue 3, July-September 2023 16

20. Karunakaran, S. (2013). Impact of cloud adoption on agile software development. Software

Engineering Frameworks for the Cloud Computing Paradigm, 213-234.

https://www.ijsat.org/

