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Abstract 

As enterprises increasingly rely on large-scale analytics to extract insights from data lakes and 

data warehouses, the choice of storage format has a profound impact on query performance, 

cost, and resource utilization. Apache Parquet, a popular columnar storage format, has gained 

widespread adoption in the big data ecosystem due to its efficient compression, encoding, and 

predicate pushdown capabilities. By storing data column-wise, Parquet reduces I/O, network 

transfer, and CPU overhead when analyzing selective subsets of large datasets. This paper 

provides a comprehensive examination of Parquet’s columnar architecture, comparing it to 

row-based formats and highlighting its benefits in terms of query acceleration, storage 

optimization, and seamless integration with modern analytical engines. Through architectural 

explanations, benchmarking results, code snippets, and real-world case studies, we illustrate 

how Parquet’s design principles translate into tangible performance gains in analytical 

workloads. We also present emerging best practices, discuss integration with query engines like 

Spark, Trino, and Presto, and consider future directions in columnar format evolution. By 

understanding Parquet’s advantages and applying its features judiciously, data engineers and 

architects can unlock faster, cheaper, and more flexible big data analytics. 

Keywords: Apache Parquet, Columnar Storage, Big Data Analytics, Data Lakes, Predicate 

Pushdown, Data Compression, Spark, Trino, Presto 

1. Introduction 

Modern big data analytics pipelines routinely handle terabytes to petabytes of data across diverse 

domains: user clickstreams, IoT sensor measurements, financial transactions, and more. As data 

volumes grow, efficiently scanning and processing massive datasets becomes critical. In these 

scenarios, the choice of storage format and how data is physically laid out on disk can drastically 

influence query performance, storage costs, and operational efficiency [1]. 

Traditionally, row-based formats such as CSV or JSON represented the simplest approach to data 

storage, but these formats require reading entire rows even if only a few columns are needed. This 

leads to excessive I/O, CPU overhead, and memory consumption during analytical queries [2]. As 

data lakes emerged, a new generation of columnar formats like Apache Parquet took center stage. By 

organizing data by columns rather than rows, Parquet enables selective reads (predicate pushdown), 
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more effective compression, and efficient encoding of values. The result: faster queries and lower 

resource usage. 

This paper provides an in-depth analysis of Parquet’s columnar architecture and features, contrasting 

it with row-oriented approaches and alternative columnar formats. We detail how Parquet’s encoding, 

compression, and metadata structures reduce overhead in large-scale analytics. Through 

benchmarking results, code examples, and real-world case studies, we show how adopting Parquet 

results in performance gains of up to 10x for certain queries. We also examine best practices for 

schema design, partitioning, and file sizing. Finally, we explore ecosystem integration, highlighting 

how engines like Apache Spark, Trino, Presto, and Flink leverage Parquet for interactive, ad-hoc 

queries and production ETL workflows. 

By understanding and exploiting Parquet’s columnar advantage, organizations can improve query 

speeds, reduce infrastructure costs, and support a wide range of analytics use cases from BI 

dashboards to machine learning feature extraction more effectively than with traditional formats. 

2. Background: Row vs. Columnar Formats 

2.1 Row-Oriented Storage 

In a row-based format (e.g., CSV, JSON, Avro), data from each record is stored contiguously. While 

this is simple and efficient for transactional workloads that frequently access entire rows, it proves 

costly for analytical queries focused on a subset of columns. Scanning large row-based datasets forces 

reading entire records, even unused fields [3]. 

 

          Figure 1: Row-based vs. Columnar Layout  
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Row-based: Data stored row by row. 

Columnar: Data stored column by column. 

2.2 Column-Oriented Storage 

Columnar formats store values of each column together, enabling query engines to read only relevant 

columns. This reduces I/O and cache pollution, especially beneficial for OLAP (Online Analytical 

Processing) style queries that aggregate or filter on a handful of columns [4]. Efficient compression 

and encoding further improve performance and cost efficiency. 

3. Introducing Apache Parquet 

Apache Parquet, first developed by Cloudera and Twitter, and later adopted by the Apache Software 

Foundation, is a columnar storage format designed for efficient data analysis and interoperability 

across different big data processing frameworks [5]. 

Key Features: 

● Columnar Layout: Data of each column is stored contiguously. 

● Efficient Compression & Encoding: Columnar organization and data statistics allow Parquet to 

choose column-specific compression schemes (e.g., RLE, dictionary) that yield high compression 

ratios. 

● Predicate Pushdown: Parquet files contain metadata (min/max values, bloom filters) enabling 

query engines to skip entire row groups if they do not match filter criteria [6]. 

● Schema Evolution: Parquet supports schema evolution (adding new columns) without rewriting 

the entire dataset. 

● Interoperability: Engines like Spark, Hive, Impala, Presto, Trino, Flink, and others natively 

support Parquet, enabling consistent analytics across diverse tools. 

Format Row/Columnar Compression/Encodi

ng 

Predicate 

Pushdown 

Common 

Use Cases 

CSV Row-oriented None (optional) None Simple 

ingestion, 

legacy 

JSON Row-oriented None (optional) None Semi-

structured 

data 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT24021406 Volume 15, Issue 2, April-June 2024 4 

 

Avro Row-oriented Basic compression Limited ETL, 

streaming 

Parquet Columnar Advanced per-column Yes (stats) Analytical 

queries 

ORC Columnar Advanced per-column Yes (stats) Analytical 

queries 

 

Table 2: Comparison of Selected Formats 

Parquet and ORC are both strong columnar contenders, but Parquet’s broad ecosystem support makes 

it a dominant choice. 

4. Parquet’s Internal Architecture 

4.1 Logical Structure: Row Groups, Pages, and Columns 

A Parquet file is divided into row groups, each containing data for a subset of rows from all 

columns. Within each row group, data for each column is further subdivided into pages (typically 

8KB-1MB), which store a sequence of values [7]. Each page can have its own compression scheme. 

 

Figure 3: Parquet Logical structure 

Row groups allow parallelism (e.g., each group processed by a different task) and pages enable 

selective reads at fine granularity. 

4.2 Metadata and Statistics 

Each Parquet file contains metadata at both file and column chunk levels, including: 
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● Column min/max values 

● Null counts 

● Distinct counts (in future enhancements) 

● Encoding and compression parameters 

This metadata enables predicate pushdown, letting query engines skip entire row groups if their 

min/max stats indicate the data doesn’t satisfy the filter [8]. This optimization drastically reduces I/O 

and processing time. 

4.3 Compression and Encoding Techniques 

Parquet applies compression per column. Common techniques include Snappy, Gzip, ZSTD, and LZ4. 

Encoding techniques like dictionary encoding, run-length encoding (RLE), and bit-packing reduce 

column data size by exploiting repetitive patterns [9]. This synergy between encoding and 

compression can yield compression ratios of 10x or more compared to raw CSV files. 

5. Predicate Pushdown and Selective Scans 

5.1 How Predicate Pushdown Works 

Predicate pushdown means that if a query filters on a column (e.g., WHERE region = 'US'), the engine 

checks Parquet metadata to see if row groups contain any rows matching that condition. If a row 

group’s min and max values for region don’t include ‘US’, that row group is skipped entirely. 

Example: 

● Query: SELECT SUM(sales) FROM table WHERE region = 'US' 

● Parquet: Row group stats show region min/max as {‘CA’, ‘MX’} for one row group → skip it 

● Another row group with region min ‘US’ and max ‘US’ → read only that group 

This approach reduces I/O by 50-90% in some workloads, enabling interactive queries on large 

datasets [10]. 

5.2 Performance Gains 

Benchmarking queries on a 1TB dataset with selective filters shows that predicate pushdown can cut 

scan times from minutes to seconds. For instance, reading only 1 out of 20 columns and skipping half 

the row groups can provide a 10x performance improvement [11]. 
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Figure 4: Query Time vs. Columns Selected 

As the number of accessed columns decreases, Parquet's advantage grows. 

6. Real-World Case Studies 

6.1 Financial Analytics on Transaction Data 

A financial services firm stores billions of trades per day in Parquet format. Queries often involve 

aggregations on a few numeric columns (e.g., trade_amount) filtered by a time range. By using 

Parquet’s predicate pushdown (min/max timestamps) and columnar reads, the firm reduced query 

times by 8x compared to reading CSV files [12]. The company also saved storage costs due to high 

compression ratios. 

6.2 IoT Sensor Data Exploration 

An IoT platform collects sensor readings (temperature, humidity, pressure) from millions of devices. 

Analysts often query only temperature and time columns to detect anomalies. With Parquet, they read 

only 2 out of 100 columns, drastically cutting I/O. On a 10TB dataset, this reduces scanning from 

hours to tens of minutes [13]. The platform can also store daily partitions to further prune irrelevant 

data. 
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6.3 E-Commerce Clickstream Analytics 

An e-commerce retailer uses Parquet for clickstream logs. Queries often filter by user region and 

event type. Predicate pushdown eliminates scanning irrelevant regions. High compression on text-

based columns reduces storage from 100TB raw logs to 15TB in Parquet, cutting cloud storage bills 

and speeding up daily ETL jobs [14]. 

7. Integrations with Analytical Engines 

7.1 Apache Spark 

Spark’s DataFrame API and SQL interface natively support Parquet. Spark’s catalyst optimizer 

leverages Parquet statistics for predicate pushdown and column pruning. By caching metadata and 

controlling partition sizes, Spark can launch queries with minimal overhead [15]. 

Code Example (Spark): 

val df = spark.read.parquet("s3://data-lake/events/") 

val result = df.filter("event_type = 'click'").select("user_id","timestamp").groupBy("user_id").count() 

 

Spark only reads event_type, user_id, timestamp columns and prunes row groups not matching 

event_type='click'. 

 

Figure 5: Spark Parquet Query Optimization 
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7.2 Trino and Presto 

Trino (formerly PrestoSQL) and Presto also integrate tightly with Parquet. Their cost-based 

optimizers exploit Parquet stats for dynamic filtering. Interactive queries over data lakes become 

feasible as these engines skip scanning terabytes of irrelevant data [16]. 

7.3 Hive and Impala 

Hive supports Parquet through the ORC and Parquet SerDes. Although Hive’s execution model is 

more batch-oriented, using Parquet improves map-reduce jobs performance by reducing shuffle and 

I/O overhead. Cloudera Impala’s native Parquet support yields sub-second queries on multi-terabyte 

datasets [17]. 

7.4 Flink and Streaming Scenarios 

Apache Flink can write streaming outputs to Parquet, enabling incremental batch processing. By 

periodically compacting small files into larger Parquet files with efficient columnar layouts, Flink 

workflows maintain query performance over growing historical data [18]. 

8. Schema Design and Best Practices 

8.1 Choosing Data Types 

Use appropriate data types to enhance compression and encoding. For example, using INT or LONG 

for numeric fields and dictionary encoding on low-cardinality columns improves compression. Avoid 

excessively large string columns if possible [19]. 

8.2 Partitioning and File Sizing 

Partition by frequently filtered columns (e.g., date, region) to prune large portions of the dataset. Aim 

for files ~128MB-1GB in size for optimal HDFS or cloud storage reading patterns. Too many small 

files degrade query performance by adding overhead in metadata and task scheduling [20]. 

8.3 Compression Codec Selection 

Snappy provides a good balance of speed and compression ratio. Gzip yields higher compression but 

slower reads. ZSTD is increasingly popular for its high compression and fast decompression [21]. 

Test different codecs on sample data to find the best trade-off. 

Codec Compression Ratio Decompression Speed CPU Usage 

Snappy Medium Very Fast Low 
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Gzip High Slower Medium 

ZSTD High Fast Medium 

 

Table 6: Codec Performance Comparison (Example) 

9. Benchmarking and Measuring Impact 

Conducting benchmarks with representative queries and sample datasets before production helps 

quantify Parquet’s benefits. Tools like TPC-DS or custom workloads can measure query times, CPU 

usage, and data scanned [22]. Comparing row-based to Parquet columnar scans often reveals order-of-

magnitude improvements for selective queries. 

 
Figure 7: Graph: TPC-DS Query Performance (Normalized) 

In certain queries, Parquet reduces runtime by 5x (0.2 normalized time). 

10. Security and Compliance Considerations 

Data stored in Parquet can be encrypted at rest, and sensitive columns can be masked or stored as 

hashed values. Encryption adds some overhead, but columnar compression reduces the cost of storing 

and scanning encrypted data. Auditors can verify queries using Parquet metadata logs to ensure 

compliance with regulations like PCI-DSS or GDPR [23]. 

11. Cloud Storage and Multi-Format Lakes 

In cloud environments, Parquet’s columnar advantage pairs well with object storage. Services like 

Amazon S3, Google Cloud Storage, and Azure Data Lake Storage benefit from Parquet’s smaller 

footprints and minimized data scans, reducing egress fees and overall costs [24]. 
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Additionally, hybrid lakehouses often mix Parquet (analytical queries) with Delta or Iceberg formats 

(ACID transactions, versioned snapshots). Parquet remains the underlying columnar format in these 

systems, ensuring consistent performance benefits [25]. 

12. Future Directions and Research 

Columnar formats continue to evolve. Potential enhancements include: 

● More sophisticated indexing (bloom filters) per column to refine predicate pushdown. 

● Adaptive encoding and compression strategies tuned by machine learning models. 

● Integration with data lake table formats (Iceberg, Delta) to provide fine-grained transactional 

capabilities over Parquet files. 

● Improved open-source tooling to profile and optimize Parquet datasets automatically [26]. 

Research also explores vectorized query execution engines exploiting Parquet’s columnar memory 

layout to speed up CPU-bound operations [27]. 

13. Conclusion 

In the ever-expanding universe of big data, Apache Parquet emerges as a transformative technology that 

reimagines how we store, process, and analyze massive datasets. Far more than just another file format, 

Parquet represents a fundamental shift in data storage philosophy moving from the traditional row-based 

approach to a columnar architecture that speaks the native language of analytical processing. 

The advantages of Parquet are not merely incremental; they are revolutionary. By storing data column 

by column, Parquet eliminates the inefficiencies that have long plagued traditional storage formats. 

Imagine a massive dataset as a sprawling library: row-based storage forces you to flip through entire 

books to find a single paragraph, while Parquet lets you precisely extract the exact information you need, 

leaving the rest undisturbed. 

Key performance breakthroughs include: 

● Dramatic reduction in I/O overhead 

● Advanced compression techniques that shrink storage requirements 

● Intelligent predicate pushdown that filters data before it's even read 

● Metadata-driven optimizations that make queries lightning-fast 

For organizations drowning in data, Parquet offers a lifeline. By implementing best practices such as 

carefully designing data types, creating intelligent partitioning strategies, and leveraging column-level 

statistics companies can transform their data infrastructure from a bottleneck to a strategic asset. 

The real-world impact is profound. Data teams can now run complex queries that previously took hours 

in mere minutes, dramatically reducing computational costs and accelerating decision-making. As data 

volumes continue to explode and analytical demands become increasingly sophisticated, Parquet stands 

as a critical technology for organizations seeking to turn their data into actionable insights. 
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Looking forward, Parquet is more than a file format it's a testament to the continuous innovation in big 

data technologies. It represents a bridge between the massive data challenges of today and the 

intelligent, efficient data ecosystems of tomorrow. 

For data architects, analysts, and business leaders, the message is clear: the columnar revolution is here, 

and Apache Parquet is leading the charge. 
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