
 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25011942 Volume 16, Issue 1, January-March 2025 1 

 

Deep Learning for High-Resolution Weather and 

Weather Prediction 
 

Anshika Singh1, Hardik Singh2 
 

1M.Tech postgraduate, Computer Science and Engineering, Lucknow Institute of Technology 
2Student, Computer Science, Delhi Public School Kalyanpur Kanpur 

 

Abstract 

Recent advances in deep learning have opened new avenues in weather forecasting by providing 

novel methods to enhance prediction accuracy, increase resolution, and capture complex 

spatiotemporal dependencies inherent in atmospheric phenomena. Traditional numerical weather 

prediction (NWP) methods, while robust, are computationally expensive and struggle to capture 

localized extreme events such as heavy rainfall or convective storms. In contrast, deep learning 

techniques—ranging from convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs) (including LSTM and ConvLSTM variants) to emerging capsule network architectures—

offer a data-driven complement to physics-based models. This paper reviews recent progress in 

the use of deep learning for weather forecasting, discusses methodologies for generating high-

resolution forecasts from coarse data (i.e., downscaling), and evaluates approaches for predicting 

heavy rainfall and extreme weather events. We critically analyze works such as “DeepDownscale: 

A Deep Learning Strategy for High-Resolution Weather Forecast” [1] and “Deep Learning for 

Improving Numerical Weather Prediction of Heavy Rainfall” [2], as well as the survey “Survey on 

the Application of Deep Learning in Extreme Weather Prediction” [3]. We also integrate 

additional findings from the broader literature [4–20] to present a comprehensive overview. 

Challenges and opportunities in model interpretability, data assimilation, and computational 

efficiency are examined, and future research directions are proposed. 

Keywords: Deep learning, weather forecasting, high-resolution prediction, CNN, RNN, extreme 

weather, numerical weather prediction, downscaling 

 

1. Introduction 

Weather forecasting has always been at the forefront of scientific inquiry, given its critical importance to 

society. Traditionally, forecasts have relied on physical models that simulate atmospheric dynamics 

through complex numerical schemes. However, these numerical weather prediction (NWP) models are 

computationally expensive and often limited by their resolution. As weather systems become 

increasingly complex due to climate change, the demand for faster, more accurate, and higher resolution 

forecasts has grown. In this context, deep learning has emerged as a promising tool for enhancing 

weather prediction. 

Deep learning’s capacity to automatically learn hierarchical feature representations from large datasets 

makes it particularly well suited for extracting the spatial and temporal patterns in meteorological data. 

Early applications of deep learning in meteorology focused on tasks such as precipitation nowcasting 
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and post-processing ensemble forecasts. More recent efforts have extended these approaches to dynamic 

downscaling—where a low-resolution output from a global model is transformed into a high-resolution 

forecast [1]—and the prediction of heavy rainfall and extreme weather events [2,3]. 

This paper is organized as follows. In Section 2, we provide an overview of the traditional methods used 

in weather forecasting and introduce the evolution of deep learning techniques within this field. Section 

3 discusses the methodologies and architectures applied in current deep learning approaches for weather 

prediction, including CNNs, RNNs, ConvLSTMs, and capsule networks. Section 4 reviews experimental 

results and case studies from the literature, comparing them with conventional forecasting methods. In 

Section 5, we discuss the challenges and limitations of current deep learning methods and outline 

potential directions for future research. Finally, Section 6 presents our conclusions. 

2. Literature Review 

2.1. Traditional Weather Forecasting and Numerical Models 

For decades, weather forecasts have relied on numerical weather prediction models that solve the fluid 

dynamics equations governing the atmosphere. These models, which include global circulation models 

(GCMs) and regional models, require enormous computational resources to achieve high spatial and 

temporal resolutions. Techniques such as dynamical downscaling—where a coarse-resolution global 

model feeds into a high-resolution regional model—help mitigate computational cost, but they still 

involve significant simulation times and are prone to systematic biases [1,28]. 

In addition to pure numerical models, statistical post-processing methods like linear regression have 

been used to correct systematic errors in ensemble forecasts. While such methods can reduce bias (often 

referred to as “wisdom of crowds” in ensemble forecasting [1,30]), they generally fail to capture the 

nonlinearity and complex dependencies present in atmospheric systems. 

 

2.2. Emergence of Deep Learning in Weather Forecasting 

Deep learning, a subfield of machine learning that leverages neural networks with many layers, offers a 

data-driven alternative that can complement or even partially replace traditional methods. The key 

strength of deep learning is its ability to automatically extract features from raw input data without 

requiring explicit feature engineering. In weather forecasting, this capability has been exploited to 

enhance the resolution of forecasts and to capture the nonlinear dynamics of extreme weather 

phenomena. 

Recent work has shown that convolutional neural networks (CNNs) can be used to “downscale” low-

resolution forecasts into high-resolution outputs. The work by Rodrigues et al. in “DeepDownscale: A 

Deep Learning Strategy for High-Resolution Weather Forecast” [1] demonstrates how a supervised 

CNN architecture can learn a mapping from coarse global forecasts to high-resolution regional 

predictions, significantly outperforming traditional interpolation methods. Similarly, “Deep Learning for 

Improving Numerical Weather Prediction of Heavy Rainfall” [2] applies deep learning techniques to 

improve the prediction of heavy rainfall events by learning from the complex patterns within historical 

radar and model data. 

In the realm of extreme weather prediction, recurrent neural networks (RNNs), especially variants such 

as long short-term memory (LSTM) networks and convolutional LSTMs (ConvLSTMs), have been 

particularly successful. These models are designed to capture temporal dependencies in time-series data 

and have been applied to nowcasting tasks—predicting the immediate future weather conditions based 

on recent observations [5,33]. The survey “Survey on the Application of Deep Learning in Extreme 
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Weather Prediction” [3] provides a comprehensive review of these methods and their applications to 

forecasting events such as thunderstorms, tornadoes, and flash floods. 

 

2.3. Additional Advances in Deep Learning for Weather Forecasting 

Beyond the application of CNNs and RNNs, other deep learning architectures have been explored in 

meteorology. Capsule networks, which encapsulate spatial hierarchies into vector representations, have 

shown promise in capturing the geometric relationships in atmospheric data [51]. While still in early 

stages, these models may overcome some limitations of conventional CNNs by preserving information 

about the orientation and pose of features within weather maps. 

Moreover, hybrid approaches that combine deep learning with traditional physics-based models have 

been proposed. For example, some frameworks incorporate data assimilation techniques that merge 

observational data with model outputs, thereby enhancing the prediction quality while leveraging the 

strengths of both numerical and deep learning methods [16]. These approaches not only improve 

forecasting accuracy but also address some of the computational challenges associated with high-

resolution weather prediction. 

 

3. Methodology and Deep Learning Architecture’s 

3.1. Convolutional Neural Networks (CNNs) for Downscaling 

CNNs have been at the forefront of image processing and have been adapted to meteorological 

applications for spatial downscaling. The fundamental idea behind CNN-based downscaling is to learn 

an end-to-end mapping from low-resolution model outputs to high-resolution forecasts. The architecture 

typically involves several convolutional layers that extract spatial features, followed by upsampling 

layers that increase the resolution. Rodrigues et al. [1] showed that a deep CNN could effectively learn 

the redundant patterns present in low-resolution forecasts and generate accurate high-resolution 

predictions. 

In a typical CNN architecture for weather downscaling, the input consists of a multi-channel volume 

where each channel represents a different meteorological variable or model forecast. Convolutions are 

applied with small kernel sizes (e.g., 3×3) to capture local spatial features. Residual connections—

popularized by ResNet [4]—can also be employed to improve gradient flow and facilitate the training of 

very deep networks. Such architectures have been shown to provide significant improvements over 

traditional interpolation or linear regression-based methods. 

 

3.2. Recurrent Neural Networks (RNNs) and LSTM/ConvLSTM for Temporal Prediction 

RNNs, particularly long short-term memory (LSTM) networks, are well suited to handling time-series 

data. Weather forecasting inherently involves sequential data, where the prediction at time t depends on 

previous observations. LSTM networks overcome the vanishing gradient problem encountered in 

traditional RNNs by using memory cells and gating mechanisms to maintain long-term dependencies. 

ConvLSTM networks extend this idea by incorporating convolutional operations in the input-to-state 

and state-to-state transitions, making them ideal for spatiotemporal prediction tasks such as precipitation 

nowcasting [5,33]. 

For example, ConvLSTM models have been used to predict the evolution of radar echo images over 

short lead times, capturing both the spatial structure of precipitation and its temporal evolution. The 

ability to predict heavy rainfall events accurately using ConvLSTM architectures has been demonstrated 
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in several studies [2,5]. These models typically stack multiple ConvLSTM layers to learn a rich 

hierarchical representation of the evolving weather patterns. 

 

3.3. Capsule Networks and Other Emerging Architectures 

Capsule networks have recently been proposed as an alternative to CNNs for tasks that require the 

preservation of spatial hierarchies. In capsule networks, groups of neurons (capsules) represent not only 

the presence of features but also their spatial relationships. Although the application of capsule networks 

in meteorology is still in its infancy, preliminary studies suggest that they may offer advantages in 

detecting and characterizing extreme weather features, such as the spatial orientation of storm cells [51]. 

By maintaining a more detailed representation of spatial information, capsule networks have the 

potential to improve the interpretability and accuracy of forecasts, particularly in situations where the 

geometry of atmospheric features plays a critical role. 

 

3.4. Hybrid Models and Data Assimilation Techniques 

One of the most promising directions in recent research is the integration of deep learning models with 

traditional NWP systems. Hybrid models leverage the strengths of both data-driven learning and 

physical simulation. For instance, a deep learning model might be used to post-process the outputs of a 

coarse-resolution NWP model, correcting biases and enhancing resolution. Alternatively, deep learning 

architectures can be embedded within data assimilation frameworks to optimize the initial conditions for 

NWP models [16]. These hybrid approaches are designed to take advantage of the vast amounts of 

historical observational and model data, while still respecting the underlying physics of the atmosphere. 

The use of transfer learning has also been explored, where a deep learning model pre-trained on one 

meteorological task (e.g., precipitation nowcasting) is fine-tuned for another related task (e.g., 

temperature forecasting). Such approaches can reduce training times and improve model generalization, 

especially when data are scarce or when the weather phenomenon of interest is rare. 

 

4. Experimental Studies and Comparative Analysis 

4.1. High-Resolution Downscaling 

In “DeepDownscale: A Deep Learning Strategy for High-Resolution Weather Forecast” [1], the authors 

present a supervised learning approach that uses a CNN to map low-resolution forecasts to high-

resolution outputs. The input data consist of forecasts from multiple global models, which are 

interpolated and stacked to form a multi-channel volume. The network is trained using observed high-

resolution data as labels. When compared with traditional methods—such as linear interpolation or 

ensemble mean—the deep learning approach achieved significantly lower root mean squared errors 

(RMSE) in predicting precipitation patterns. This study illustrates the capacity of deep neural networks 

to learn the redundant spatial patterns present in atmospheric data, enabling more accurate and 

computationally efficient high-resolution forecasts. 

 

4.2. Heavy Rainfall Prediction 

The work detailed in “Deep Learning for Improving Numerical Weather Prediction of Heavy Rainfall” 

[2] focuses on the prediction of heavy rainfall events. Heavy rainfall is a complex phenomenon that is 

influenced by a variety of atmospheric processes, and traditional NWP models often struggle to capture 

these localized events accurately. By training a deep learning model on historical radar data and model 
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outputs, the authors demonstrate that their approach is capable of predicting heavy rainfall with 

improved accuracy over conventional methods. The model incorporates convolutional layers to capture 

spatial features and recurrent layers to account for temporal dynamics. Validation results indicate a 

marked reduction in forecasting error, particularly during extreme events. 

 

4.3. Extreme Weather Prediction and Nowcasting 

Extreme weather events, such as thunderstorms, flash floods, and convective storms, require rapid 

prediction and high spatial fidelity. The survey “Survey on the Application of Deep Learning in Extreme 

Weather Prediction” [3] reviews various deep learning architectures that have been applied to this task. 

Many of these methods utilize ConvLSTM models, which have been particularly successful in capturing 

both the temporal evolution and spatial structure of extreme events. In comparative studies, deep 

learning models often outperform traditional extrapolation or statistical methods in nowcasting 

scenarios. Moreover, the survey highlights that the integration of radar and satellite data into deep 

learning frameworks has further enhanced predictive capabilities. 

 

4.4. Comparison with Conventional Approaches 

When comparing deep learning methods with traditional statistical and dynamical downscaling 

approaches, several advantages become evident. First, deep learning models are typically much faster 

during inference, allowing for near real-time forecasts once the model is trained. Second, by learning 

directly from data, these models can adapt to local biases and systematic errors inherent in numerical 

models. For example, while ensemble averaging might reduce random errors, it does not correct for 

consistent underestimation of precipitation—a problem that deep learning models have been shown to 

mitigate effectively [1,2]. However, it is important to note that deep learning models also require large, 

high-quality datasets for training and are susceptible to overfitting if not properly regularized. 

5. Challenges and Future Research Directions 

5.1. Data Quality and Availability 

One of the principal challenges in applying deep learning to weather forecasting is the quality and 

availability of data. Weather systems are inherently chaotic and involve multiscale processes, and while 

historical datasets from satellite and radar observations are abundant, they often suffer from missing 

data, measurement errors, and inconsistencies in resolution. Future research must focus on improved 

data preprocessing, robust data assimilation techniques, and the development of transfer learning 

strategies to better leverage diverse datasets. 

 

5.2. Model Interpretability and Explainability 

Deep learning models are often criticized as “black boxes” that lack interpretability. In weather 

forecasting, understanding the physical basis behind predictions is essential, particularly when forecasts 

are used to inform decision-making in emergency management and public safety. Enhancing the 

explainability of deep learning models—by integrating attention mechanisms, feature visualization 

techniques, or coupling with physical constraints—remains an important research direction. Hybrid 

models that combine physics-based reasoning with data-driven learning could provide a pathway toward 

more interpretable and trustworthy forecasting systems. 

 

5.3. Computational Efficiency and Scalability 
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Although deep learning models offer faster inference times compared to running full NWP simulations, 

training these models remains computationally intensive. The need to process large volumes of high-

resolution spatial–temporal data demands substantial memory and computing power, often necessitating 

the use of high-performance GPUs or distributed computing architectures. Research into more efficient 

network architectures, optimization techniques, and model compression methods (such as pruning and 

quantization) is critical to enable widespread operational use. 

 

5.4. Integration with Numerical Weather Prediction 

A major opportunity lies in the integration of deep learning models with existing NWP frameworks. 

Hybrid systems that use deep learning to post-process or augment the outputs of numerical models can 

provide the best of both worlds: the physical rigor of numerical simulations and the pattern recognition 

capabilities of deep learning. Future research should explore strategies for seamless integration, 

including the use of deep learning in data assimilation, bias correction, and uncertainty quantification. 

Furthermore, it is essential to develop methodologies that allow the deep learning components to adapt 

as the underlying NWP models are updated or replaced. 

 

5.5. Generalization and Transferability 

Another challenge is ensuring that deep learning models generalize well across different regions, 

weather regimes, and seasons. Models trained on data from one geographic area may not perform well 

when applied elsewhere due to differences in climate, topography, or data quality. Developing models 

that are robust to these variations and that can be adapted with minimal retraining is a key research goal. 

Transfer learning, domain adaptation techniques, and the incorporation of climatological knowledge into 

network architectures could help address these issues. 

 

5.6. Real-Time Prediction and Operational Implementation 

For deep learning models to have a meaningful impact on operational forecasting, they must be capable 

of running in real time and interfacing with existing forecasting workflows. This requires not only 

computational efficiency but also robust error handling and fail-safe mechanisms. Pilot studies that 

integrate deep learning systems into operational environments are needed to validate their performance 

under real-world conditions and to understand the practical challenges involved in deployment. 

 

6. Conclusion 

Deep learning has rapidly emerged as a transformative tool in weather forecasting, offering significant 

improvements in both resolution and accuracy over traditional methods. By harnessing the power of 

CNNs for spatial downscaling, RNNs (including LSTM and ConvLSTM) for temporal dynamics, and 

exploring novel architectures such as capsule networks, researchers have begun to overcome 

longstanding challenges in numerical weather prediction. Studies such as “DeepDownscale: A Deep 

Learning Strategy for High-Resolution Weather Forecast” [1] and “Deep Learning for Improving 

Numerical Weather Prediction of Heavy Rainfall” [2] illustrate that deep learning methods can reduce 

forecasting errors and provide high-resolution outputs in a fraction of the time required by conventional 

models. 

Nonetheless, several challenges remain. The quality of training data, model interpretability, 

computational demands, and the integration of deep learning with established NWP systems all represent 
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areas where further research is needed. Addressing these challenges will require interdisciplinary 

collaboration between meteorologists, computer scientists, and engineers. Future research should also 

focus on developing hybrid models that leverage both the physical principles of the atmosphere and the 

data-driven insights provided by deep learning. 

In summary, while deep learning is not a panacea for all forecasting challenges, its application in 

weather prediction has already demonstrated considerable promise. As computational resources improve 

and datasets become more comprehensive, deep learning will likely play an increasingly central role in 

operational weather forecasting, ultimately leading to more accurate predictions, better disaster 

preparedness, and improved public safety. 
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