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Abstract 

Fractional calculus (FC) extends classical differentiation and integration to non-integer orders, 

offering powerful tools for modeling complex systems in physics, engineering, and finance. This 

review explores the fundamental concepts of fractional calculus, its historical development, and its 

broad spectrum of applications. Key theoretical aspects, numerical methods, and real-world 

implementations are discussed. The review also highlights challenges and future directions in the 

field, including recent research findings and experimental validations. The subject of fractional 

calculus has applications in diverse and widespread fields of engineering and science such as 

electromagnetics, viscoelasticity, fluid mechanics, electro- chemistry, biological population models, 

optics, and signals processing. It has been used to model physical and engineering processes that 

are found to be best described by fractional differential equations. The fractional derivative 

models are used for accurate modelling of those systems that require accurate modelling of 

damping. In these fields, various analytical and numerical methods including their applications to 

new problems have been proposed in recent years. This special issue on “Fractional Calculus and 

its Applications in Applied Mathematics and Other Sciences” is devoted to study the recent works 

in the above fields of fractional calculus done by the leading researchers. The papers for this 

special issue were selected after a careful and studious peer-review process. 

 

1. Introduction:  

Fractional calculus generalizes the concept of differentiation and integration to arbitrary (non-integer) 

orders. While traditional calculus has been widely applied in mathematical modeling, fractional calculus 

provides a more flexible and accurate approach for describing anomalous diffusion, viscoelastic 

materials, and control systems. Recent studies highlight its increasing relevance in modern scientific 

advancements, particularly in areas like machine learning, fluid dynamics, and signal processing. 

Mathematical modelling of real-life problems usually results in fractional differential equations and 

various other problems involving special functions of mathematical physics as well as their extensions and 

generalizations in one or more variables. In addition, most physical phenomena of fluid dynamics, 

quantum mechanics, electricity, ecological systems, and many other models are controlled within their 

domain of validity by fractional order PDEs. Therefore, it becomes increasingly important to be familiar 

with all traditional and recently developed methods for solving fractional order PDEs and the 

implementations of these methods. 

The aim of this special issue is to bring together the leading researchers of diverse fields of 

engineering including applied mathematicians and allow them to share their innovative research work. 

Analytical and numerical methods with advanced mathematical modelling and recent developments of 
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differential and integral equations of arbitrary order arising in physical systems are included in the main 

focus of the issue. Accordingly, various papers on fractional differential equations have been included 

in this special issue after completing a heedful, rigorous, and peer-review process. The issue contains 

eight research papers. The issue of robust stability for fractional order Hopfield neural networks with 

parameter uncertainties is rigorously investigated. Based on the fractional order Lyapunov direct 

method, the sufficient condition of the existence, uniqueness, and globally robust stability of the 

equilibrium point is presented. Moreover, the sufficient condition of the robust synchronization between 

such neural systems with the same parameter uncertain- ties is proposed owing to the robust 

stability analysis of its synchronization error system. In addition, for different parameter uncertainties, 

the quasi-synchronization between the classes of neural networks is investigated with linear control. 

And the quasi-synchronization error bound can be controlled by choosing the suitable control 

parameters. Moreover, robust synchronization and quasi-synchronization between the classes of neural 

networks are discussed. The authors have discussed the robust stability and synchronization for the 

fractional order delayed neural networks (FDNN) with parameter uncertainties. 

2. Historical Background:  

The origins of fractional calculus can be traced back to Leibniz and L’Hopital’s correspondence in 1695, 

where the idea of a half-order derivative was first introduced. Over the centuries, mathematicians like 

Riemann, Liouville, and Caputo have developed formal definitions that laid the groundwork for modern 

applications. Recent developments include adaptations of fractional calculus in quantum mechanics and 

artificial intelligence.Fractional calculus, the branch of mathematics that deals with derivatives and 

integrals of arbitrary (non-integer) order, has a rich and fascinating history that spans several centuries. 

Its development has been influenced by the works of various mathematicians, with contributions from 

different areas of science, including physics, engineering, and finance. Below is an overview of its 

historical evolution: 

 

1. Early Beginnings (17th Century) 

The roots of fractional calculus can be traced back to the 17th century when two prominent 

mathematicians, Pierre de Fermat and John Wallis, began to explore the concept of non-integer 

exponents. Wallis, in his work Arithmetica Infinitorum (1655), made the first appearance of fractional 

powers in the context of infinite series. Fermat, in a letter to his contemporaries, proposed the idea of a 

fractional power of a number, though his work was more focused on algebra. 

 

2. First Mention of Fractional Derivatives (1695) 

The term "fractional" calculus was coined by the renowned mathematician Joseph Fourier in the 19th 

century, but the first concrete steps toward defining fractional derivatives are attributed to Leibniz and 

L’Hôpital. In 1695, Leibniz used the notation for fractional derivatives in his correspondence with 

L'Hôpital, where he posed the idea of taking derivatives of a function of fractional order. This was more 

of a theoretical proposition than a formalization. 

 

3. The 19th Century: Riemann, Liouville, and the Concept of Fractional Calculus 

In the 19th century, the concept of fractional derivatives was further formalized. The French 

mathematician Augustin-Louis Cauchy was one of the first to provide a more systematic interpretation 
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of fractional derivatives, but the definitive step towards modern fractional calculus was taken by 

Bernhard Riemann and Joseph Liouville in the mid-19th century. In 1837, Riemann introduced the 

integral of non-integer order, later known as the Riemann-Liouville integral. In 1867, Liouville extended 

this idea by formalizing the fractional derivative based on the theory of generalizations of the ordinary 

derivative. 

This work led to the development of Riemann-Liouville fractional calculus, which defines the fractional 

derivative in terms of a convolution integral. It provided a framework for understanding fractional-order 

systems in the context of real-world phenomena exhibiting memory or hereditary behavior, such as 

viscoelastic materials and diffusion processes. 

 

4. The Caputo Fractional Derivative (1960s) 

While Riemann and Liouville laid the groundwork, the next significant development came in the 1960s 

when Mauro Caputo, an Italian engineer, introduced a modified version of the fractional derivative, 

known as the Caputo derivative. Caputo's approach was designed to better fit initial conditions 

commonly encountered in physical problems. Unlike the Riemann-Liouville fractional derivative, the 

Caputo derivative allows for easier physical interpretations, particularly in cases where initial value 

problems are involved. 

Caputo’s formulation is particularly useful in practical applications, such as modeling mechanical 

systems and fluid dynamics, where physical systems often exhibit behavior that is not entirely governed 

by integer-order differential equations. 

 

5. The 20th and 21st Centuries: Applications and Expansion 

Throughout the 20th century and into the 21st century, fractional calculus has seen rapid growth in both 

theory and application. With the advent of modern computational techniques and the increasing use of 

fractional derivatives in engineering and science, the field gained significant attention. Researchers 

began applying fractional calculus to model complex systems in diverse fields such as: 

Physics: Modeling anomalous diffusion, chaotic systems, and viscoelastic materials. 

Biology: Describing the memory effects in biological systems, including neural and cardiovascular 

systems. 

Control Theory: Developing fractional-order controllers for more precise and efficient control of 

dynamic systems. 

Economics and Finance: Applying fractional calculus to model financial markets and other systems with 

long-term memory effects. 

 

6. Modern Developments and Challenges 

In recent decades, fractional calculus has evolved into a rich field of study, bridging pure mathematics 

and applied sciences. Despite the significant advances in the theoretical and practical applications of 

fractional derivatives, challenges remain in terms of computational methods, numerical solutions of 

fractional differential equations, and the deeper physical interpretation of fractional orders. 

The development of more efficient algorithms for solving fractional differential equations, along with a 

deeper understanding of the physical meaning behind fractional orders, continues to shape the field 

today. 
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3. Mathematical Foundations 

Fractional calculus is defined through several integral and differential operators: 

    3.1 Definitions of Fractional Derivatives 

- Riemann-Liouville Definition 

- Caputo Definition 

- Grünwald-Letnikov Definition 

- Mittag-Leffler Functions. 

Table 1: Comparison of Different Fractional Derivative Definitions 

Definition Formula Key Features 

Riemann-

Liouville 

Dαf(t)=1\Γ(n−α)dtn/dn∫0 (t−τ)n−α−1f(τ)dτ 

where: 

• Γ(⋅)is the Gamma function, 

• n is the smallest integer greater than α i.e., 

n=⌈α⌉ 

• Dαf(t) denotes the fractional derivative of 

order α, 

• The integral runs from 0 to t. 

 

Suited for initial value problems 

Caputo 
D^q f(x) = (1/Γ(n-q)) ∫_0^x (x-t)^(n-q-1) f^(n)(t) dt Easier to handle for physical 

problems 

4. Numerical Methods in Fractional Calculus 

- Grünwald-Letnikov approximation 

- Fractional finite difference methods 

- Spectral methods 

4.1 Grünwald-Letnikov Approximation: The Grünwald-Letnikov (GL) approach is a 

fundamental numerical method for approximating fractional derivatives using discrete 

summations. It is defined as: 

where is the step size, and represents the generalized binomial coefficient. Recent studies have 

optimized GL methods for high-precision simulations in quantum field theory and turbulence 

modeling. 

     4.2 Fractional Finite Difference Methods: Fractional finite difference methods extend classical 

finite difference schemes to solve fractional differential equations. Key approaches include: 

• Implicit and Explicit Schemes: Enhancing stability in numerical solutions. 

• L1 and L2 Discretization Methods: Applied for Caputo and Riemann-Liouville 

derivatives. 
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• Weighted and Shifted Grids: Improving accuracy in complex boundary problems. 

           Experiments have demonstrated the effectiveness of these methods in simulating cardiac 

electrophysiology and electrochemical reactions. 

    4.3 Spectral Methods Spectral methods approximate solutions using orthogonal polynomials 

(e.g., Chebyshev and Legendre polynomials). These methods provide: 

• High Accuracy: Suitable for problems with smooth solutions. 

• Efficient Convergence: Faster than finite difference methods for specific problems. 

• Recent advances include machine learning-enhanced spectral methods, significantly improving 

computational efficiency in real-time simulations. 

 

5. Applications of Fractional Calculus 

 

5.1 Physics and Engineering Fractional calculus is widely used in modeling viscoelastic 

materials and diffusion processes. 

 

5.2 Control Systems Fractional-order PID controllers improve stability and robustness 

compared to classical PID controllers. 

Table 2: Performance Comparison of Classical vs. Fractional PID Controllers 

Controller 

Type 

Overshoot 

(%) 

Settling Time 

(s) 

Steady-State 

Error 

Classical PID 20 5.2 0.01 

Fractional PID 10 3.5 0.005 

Experimental research has validated the improved stability and adaptability of fractional controllers in 

robotic systems and drone navigation. 

5.3 Biology and Medicine Fractional models describe biological processes such as drug 

delivery and tumor growth. 

Recent experiments have applied fractional differential equations in modeling the spread of epidemics 

and predicting cancer progression. 

5.4 Finance and Economics Market volatility and option pricing models benefit from 

fractional calculus-based approaches. Studies demonstrate that fractional models outperform 

traditional stochastic models in predicting stock market trends and financial risk assessment. 
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6. Challenges and Future Directions Despite its advantages: fractional calculus faces challenges in 

computational complexity and interpretability. Recent research aims to integrate deep learning with 

fractional differential equations to enhance predictive capabilities. Future modifications include: 

• Adaptive Fractional Models: Enabling self-tuning mechanisms for real-time applications. 

• Hybrid Fractional Systems: Combining classical and fractional approaches for optimized 

modeling. 

• Quantum Fractional Calculus: Exploring applications in quantum computing and cryptography. 

7. Conclusion 

Fractional calculus is a valuable mathematical tool with extensive applications in various fields. Its 

ability to model complex and memory-dependent processes makes it an essential topic for future 

research. Fractional calculus, with its generalization of classical calculus concepts, has proven to be a 

powerful tool for modeling and analyzing complex systems across various scientific and engineering 

disciplines. Through the introduction of fractional derivatives and integrals, fractional calculus enables a 

more comprehensive understanding of processes that exhibit memory, hereditary properties, and 

anomalous dynamics. Its applications span numerous fields, including physics, biology, control theory, 

signal processing, and finance, where traditional integer-order models may fail to capture essential 

behaviors. 

The Riemann-Liouville and Caputo definitions, two of the most widely used fractional derivatives, offer 

different advantages depending on the system under consideration. While the Riemann-Liouville 

approach is useful in formulating theoretical solutions, the Caputo derivative often provides better 

alignment with initial conditions and physical interpretations. Both provide valuable insights into 

systems with non-local and non-linear characteristics. 

However, despite its successes, fractional calculus remains an area of ongoing research. Numerical 

methods for solving fractional differential equations, efficient algorithms, and the physical interpretation 

of fractional orders continue to present challenges. Further exploration of these aspects is essential for 

broadening the applicability of fractional calculus to real-world problems. 

In conclusion, fractional calculus provides an indispensable framework for understanding complex 

systems, but further advancements in theory, computation, and application will help unlock its full 

potential, paving the way for more accurate models and innovative solutions in various scientific 

domains. 
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