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Abstract 

One of the most crucial areas of study in remote sensing is the detection of changes in Synthetic Aperture 

Radar images, which finds use in disaster relief and environmental monitoring. The study presents an 

analysis of machine learning techniques in SAR image change detection. Traditional methods, which 

consist of image differencing followed by thresholding, are introduced. Novel supervised change detection 

models based on feature representation learning using convolutional neural networks are proposed. A 

detailed presentation of a few unsupervised models follows. An innovative network design for detecting 

changes in Synthetic Aperture Radar images is the Siamese Adaptive Fusion Network (SAFNet). This 

makes the problem challenging in SAR image change detection, mainly due to the complex multiscale 

feature fusion and limited correlation between multitemporal features. By using a two-branch CNN 

architecture to extract high-level semantic features from multitemporal SAR pictures and adaptively fuse 

them using a fusion module that takes use of complementary information at various feature levels, SAFNet 

overcomes these problems. 

 

Keywords: Synthetic Aperture Radar, Change Detection, Siamese Adaptive Fusion Network (SAFNet), 

Deep Learning 

 

1. Introduction 

An essential challenge in remote sensing is the detection of changes in Synthetic Aperture Radar (SAR) 

pictures, which enables the identification of changes that have taken place between two or more 

multitemporal photographs of the same region [1]. SAR imaging systems are well renowned for their 

exceptional ability to capture high-resolution images in all weather, which makes them particularly useful 

in situations when optical sensors are impeded by haze, cloud cover, or poor illumination [2]. SAR change 

detection applications span from disaster response and environmental monitoring to urban planning and 

crop assessment. SAR change detection is a challenging problem despite its enormous potential, mostly 

because of the intrinsic speckle noise in SAR pictures, which adds unpredictability and lowers image 

quality [3]. Together with the difficulty of correlating features across different scales and temporal 

domains, this often hampers the effectiveness of traditional methods. These issues suggest the requirement 

of advanced approaches able to manage noise, extract meaningful features, and provide robust change 

detection results [4]. 

Three primary processes typically comprise the traditional change detection approaches for SAR: 

preprocessing, difference image (DI) production, and classification [5]. Preprocessing involves 

coregistration of the images to accurately align the temporal images. The creation of DIs using operators 
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that highlight altered regions, such as the log-ratio, Gauss-ratio, or neighborhood-based ratio approaches, 

is the second stage. The last stage is classifying the DI into modified and unaltered classes using methods 

like fuzzy logic, thresholding, and clustering [6]. These approaches are simple and computationally 

efficient but very sensitive to noise and not capable of capturing complex patterns in high-dimensional 

data. Thus, they often yield unreliable change maps in challenging scenarios with heavy noise or subtle 

changes. 

The Siamese Adaptive Fusion Network (SAFNet) is a novel deep learning framework that overcomes 

these limitations by proposing a new architecture specifically designed for SAR image change detection. 

SAFNet is constructed based on a dual-branch CNN structure, where each branch extracts high-level 

semantic features independently for one of the two input SAR images [7]. These features are further fused 

through an adaptive fusion module, the core innovation of SAFNet. The multiscale features extracted from 

different levels of the network are integrated into the fusion module with an attention mechanism, which 

dynamically weighs the importance of the features at different scales. This guarantees that the relevant 

features are emphasized while the irrelevant or redundant information is suppressed, thus leading to a 

more robust and accurate representation of the changes. 

One of the most distinctive components of SAFNet is its correlation layer, which further enhances feature 

integration between the two branches. Traditional feature combination methods, such as summation or 

concatenation, usually cannot sufficiently exploit the relationships between multitemporal features, 

resulting in suboptimal performance. SAFNet's correlation layer, however, uses convolutional operations 

to capture intricate relationships between the features, allowing the network to better distinguish subtle 

changes from noise. This layer improves the network's capacity to classify areas that have changed and 

those that have not, in addition to improving the representation of generic features. The training of SAFNet 

is simultaneously regularized by a combination of similarity measures and classification losses, which 

ensures that the model learns both to discriminate the features effectively and to make accurate predictions. 

The effectiveness of SAFNet has been validated on several real-world SAR datasets, including the Ottawa, 

and the S1GFloods datasets, which contain various resolutions, and types of changes. Experimental results 

show that SAFNet outperforms traditional methods and contemporary deep learning models by a margin. 

The adaptive fusion module and correlation layer contribute most to its success, enabling the network to 

maintain stable and discriminative feature representations even in challenging conditions, such as high-

noise or subtle-change regions. Other metrics, such as Percentage of Correct Classification (PCC), Mean 

Intersection over Union (mIOU), and Kappa Coefficient (KC), also prove the superiority of SAFNet, with 

higher accuracy [8]. 

Besides the quantitative advantages, SAFNet performs better in visualizing change detection results with 

clearer details. This preservation of fine details by the model makes it even more valuable when applied 

to those applications that need high accuracy in detecting changes and monitoring urban growth, impacts 

of natural disasters, and environmental changes, among others [9]. With its adaptive fusion of features 

across scales and robust correlation-driven approach, SAFNet largely mitigates false positives and false 

negatives and then derives highly reliable change maps that are useful for critical scenarios. 

 

2. Related Study 

Remote sensing change detection has been researched at length, and numerous deep learning models have 

been introduced to enhance accuracy and resilience. LANTNet is based on pseudo-labels, which     are 

noisy and can adversely impact the optimization of the model. Although it specializes in the relationship 
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between convolutional features, it tends to disregard finer spatial details, which weakens detection 

performance. Likewise, Gao et al. (2021) introduced the Deep Cascade Network (DCNet), which 

is overfitting and redundant feature-affected, affecting classification efficiency and model 

generalization. The deeper network in DCNet is more likely to cause exploding gradients, rendering 

training unstable, especially with large datasets. 

Speckle noise is one of the most significant challenges in SAR image analysis, and it impacts models like 

the Local Descriptor Learning CNN proposed by Dong et al. (2019). Even when using local descriptors, 

the model is not extremely effective at denoising. Its use of pseudo-labels can be a source of error, resulting 

in increased misclassification rates. Li et al. (2024) proposed a change detection algorithm using Principal 

Component Analysis and Two-Level Clustering, but their method loses important feature information in 

dimension reduction and is very sensitive to noise with more false positives and misclassifications. 

Another significant limitation of SAR change detection models is the incorporation of noisy marginal 

features, such as in the Dual-Domain Network (DDNet), whose detection performance is adversely 

affected. Seydi et al. (2022) introduced the Multi-Dimensional Deep Siamese Network, which needs a 

great many training samples, and lower data efficiency in limited data scenarios. Also, sample generation 

for this model may involve noise affecting the detection performance and yielding high misclassification 

rates. Wang et al. (2022) proposed the Graph-Based Knowledge Supplement Network (GKSNet), which 

heavily depends on external labeled data for knowledge transfer, which restricts its performance in low-

label scenarios. In the same way, Wang et al. (2023) introduced the Improved Siamese U-Net, which has 

a tendency to ignore minor target changes and create blurry boundaries, diminishing its ability to identify 

subtle changes. In addition, its feature fusion process can cause semantic misalignment, making it harder 

to differentiate fine-grained differences in remote sensing images. 

Another key problem with change detection models is the lack of labels, especially in the case of the Semi-

Supervised Urban Change Detection model by Hafner et al. (2023), which is based on Sentinel-1 SAR 

and Sentinel-2 MSI data. The model is responsible for generalizing across multiple environments because 

of the lack of good multi-modal datasets. Amitrano et al. (2024) discussed the High-Resolution 

Representation-Based Siamese Network (SiHDNet), where it fails to catch small-area variations, and 

therefore, useful information is lost in small variations. 

Dong et al. (2021) put forward the Multiscale Self-Attention Deep Clustering for the SAR Change 

Detection model, pointing out that speckle noise sensitivity is still a major limitation of change detection 

approaches. Since the model is unable to effectively eliminate speckle noise, it has a high rate of false 

positives. Finally, the issue of uniform detection accuracy in changed and unchanged data affects the 

Unsupervised SAR Change Detection Method Based on Stochastic Subspace Ensemble Learning 

proposed by Cui et al. (2019) with resulting unstable results. 

 

3. Methodology 

3.1 Change Detection Framework 

Change detection in SAR pictures is detecting and pinpointing variations between two coregistered images 

acquired at separate periods. Consider two SAR images I1 and I2 taken at different time instances over 

the same geographic area. Our framework aims to produce an accurate binary change map M, where 

changed regions are shown while unaltered areas are suppressed. Our solution is based on the 

SAFNet architecture, as it enhances spatial feature representation along with deep feature fusion to make 

detection more robust. The framework is primarily divided into two parts as follows: 
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3.1.1 Feature Extraction and Representation Learning 

A two-branch CNN for the extraction of multi-level semantic features is applied to the input SAR image 

pairs. Each branch processes one of the two images while learning a hierarchical representation at different 

scales. The network captures the low-level textures and high-level contextual information to distinguish 

between changed and unchanged regions effectively. The feature maps extracted can be expressed as in 

(1): 

 F1
i = S1(xt1

i ),  F2
i = S2(xt2

i )             (1) 

Where S1 and S2 are CNN feature extractors to handle the input SAR image patches from each time step. 

Extracted feature maps, F1
i  and F2

i , denote the representations of the input images xt1
i  and xt2

i , respectively. 

These feature maps store important spatial and contextual information and allow the network to distinguish 

successfully between altered and unaltered areas in the SAR images. 

To improve the learnt features’ ability to discriminate, a similarity metric is included during the training 

phase. The similarity measure makes the model learn feature embeddings closer for regions that are 

unchanged and farther for regions that are changed, making the network better capable of perceiving subtle 

changes. Besides, attention mechanisms are used to emphasize informative regions and suppress 

redundant noise, which is a common issue in SAR images due to speckle noise and multipath scattering 

effects. 

3.1.2 Feature Fusion and Classification 

Following feature extraction from both input images, a correlation layer is formed to fuse and contrast 

them. The layer applies element-wise subtraction and concatenation of feature maps to emphasize 

difference between the two time steps. The fusion operation helps learn detailed feature representations, 

enabling the network to learn important transformations occurring in the scene. 

The merging step is performed according to a correlation function, which is given in (2): 

 F{merge}
i

= C(F1
i , F2

i )= F1
i × F2

i           (2) 

Where C (·) is a correlation function utilized to combine the extracted features of the two image patches. 

The fusion operation is performed by applying a group convolution operation, with F1
i  as the input and F2

i  

as the convolution kernel. This operation improves feature representation by removing the spatial 

interactions among the two feature maps so that the model is able to pay attention to significant changes 

and filter out unnecessary noise. 

After feature fusion, a classification module containing fully connected layers and ReLU activation 

generates the final change map is shown in (3). It distinguishes changed pixels from the rest by using fully 

connected module as the supervised classifier and makes its training rely on the optimization by ground 

truth of the change map. Thus, residual connections, multi-scale feature fusion are taken into Improved 

SAFNet that is beneficial for improving the precision and recall values in the task of change detection. 

F{class}
i

= ReLU (WcF{merge}
i + bc)           (3) 

Where Wc and bc are the weight matrix and bias of the learnable FC layer, respectively. The concatenated 

feature representation F{merge}
i

 is fed into the FC layer and is then activated by the ReLU function. The 

ReLU function can be shown as in (4): 

ReLU(x) = max(0,  x)             (4) 

is utilized to suppress unwanted values and maintain effective feature representations. The classification 

operation helps the model distinguish between changed and unchanged regions and finally improves the 

precision and recall of change detection. 
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3.2 Siamese Adaptive Fusion Network (SAFNet) 

 
Figure 1 Siamese Adaptive Fusion Network (SAFNet) Framework 

 

Figure 1 depicts a two-branch CNN-based scheme formulated for detecting change in SAR images. Such 

an approach helps efficient feature extraction, fusion, and classification in creating an authentic change 

map. Three principal phases include Feature Extraction, Feature Fusion, and Classification. 

At the Feature Extraction and Representation Learning phase, the model is given a pair of SAR images 

acquired at two different time steps, referred to as Image I1 and Image I2. A deep convolutional neural 

network (CNN) with multiple levels of abstraction is used to process both images. All four of the network's 

hierarchical levels—Low-level, Mid-level, High-level, and Very High-level—learn different contextual 

and spatial characteristics. The low-level features learn edge, texture, and overall intensity variation, the 

mid-level features learn the structural and spatial relationships, and the high-level features learn the 

semantic information related to change detection. The very high-level features learn the discriminative 

feature representations to improve the discrimination between changed and unchanged areas. Conditional 

Convolutions (CondConv), Batch Normalization, and Activation Functions are called at each hierarchy 

for better learning efficiency as well as overfitting avoidance. 

Once the features have been extracted, feature responses for both CNN branches, F1 and F2, are combined 

employing feature fusion via a measure-based similarity. This operation is employed to render the features 

discriminative enough to pick up on fine-grained differences between the two images. Similarity 

measurement uses an L2 distance function, which imposes a constraint to bring feature representations 

near to one another for regions that do not change and distant from one another for regions that change. 

This operation allows the network to focus on significant changes and eliminate redundant noise. The 

aggregated representation of the features is passed through a Correlation Layer, which boosts feature 

interaction and refines learned representations by picking up on pixel-wise relationships between the two 

feature maps. 

After feature fusion, the Classification and Change Map Generation utilizes a Fully Connected (FC) Layer 

to label every pixel as "changed" or "unchanged." The FC layer uses a non-linear mapping of the fused 
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feature maps such that the model can precisely predict pixel-wise changes. Classification is optimized via 

an L1 loss function that reduces the absolute differences between ground truth labels and predicted labels. 

The model's ultimate output is a binary change map, with white pixels denoting changes that were detected 

and black pixels denoting regions that were unchanged. 

This model employs deep feature representation in concert with correlation-based fusion to attain high-

precision change detection in SAR images. Through the use of similarity measures and multi-scale feature 

extraction, the model is able to suppress noise, increase robustness, and enhance overall accuracy of 

change detection. 

 

4. Experimental Results and Analysis 

This part begins by introducing the experiment data and evaluation criteria. The elements that could impact 

SAFNet’s performance will then be examined. Finally, a comparison with a number of cutting-edge 

techniques will be used to assess SAFNet’s efficacy. 

Two real-world SAR datasets were used in studies to evaluate SAFNet’s performance for SAR image 

change detection. 

4.1 Experiment Data and Evaluation Criteria 

One of these is the Ottawa dataset as shown in Figure 2; it contains two images acquired using the Radarsat 

sensor in May and August of 1997. This dataset, as availed by the National Defense Research and 

Development Canada, indicates flooded regions. The spatial resolution of the Ottawa dataset is 10 meters 

while its dimensions are 290 × 350 pixels. The ground truth for this dataset was produced through a 

combination of prior knowledge and manual photo interpretation. 

The second dataset is the S1GFloods dataset. The dataset is shown in Figure 3. The collection comprises 

ground truth maps for every pixel and worldwide pairs of high-resolution Sentinel-1 SAR pictures 

spanning 42 flood episodes from 2016 to 2022. Rivers, lakes, vegetation, urban and rural locations, and 

typical sources of flooding are all featured. This dataset offers vital information for creating plans to 

prevent and address flooding in the future. 

To evaluate the performance, the two datasets are subjected to both qualitative and quantitative analysis. 

Visual comparison of the change maps produced by the suggested method with the corresponding ground 

truth photos is part of the qualitative study. False positives (FP), false negatives (FN), the Mean 

Intersection over Union (mIOU), the percentage of correct classification (PCC), and the Kappa coefficient 

(KC) are used in the quantitative evaluation. The number of unchanged pixels that are incorrectly altered 

is indicated by FP, whereas the number of changed pixels that are incorrectly categorized as unchanged is 

indicated by FN. OE is the total number of incorrectly classified pixels. i.e., FP + FN. 

    
(a)                              (b)                           (c) 

Figure 2 the Ottawa dataset. (a) Image acquired in May 1997. (b) Image acquired in August 1997. (c) 

Ground truth image. 
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(a)                                       (b)                                      (c) 

Figure 3 the S1GFlood dataset. (a) Image acquired in March 2017. (b) Image acquired in July 

2017. (c) Ground truth image. 

 

The PCC is calculated as in (5): 

 

PCC =
Nu + Nc - OE

Nu +  Nc

×100%                                             (5) 

 

Where Nu denotes the total number of unchanged pixels in the ground truth image while Nc denotes the 

number of changed pixels. The mIOU is calculated as in (6): 

 

mIOU = 
1

C
 ∑

TPi

TPi + FPi + FNi

c

i=1

                                       (6) 

 

Context of binary change detection, C represents the total number of classes, which is C=2. Class 1 

corresponds to “changed” pixels and Class 2 corresponds to “unchanged” pixels. 

The formula ensures the average Intersection over Union (IoU) is computed across all classes. For a single 

class, the IoU is as in (7): 

 

IOU= 
Intersection

Union
= 

TP

TP + FP + FN
                                   (7) 

 

The KC is calculated as in (8): 

 

KC=
PCC - PRE

1 - PRE
×100%                                                   (8) 

 

Where, 

 

PRE = 
(Nc + FP - FN ) · Nc + (Nu + FN - FP ) · Nu

(Nu + Nc) · (Nu + Nc) 
        (9) 

 

Here, we see that the value of KC is governed by FP and FN rather than by OE alone. Therefore, KC 

reflects the balance between FP and FN to some extent. More detailed, such knowledge should be used to 
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yield acceptable KC values, and KC is more compelling evidence of the shift detection result than PCC 

or OE. 

 

4.2 Experimental Results and Discussion 

In order to validate the SAFNet, several Existing change detection methods are used for comparison. i.e., 

DCNet, DDNet, DDNet(WP), ESCNet, FCMMRF, FCMMRF(WP), Gabor PCANet, HFEMCRF, 

HFEMCRF(WP), NBRKLM, PCAKM, ResNet, RMGFDA, SAFNet. DCNet, a deep neural network, 

implements cascaded channel-weighting residual blocks for deeper feature extraction, and DDNet along 

with DDNet (WP), which implements two discriminators of which the last one includes post-processing 

for its results. In ESCNet, superpixel sampling networks are incorporated along with the Siamese U-Net 

to analyze relationships in multi-temporal images, and FCMMRF combines the fully convolutional 

networks with the Markov Random Fields for achieving spatial consistency with FCMMRF(WP), which 

includes the post-processing result for better precision. Gabor PCANet uses Gabor filters and PCANet for 

strong feature extraction, while HFEMCRF extracts hierarchical features using MRFs, with post-

processing in HFEMCRF (WP). In NBRKLM, a neighborhood-based ratio operator is first applied for 

feature extraction and then k-means clustering for classification. PCAKM utilizes PCA for feature 

extraction and k-means clustering. ResNet makes use of ResNet-18 for pixel-wise classification, while 

RMGFDA uses random multi-graph frequency-domain analysis to classify changes with preservation of 

spatial relationships. Lastly, SAFNet adopts spatially adaptive fusion techniques for effective feature 

merging from multi-temporal images in order to improve the accuracy of SAR change detection. 

4.2.1 Results on the Ottawa Dataset 

Figure 4 summarizes the performance comparison of various methods on the Ottawa dataset. Table 1 lists 

the detailed evaluation criteria. PCAKM cannot identify which of the pixels did not change and paid a 

penalty of high FP rate. RMGFDA missed a large portion of changed pixels, resulting in higher FN. 

NBRKLM and Gabor PCANet balance FP and FN but still have missed changes in certain areas. 

HFEMCRF and its WP variant improve noise reduction and achieve competitive accuracy metrics. DDNet 

and FCMMRF(WP) show improvements in detecting changes but face challenges in balancing FP and 

FN. ESCNet performs best in capturing the changes, but it achieves the highest KC score at the cost of 

higher FP rates. The best-performing method is SAFNet, with the highest PCC and mIOU scores, which 

is able to accurately detect change regions with high precision and minimal noise. These results show the 

superiority of the novel design of SAFNet, especially its AF module and correlation analysis, in terms of 

superior change detection performance. 

 

Table 1  Change Detection Results of Different Methods on the Ottawa Dataset 

Methods FP FN KC (%) mIOU (%) PCC (%) 

DCNet 22 2546 93.60 80.41 98.60 

DDNET 2 6813 90.68 80.52 95.45 

DDNET(WP) 1237 1430 80.95 85.60 95.90 

ESCNet 5325 1573 99.86 83.38 96.95 

FCMMRF 13 3914 91.70 80.97 98.24 

FCMMRF(WP) 3038 1128 87.50 86.25 96.69 
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Gabor PCANET 1080 1230 83.28 89.64 95.63 

HFEMCRF 418 478 85.67 93.94 98.63 

HFEMCRF(WP) 996 826 90.42 90.35 97.22 

NBRKLM 296 1758 96.23 85.98 96.87 

PCAKM 420 4878 91.30 83.96 95.91 

RESNET 918 4636 95.45 80.35 96.52 

RMGFDA 21 1685 99.68 82.72 96.81 

SAFNet 1279 62 91.09 91.65 99.35 

 

4.2.2 Results on the S1GFloods Dataset: 

Figure 5 summarizes the performance comparison of various methods on the S1GFloods dataset. Table 2 

lists the detailed evaluation criteria. PCAKM exhibits a high FP rate, which indicates an inability to 

effectively distinguish unchanged pixels. RMGFDA misses a significant number of changed pixels, 

resulting in a high FN rate. NBRKLM and Gabor PCANet strike a balance between FP and FN miss certain 

changes. HFEMCRF and its WP variant achieve notable noise reduction and competitive accuracy. DDNet 

improves the detection of changes but struggles with balancing FP and FN. FCMMRF (WP) achieves the 

highest KC score by accurately capturing change areas but suffers from a relatively higher FN rate. 

ESCNet performs well overall but has a higher FP rate, which impacts precision. The best-performing 

method is SAFNet, with the highest PCC and mIOU scores. It demonstrates exceptional performance in 

detecting change regions with high accuracy and minimal noise. These results highlight the strength of 

SAFNet's advanced feature extraction and correlation analysis capabilities, which deliver state-of-the-art 

performance for change detection in SAR images. 

 

 
(a)                     (b)                    (c)                    (d)                    (e)                     (f)                    (g) 

 

 
(h)                     (i)                    (j)                    (k)                    (l)                      (m)                    (n) 

Figure 4 Visualized results of change detection methods on the Ottawa dataset. (a) DCNet (b) 

DDNet (c) DDNet(WP) (d) ESCNet (e) FCMMRF (f) FCMMRF(WP) (g) GaborPCANet (h) 

HFEMCRF (i) HFEMCRF(WP) (j) NBRELM (k) PCAKM (l) RESNET (m) RMGFDA (n) 

SAFNET 
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Table 2  Change Detection Results of Different Methods on the S1GFloods Dataset 

Methods FP FN KC (%) mIOU (%) PCC (%) 

DCNet 14370 2640 73.60 56.84 78.38 

DDNET 17560 2698 80.68 60.19 77.68 

DDNET(WP) 8560 18520 70.95 50.95 69.30 

ESCNet 16839 3860 79.86 59.36 71.32 

FCMMRF 206 15480 71.70 57.13 63.33 

FCMMRF(WP) 5092 12860 87.50 56.18 68.62 

Gabor PCANET 17999 3654 63.28 51.53 75.28 

HFEMCRF 6024 12540 65.67 59.17 64.32 

HFEMCRF(WP) 19604 6452 80.42 60.17 76.56 

NBRKLM 15638 1284 60.23 57.99 78.39 

PCAKM 18906 1984 61.30 55.94 76.85 

RESNET 5862 15631 65.45 60.13 68.09 

RMGFDA 14890 2380 69.68 53.51 78.06 

SAFNet 12952 1080 71.09 65.80 80.24 

 

 
(a)                     (b)                    (c)                    (d)                    (e)                     (f)                    (g) 

 

 
(h)                     (i)                    (j)                   (k)                    (l)                      (m)                    (n) 

Figure 5 Visualized results of change detection methods on the S1GFloods dataset. (a) DCNet (b) 

DDNet (c) DDNet(WP) (d) ESCNet (e) FCMMRF (f) FCMMRF(WP) (g) GaborPCANet (h) 

HFEMCRF (i) HFEMCRF(WP) (j) NBRELM (k) PCAKM (l) RESNET (m) RMGFDA (n) 

SAFNET 

 

Figure 6(a) displays the comparison of KC values of different change detection techniques. The outcome 

indicates that the proposed technique obtains better consistency and robustness, having higher KC values 

on both datasets than the conventional methods. Figure 6(b) displays the PCC values of various methods, 

which shows that the proposed model always outperforms other methods. The greater the PCC values, the 

better the accuracy of change detection, verifying the effectiveness of the model under different 

circumstances. 
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(a)                                                                                  (b) 

Figure 6 Comparative performance evaluation of different change detection methods on two 

datasets. (a) Kappa Coefficient (KC) comparison. (b) Percentage of Correct Classification 

(PCC) comparison. 

 

5. Conclusions 

Deep learning techniques for SAR image change detection have advanced significantly.  It is still difficult 

to achieve greater discriminative feature representation.  The correlation layer integrates features from 

two-branch networks, guided by a similarity measure, improving the separation of changed and unchanged 

pixels. This paper introduces the AF module, which can adaptively fuse multi-level features, enhancing 

meaningful ones and suppressing irrelevant ones.  The network is further optimized for reliable feature 

extraction using classification loss.  SAFNet is beneficial for a variety of circumstances since it 

outperforms state-of-the-art techniques in terms of quantitative measurements and visual outputs. Large-

scale, long-term applications will advance further due to developments in multisource image change 

detection and high-resolution Earth observation. 
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