
 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25013015 Volume 16, Issue 1, January-March 2025 1 

 

Optimizing Data Ingestion for Machine 

Learning Training in Large-Scale Social Media 

Platforms 
 

Ramesh Mohana Murugan 
 

Anna University, India 

 

 
 

Abstract 

This comprehensive article explores the critical yet often overlooked challenge of data ingestion 

optimization for machine learning systems in large-scale social media environments. As social platforms 

generate unprecedented volumes of data, efficient ingestion processes become essential for maintaining 

computational performance and enabling rapid model iteration. The article examines data engineers' 

multifaceted challenges, including I/O bottlenecks, network latency issues, and storage format 

inefficiencies that directly impact GPU utilization. We present a framework for dramatically improving 

data pipeline efficiency by systematically exploring parallel data loading architectures, optimal storage 

format selection, and advanced feature engineering techniques such as flattening and reordering. It 

demonstrates that strategic optimization of the data ingestion layer can substantially reduce training times, 

lower computational resource requirements, and accelerate the development cycle for machine learning 

applications in social media contexts. 

 

Keywords: Data Ingestion Optimization, Feature Engineering, Parallel Data Loading, Storage Format 

Efficiency, Machine Learning Pipeline. 
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1. Introduction: The Data Challenge in Social Media ML Pipelines 

The exponential growth of data generated by social media platforms has created unprecedented challenges 

for machine learning systems. This section explores the critical nature of data ingestion in ML pipelines, 

its impact on computational efficiency, and the business value of optimization. 

1.1 The Scale and Complexity of Social Media Data 

Social media platforms generate staggering volumes of heterogeneous data daily. Meta's production 

recommendation models process over 200 trillion parameters daily, with one particular model managing 

13 trillion parameters across 62 different features [1]. This scale presents extraordinary computational 

demands, requiring sophisticated data ingestion strategies to prevent processing bottlenecks. According to 

researchers at IBM, data scientists working with large-scale social media datasets typically spend up to 

80% of their time on data preparation tasks alone [2]. The complexity is further amplified by the diverse 

nature of social media data—spanning text, images, videos, user interactions, and behavioral signals—

each requiring specialized preprocessing techniques. At Meta, engineers discovered that even minor 

optimizations in data ingestion could yield substantial gains, with one team reporting that feature flattening 

alone resulted in a 30% reduction in memory bandwidth utilization [1]. 

1.2 Measuring Data Ingestion Performance 

Quantifying data ingestion efficiency is essential for optimization efforts. Meta's engineers employ several 

key metrics, including records processed per second, time-to-first-batch, and GPU utilization rates. Their 

testing revealed that optimized pipelines achieved a remarkable 2.4x improvement in overall training 

throughput [1]. Similarly, IBM researchers found that implementing parallel data loading with 

TensorFlow's tf.data API increased throughput by 2-3x compared to conventional data loading methods 

[2]. These metrics highlight the significant impact of data ingestion on model training efficiency. At Meta, 

engineers observed that before optimization, GPUs were idle for up to 33% of the total training time due 

to data preprocessing bottlenecks, representing substantial wasted computational capacity [1]. 

1.3 Business Impact of Optimized Data Ingestion 

The business implications of efficient data ingestion extend beyond technical metrics. Meta's experiments 

demonstrated that optimizing data ingestion reduced end-to-end training time for a production 

recommendation model from 20 to 7 hours, enabling significantly faster iteration cycles [1]. IBM 

researchers similarly found that optimized data pipelines could reduce model training time by 40-60%, 

directly translating to cost savings and accelerated development [2]. This acceleration of the experimental 

process facilitated more comprehensive hyperparameter tuning and model architecture exploration, 

ultimately leading to better model performance. At Meta, these improvements enabled engineers to 

conduct three times as many experiments within the same timeframe, directly contributing to improved 

recommendation quality and user engagement metrics [1]. 
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Fig. 1: Types of Data Ingestion [1, 2] 

 

2. Understanding Data Ingestion Bottlenecks 

Data ingestion bottlenecks represent critical constraints in machine learning pipelines for social media 

platforms. This section examines the technical challenges that limit throughput and explores potential 

solutions through systematic analysis of storage, network, and processing limitations. 

2.1 I/O and Storage Format Inefficiencies 

Storage I/O constraints significantly impact machine learning training efficiency, particularly when 

working with diverse social media datasets. According to detailed analyses of data preprocessing pipelines 

for house price prediction tasks, researchers found that properly optimized storage formats reduced data 

loading times by approximately 73% compared to standard CSV formats [3]. This dramatic improvement 

stems from compressed columnar formats allowing selective column access. The underlying issue relates 

to data serialization overhead, with measurement studies showing that converting between in-memory and 

storage representations can consume up to 45% of preprocessing time for complex feature sets [3]. When 

dealing with heterogeneous social media data, the performance gap becomes even more pronounced, as 

different feature types (numerical, categorical, and textual) require specialized handling. Research 

indicates that mixed data types common in social media applications increase deserialization overhead by 

2.7× compared to homogeneous numerical datasets, highlighting the importance of format-specific 

optimizations [3]. 

2.2 Preprocessing Pipeline Inefficiencies 

Data preprocessing represents a substantial portion of the machine learning workflow, with significant 

performance implications. Studies of production machine learning pipelines reveal that data preprocessing 

can consume between 60-80% of the total development time and 30-60% of execution time [4]. This 

disproportionate resource allocation underscores the critical need for optimization. In detailed benchmarks 

of preprocessing pipelines for housing data, researchers identified that parallel execution of feature 

transformation reduced processing time by 67% compared to sequential approaches [3]. The most 

substantial gains came from vectorizing operations rather than processing individual records, with 

measurements showing speed improvements of 15× for numerical feature normalization and 8× for 
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categorical encoding when properly vectorized [3]. These optimizations become particularly important for 

social media data, where feature cardinality is often significantly higher than in other domains. 

2.3 Data Quality and Consistency Challenges 

Data quality issues introduce significant inefficiencies in machine learning pipelines for social media 

applications. Analysis of preprocessing pipelines reveals that handling missing values and outliers can 

consume up to 28% of total preprocessing time [3]. The complexity increases with data heterogeneity, as 

different feature types require specialized cleansing approaches. Research on data ingestion frameworks 

indicates that incorporating automated data validation can reduce model retraining frequency by up to 

45% by preventing corrupted data from entering the pipeline [4]. This preventative approach is particularly 

valuable for social media data, where real-time streams introduce significant variability. Studies show that 

implementing statistical monitoring for data drift detection can identify problematic data segments with 

92% accuracy, preventing wasted computational resources on unsuitable training data [4]. These quality 

control mechanisms become essential components of optimized ingestion pipelines, establishing 

reliability guarantees that improve overall system performance. 

 

 
Fig. 2: Components of Recommender Systems [3, 4] 

 

3. Feature Engineering Optimization Techniques 

Feature engineering represents a critical component in machine learning pipelines for social media 

platforms, directly influencing model performance and computational efficiency. This section explores 

advanced optimization techniques that transform raw data into high-quality features while minimizing 

computational overhead. 

3.1 Feature Flattening for Memory Efficiency 

Feature flattening transforms complex nested structures into simplified, contiguous memory layouts, 

significantly improving computational performance. According to the IEEE International Conference on 

Acoustics, Speech, and Signal Processing (ICASSP) research, properly implemented feature flattening 

reduced memory bandwidth utilization by 25-30% in large-scale recommendation models by eliminating 

pointer chasing operations and enabling more efficient cache utilization [5]. This optimization proves 
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particularly valuable for social media data, which frequently contains nested structures representing user 

interactions and content hierarchies. The performance benefits extend beyond training to inference 

scenarios, where flattened features decreased latency by 18% on average across tested recommendation 

models. The implementation complexity varies with data structure, with the research demonstrating that 

automatically detecting flattening opportunities through static analysis identified 78% of potential 

optimization targets, allowing systematic application of this technique across large codebases [5]. 

3.2 Optimal Feature Representation and Embedding 

Selecting appropriate feature representations significantly impacts both model quality and computational 

efficiency. NVIDIA's research on recommendation systems demonstrates that optimizing embedding 

dimensions based on cardinality rather than using fixed dimensions reduced memory requirements by 40-

70% while maintaining model accuracy [6]. This principle follows a logarithmic scaling rule where 

embedding dimension E = 6 * (cardinality)^0.25 provides an optimal balance between expressiveness and 

efficiency. This approach translates to substantial memory savings for social media platforms with 

thousands of categorical features. The research further shows that employing mixed-precision 

representations with FP16 for embeddings reduced memory bandwidth requirements by 2x with properly 

implemented loss scaling to maintain numerical stability [6]. Additionally, feature interaction patterns 

significantly influence performance, with NVIDIA's experiments demonstrating that factorized operations 

reduced computational complexity by O(n²) to O(n) for pairwise feature interactions while preserving 

model expressiveness, resulting in training speedups of 1.4-2.1x for models with high feature counts [6]. 

3.3 Feature Pruning and Dimensionality Reduction 

Strategic feature selection and dimensionality reduction techniques significantly improve computational 

efficiency without sacrificing model performance. The ICASSP research demonstrates that frequency-

based feature pruning, which eliminates sparse features appearing in fewer than 0.1% of examples, 

reduced feature count by 35-60% while decreasing model accuracy by only 0.2-0.4% in tested 

recommendation systems [5]. This pruning approach proves particularly effective for social media datasets 

with long-tail distributions of user behaviors and content interactions. For numerical features, quantization 

techniques provide complementary benefits, with experiments showing that reducing precision from 32-

bit to 8-bit representations decreased storage requirements by 75% while maintaining model quality 

through appropriate scaling factors [5]. NVIDIA's research extends these findings with analysis of 

hashing-based dimensionality reduction, demonstrating that properly tuned feature hashing with prime 

number dimensions reduced memory footprint by 30-50% compared to standard embedding tables, with 

negligible accuracy impacts when hash sizes were set to at least 1.5x the feature cardinality to minimize 

collision probability [6]. 
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Technique 
Performance 

Improvement 

Memory 

Reduction 
Best Use Case 

Feature Flattening 
25-30% bandwidth 

reduction [5] 
15-20% 

Nested hierarchical 

features 

Embedding Dimension 

Optimization 

5-15% training 

speedup [6] 
40-70% 

High-cardinality 

categorical features 

Mixed-Precision 

Representation 

1.5-2.0x throughput 

[6] 
50% 

Embedding-heavy 

models 

Feature Pruning 
10-25% training 

speedup [5] 
35-60% 

Long-tail feature 

distributions 

Feature Hashing 
1.3-1.8x training 

speedup [6] 
30-50% 

High-dimensional 

sparse features 

Quantization 
2.5-3.0x inference 

speedup [5] 
75% 

Deployment 

optimization 

Table 1: Feature Engineering Optimization Techniques Comparison [5, 6] 

 

4. Advanced Data Loading Architectures 

Data loading architectures fundamentally determine the efficiency of machine learning systems for social 

media platforms. This section explores sophisticated approaches that maximize computational resource 

utilization while minimizing training bottlenecks. 

4.1 Parallel and Asynchronous Data Loading Frameworks 

Parallel data loading frameworks significantly enhance training throughput by decoupling data preparation 

from computation. According to research from Meta's DLRM (Deep Learning Recommendation Model) 

infrastructure, implementing prefetch queues with dedicated preprocessing threads improved GPU 

utilization from 70% to 96% in production recommendation systems [7]. The optimal configuration varies 

by workload complexity, with empirical results showing that 4-8 preprocessing threads per GPU provided 

the best performance for recommendation models with 50+ embedding tables. The Meta research 

demonstrates that implementing a hierarchical data loading architecture reduced preprocessing overhead 

from 31% to just 8% of total training time, effectively masking I/O and feature transformation latencies 

that would otherwise bottleneck GPU computation [7]. The performance improvements scale with system 

size, with measurements showing that parallel data loading yielded a 3.4x throughput improvement for 

single-node training but an even more impressive 5.2x improvement in distributed settings with 64 GPUs, 

highlighting the increasing importance of efficient data loading at scale. 

4.2 Pipeline Optimization and Data Prefetching 

Strategic pipeline optimization techniques substantially improve data loading efficiency. According to 

TensorFlow performance guidelines, implementing proper prefetching with tf.data.Dataset.prefetch() 

reduced CPU idle time by up to 70% by ensuring data is prepared before it's needed [8]. The performance 

gains vary based on batch size and feature complexity, with benchmarks showing that larger batch sizes 

(512-1024 examples) benefited more significantly from prefetching than smaller batches. Research 

indicates that the optimal prefetch buffer size typically ranges from 2-5 batches, with excessive prefetching 

degrading performance by introducing memory pressure. The TensorFlow performance guide 

demonstrates implementing parallel interleave operations with tf.data.Dataset.interleave() improved I/O 
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throughput by 2.7-4.5x when reading from distributed file systems, with optimal performance achieved 

when the cycle length parameter matched the number of available CPU cores [8]. For production 

recommendation systems, Meta's research shows that implementing double-buffered prefetching reduced 

batch-to-batch variance in data loading time by 78%, creating more consistent GPU utilization patterns 

and improving overall training stability [7]. 

4.3 Hardware-Aware Data Loading Optimizations 

Hardware-specific optimizations significantly impact data loading performance. Meta's DLRM research 

demonstrates that optimizing memory access patterns through data layout transformations (column-to-row 

major conversion) reduced CPU cache misses by 42% during batch formation [7]. Similarly, implementing 

vectorized processing with SIMD instructions accelerated feature transformations by 3.2x compared to 

scalar implementations. The performance impact varies by hardware platform, with measurements 

showing that NUMA-aware memory allocation improved throughput by 26% on dual-socket servers by 

ensuring data locality. The TensorFlow performance guide emphasizes the importance of data sharding, 

particularly for distributed training, with benchmarks showing that implementing proper dataset sharding 

with tf.data.Dataset.shard() improved aggregate throughput by 3.1x when training across 8 GPUs by 

ensuring balanced workload distribution and reducing cross-device synchronization overhead [8]. 

Hardware-aware caching strategies further enhance performance, with the TensorFlow guide 

demonstrating that mixed-device caching (utilizing both CPU RAM and SSD storage with 

tf.data.Dataset.cache()) reduced epoch time by 65% for models requiring multiple training passes while 

maintaining reasonable memory consumption [8]. 

 

 
Fig. 3: Advanced Data Loading Architectures [7, 8] 
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5. Storage Format Selection and Optimization 

The selection and optimization of data storage formats significantly impact machine learning training 

efficiency for social media applications. This section examines how different storage formats and 

optimization techniques can enhance performance in large-scale machine-learning workloads. 

5.1 Columnar vs. Row-Based Storage Formats 

The fundamental difference between columnar and row-based storage formats creates significant 

performance implications for machine learning workloads. According to research on optimizing data 

pipelines, columnar formats like Parquet provide 3-4x faster read performance than row-based formats for 

feature extraction workloads in recommendation systems [9]. This efficiency stems from columnar 

formats' ability to read only the required columns, substantially reducing I/O operations. For social media 

datasets with hundreds of features where models typically access only 20-30% of available features during 

training, this selective access pattern can reduce storage I/O by up to 70%. The performance differential 

becomes particularly pronounced with increasing dataset size, with benchmarks showing that Parquet's 

advantage over CSV grows from 2.5x at 10GB to 5.7x at 1TB scale due to more efficient compression 

and parallel read capabilities [9]. The TFRecord format, which organizes data in serialized record batches 

with custom compression options, shows complementary strengths in specific scenarios. Research from 

MLPerf demonstrates that the TFRecord format with gzip compression provides optimal performance for 

computer vision workloads, reducing storage requirements by 3.8x compared to raw formats while 

maintaining fast sequential read performance [10]. 

5.2 Compression Strategies and Performance Implications 

Compression techniques significantly impact storage efficiency and computational performance when 

processing large datasets. Research indicates that selecting appropriate compression algorithms based on 

data characteristics can dramatically improve the performance-storage tradeoff. For text-heavy social 

media content, dictionary-based compression techniques reduce storage requirements by 70-85% while 

allowing selective decompression of only required columns [9]. The choice of compression level presents 

important performance considerations, with research showing that lighter compression (gzip level 2-3) 

often provides better end-to-end training performance than maximum compression (gzip level 9) due to 

2.3x faster decompression speed despite achieving 15% less compression [10]. Block-level compression 

optimization becomes crucial for distributed training workflows, where network bandwidth often becomes 

the bottleneck. Experiments show that increasing Parquet block size from the default 64MB to 256MB 

improved data loading throughput by 37% in bandwidth-constrained environments by reducing metadata 

overhead and enabling more efficient resource utilization during parallel reading operations [9]. 

5.3 Format-Specific Optimization Techniques 

Beyond basic format selection, format-specific optimizations can substantially enhance performance. Data 

partitioning strategies, which organize files by key dimensions like date or user segments, demonstrate 

significant benefits for social media datasets. Research shows that implementing time-based partitioning 

improved query performance by 8-16x for time-range selections common in recommendation model 

training by reducing scan sizes to only relevant partitions [9]. For Parquet specifically, optimizing row 

group sizes based on memory constraints and access patterns provides complementary benefits, with 

benchmarks showing 22-35% improvement in read performance when row groups are aligned with typical 

batch sizes used in model training [9]. TFRecord-specific optimizations include implementing parallel 

interleaved reads with appropriate shuffle buffer sizes, which research demonstrates can improve 

throughput by 2.8x when properly configured [10]. Integrating embedded indices within storage formats 
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represents another optimization frontier, with research showing that column-level min-max indices 

reduced scan times by 60-80% for range-filtered queries by enabling file-level skipping before 

decompression [9]. 

 

Storage 

Format 

Read Performance 

(Relative) 

Compression 

Ratio 
Best For Limitations 

Parquet 
3-4× faster than 

CSV [9] 
3.7:1 for text 

Selective column 

access, Analytical 

queries 

Complex 

metadata 

handling 

TFRecor

d 

1.2× faster than 

Parquet for 

sequential access 

[10] 

2.5:1 average 

Sequential access, 

Uniform record 

size 

Poor random 

access 

CSV Baseline 
1.2:1 with 

gzip 

Human 

readability, 

Simple processing 

Inefficient for 

large datasets 

JSON 0.6× of CSV [9] 1.8:1 

Schema 

flexibility, Human 

readability 

Extremely 

inefficient at scale 

Avro 
2.1× faster than 

CSV [9] 
2.2:1 

Schema evolution, 

RPC 

Less efficient 

column pruning 

ORC 
3.5× faster than 

CSV [9] 
3.4:1 

Streaming reads, 

Type awareness 

Complex 

implementation 

Table 2: Performance Comparison of Storage Formats for Social Media Data Processing [9, 10] 

 

6. Implementation and Results: Real-World Case Studies 

This section examines real-world implementations of data ingestion optimizations, quantifying 

performance improvements, and highlighting practical strategies for social media machine learning 

platforms. 

6.1 Performance Benchmarks and Scalability Analysis 

Comprehensive optimization of data ingestion pipelines yields substantial performance improvements 

across diverse machine learning applications. According to research from ResearchGate on data pipeline 

efficiency, organizations implementing end-to-end pipeline optimizations achieved an average reduction 

in training time of 3.1x for recommendation models processing social media interaction data [11]. The 

performance gains exhibited distinct patterns across model scales, with larger models benefiting 

disproportionately from optimized data handling. For recommendation models with embedding tables 

exceeding 10 GB, pipeline optimization reduced training time by 3.7x, compared to 2.2x for smaller 

models with embedding dimensions under 1 GB. This relationship underscores how data ingestion 

bottlenecks become increasingly prominent as model complexity increases. The research demonstrates 

that optimization benefits compound with dataset scale, showing that models training on datasets 

exceeding 500 GB experienced 4.1x throughput improvements. In contrast, those operating on smaller 50 
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GB datasets saw more modest 2.3x gains [11]. These findings reflect how larger datasets amplify 

inefficiencies in unoptimized pipelines through increased I/O overhead and preprocessing demands. 

6.2 System Resource Utilization and Efficiency Metrics 

Optimized data ingestion fundamentally transforms resource utilization patterns across the computational 

infrastructure. Columbia University research on scalable machine learning systems demonstrates that 

comprehensive pipeline optimization increased GPU utilization from 42% to 89% in production 

recommendation systems by eliminating data starvation periods [12]. This dramatic improvement in 

computational efficiency directly translates to infrastructure cost savings, with measurements indicating a 

54% reduction in GPU hours required for equivalent training tasks. The efficiency gains manifest across 

the entire computing stack, with the Columbia research showing that memory bandwidth utilization 

improved by 76% through optimized data layout and access patterns. These architectural improvements 

reduced cache misses by 62% and memory stalls by 47% compared to baseline implementations [12]. The 

resulting resource efficiency delivers cascading benefits, with researchers documenting that optimized 

systems exhibited 3.2x higher throughput per watt, improving performance and environmental 

sustainability. Implementation complexity analysis reveals that the most significant performance 

improvements came from relatively straightforward optimizations, with the top three techniques (data 

format optimization, batch prefetching, and feature preprocessing) delivering 71% of the total 

performance gain while representing only 31% of implementation effort [11]. 

6.3 Organizational Impact and Return on Investment 

Beyond technical metrics, pipeline optimization delivers substantial organizational benefits through 

accelerated development cycles and improved resource economics. The Columbia University research 

quantifies that data scientists conducted 2.8x more experimental iterations following pipeline 

optimization, directly accelerating model development [12]. This increased experimental velocity 

translated to measurable quality improvements, with A/B testing showing that recommendation models 

improved key engagement metrics by 0.8-1.2% following more comprehensive hyperparameter 

optimization enabled by faster training cycles. The economic impact analysis from ResearchGate research 

demonstrates that organizations implementing comprehensive pipeline optimizations reduced their total 

cost of ownership for machine learning infrastructure by 47% on average [11]. This cost reduction stems 

from 58% lower GPU provisioning requirements, 43% reduced data preprocessing overhead, and 31% 

decreased storage costs through improved compression and format selection. For large-scale social media 

platforms with annual infrastructure budgets in the tens of millions, these efficiency improvements 

translate to substantial financial impact, with documented case studies showing 7-11 month return on 

investment periods for optimization initiatives [11]. 

 

Conclusion 

Optimizing data ingestion represents a strategic imperative for organizations deploying machine learning 

at scale across social media platforms. This article has demonstrated how targeted improvements to data 

loading architectures, storage formats, and feature engineering processes can collectively transform the 

efficiency of machine learning pipelines. By addressing the fundamental challenges of I/O bottlenecks, 

network latency, and storage inefficiencies, organizations can unlock significant performance gains 

throughout their ML infrastructure. The case studies presented illustrate that these optimizations deliver 

not only technical benefits in terms of reduced training times and improved resource utilization but also 

tangible business value through faster model iteration, reduced infrastructure costs, and enhanced model 
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quality. As social media platforms continue to generate increasingly complex and voluminous data, these 

data ingestion optimization strategies will become even more critical to maintaining competitive 

advantage in the rapidly evolving landscape of machine learning applications. 
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