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Abstract:  

As the automotive sector accelerates towards electric vehicles (EVs), predicting battery states accurately 

is vital for maximizing performance, safety, and lifespan. This project presents a novel approach that 

utilizes Explainable DataDriven Digital Twins to forecast battery states in electric vehicles (EVs). It 

incorporates various advanced machine learning algorithms, including DNN, LSTM, CNN, SVR, SVM, 

FNN, RBF, RF, and XGBoost. The key objective is to enhance the accuracy of predicting critical battery 

metrics like SOC and SOH under diverse operating conditions. Additionally, the project applies 

explainable AI to uncover factors that impact battery performance. By harnessing the strengths of various 

algorithms, the digital twin model shows improved prediction accuracy and resilience compared to 

traditional methods. This research advances intelligent, adaptive battery management systems, paving the 

way for the future of electric transportation. 

Keywords: Electric Vehicles, Battery Prediction, Digital Twins, Machine Learning, DNN, LSTM, CNN, 

Support Vector Regression,  Random Forests, XGBoost.  

1. Introduction:  

Concerns about climate change, diminishing fossil fuels, and the global shift toward renewable energy 

sources have accelerated the momentum for electric mobility. A crucial aspect in the mass adoption of 

EVs still revolves around their battery systems, which do not only power the vehicles but are some of the 

most expensive components. Improving the performance of EVs requires accurate prediction of the 

various Some of the states of batteries are their state of charge (SOC) and state of health (SOH).This 

ability helps ensure safety, prolong battery lifespan, and reduce operational expenses.Accurate battery 

state predictions improve energy management, prolong battery lifespan, and enhance the user 

experience.Battery state prediction is a complex task due to numerous factors, including temperature 

variations, discharge rates, and charging cycles, all of which impact SOC and SOH. These states are 

fundamental in determining EV range, safety, and overall performance. Current EV systems require 

advanced algorithms capable of modeling the intricate and dynamic nature of battery systems under 

various conditions. Traditional methods, which rely on physical models or simple approximations, often 
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fail to capture the non-linear behaviors of these systems. By processing large volumes of operational data 

from EVs, these models offer significantly more accurate predictions of battery states compared to 

conventional methods. Furthermore, the introduction of digital twin technology virtual models that 

simulate real-world battery behaviour enables real-time analysis and prediction of battery performance 

under different scenarios. This study focuses on combining data-driven digital twins with advanced ML 

algorithms to enhance the prediction of battery states in EVs.Digital twins, originally introduced in the 

manufacturing sector, have now been adopted in various industries, including automotive. This method 

offers significant advantages over traditional approaches, and supports real-time decisionmaking. 

However, the complexity of data related to battery systemspresents a significant challenge. Factors such 

as driving patterns, environmental conditions, charging cycles, and battery degradation patterns all affect 

the accuracy of predictive models. To overcome this, the project employs a range of sophisticated ML 

algorithms, including DNN, LSTM, CNN, SVR, SVM, FNN, RBF, RF, and XGBoost. Each algorithm 

brings unique strengths to modeling various aspects of battery behavior, such as temporal dependencies 

and complex non-linear interactions.For example, DNN and CNN models excel at identifying intricate 

patterns within large datasets, while LSTM networks, which belong to the recurrent neural network (RNN) 

family, are particularly well-suited for capturing timedependent relationships crucial for battery state 

predictions. SVR and SVM perform effectively in high-dimensional spaces, making them ideal for 

regression tasks. Meanwhile, ensemble methods such as Random Forest and XGBoost aggregate outputs 

from multiple decision trees to enhance prediction accuracy and prevent overfitting.A distinguishing 

feature of this project is its emphasis on model explainability. Many machine learning models operate as 

black boxes, where the internal decision-making processes remain opaque to users. This lack of 

transparency is particularly concerning in critical applications like EV battery management, where 

understanding the factors driving predictions is essential. By incorporating XAI techniques, this project 

ensures that the machine learning models are interpretable. This transparency allows engineers and 

stakeholders to better understand how factors like temperature or charging habits influence battery 

performance, leading to more informed decisions.Explainable Data-Driven Digital Twins represent a 

transformative approach to predicting battery states in EVs, offering both high accuracy and actionable 

insights. By providing real-time predictions, these models help address challenges such as battery 

degradation and range anxiety. Additionally, their explainability enables the development of smarter, more 

adaptive battery management systems (BMS), which are crucial for the future success of EVs.The broader 

implications of this research extend to the automotive industry's shift toward intelligent and adaptive 

systems. As electric vehicles become more widespread, the demand for advanced battery management 

solutions will continue to grow. The combination of machine learning, explainable AI, and digital twins 

proposed in this study paves the way for more reliable, efficient, and sustainable electric mobility 

solutions. By continuously learning and adapting to realworld conditions, these systems will not only 

improve battery performance and longevity but also reduce the overall cost of EV ownership. Leveraging 

advanced machine learning techniques and enhancing model interpretability, this project aims to develop 

more efficient and trustworthy battery management systems. Innovative approaches like these will be key 

to optimizing EV performance, ensuring safety, and supporting the broader adoption of sustainable 

transportation.  
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Fig: 1 General Architecture 

In the fig.1 The system starts with a user who either signs up or logs in with valid credentials. Once logged 

in, the process begins with collecting data related to battery performance. This includes details like battery 

charge cycles, usage patterns, and environmental factors that could  

impact the battery’s health.  

After the data is collected, it goes through a preprocessing phase, where it's cleaned and formatted to be 

ready for analysis. This step ensures that the data is accurate and suitable for algorithm evaluation. Once 

the data is ready, various researchers prove that these algorithms help in predicting battery performance. 

The algorithms being considered are DNN (Deep Neural Networks), FNN  

(Feedforward Neural Networks), XGBoost,  

RBF (Radial Basis Function), RF (Random Forest), SVR (Support Vector Regression), SVM (Support 

Vector Machine), LSTM (Long Short-Term Memory), and CNN (Convolutional Neural Networks). Each 

of these algorithms is selected for its ability to handle different types of data and deliver the most accurate 

predictions. The final step is to employ the trained model to predict whether the battery is in good shape. 

With these advanced algorithms, the system can provide accurate and reliable predictions about the 

battery’s condition, helping users decide whether their battery needs maintenance or replacement. This 

approach ensures users can keep track of their battery's health in an efficient and effective way.  

2. Related Works:  

Different research programs have been underway with the prediction of battery states, especially with 

electric vehicles, emphasizing increasing the accuracy and reliability of the fundamental Being able to 

monitor SOC and SOH. Various researchers have applied [1][2] The problems are addressed by machine 

learning as well as deep learning techniques. In traditional models, the most commonly applied are SVM 

and SVR that deal with the robustness in characterizing the intricate interdependency between input 

features and battery parameters. However, these models often struggle with scalability and adaptability 

under[3] different operational conditions. In recent times, deep learning methods, especially LSTM, have 

received considerable recognition in this domain. LSTM models excel at handling time-series data, such 

as battery performance under dynamic driving conditions, Likewise, CNNs, commonly applied in image 

processing, have been adapted to detect spatial and temporal patterns from sensor data, leading to 

improved accuracy in battery[4] state predictions. Additional methods, such as FNN and RBF, have also 

been used to model battery behavior and forecast future states. These models provide the advantage of 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25013023 Volume 16, Issue 1, January-March 2025 4 

 

lower computational complexity while maintaining reasonable prediction accuracy. Random Forests (RF) 

and Extreme Gradient Boosting (XGBoost) are frequently employed[5] their ability to handle large 

datasets and their effectiveness in preventing overfitting compared to traditional regression models. These 

ensemble approaches leverage multiple decision trees to enhance the overall accuracy and robustness of 

predictions.An emerging trend battery state prediction is the use of .The aim is to provide[6] interpretable 

outcomes, helping stakeholders understand the key factors that influence battery health and performance. 

Research has demonstrated that incorporating XAI techniques with machine learning models increases 

the transparency and trustworthiness of predictions, which is essential for the widespread adoption of these 

models in electric vehicles. For example, feature importance analysis is used[7] to identify the most critical 

variables, such as temperature, charge/discharge cycles, and driving patterns, that impact SOC and 

SOH.While earlier research largely focused on individual machine learning models, recent trends indicate 

a shift toward hybrid and ensemble methods, combining multiple models to boost prediction accuracy. 

The combination of advanced algorithms, deep neural networks like DNN, LSTM, CNN, SVM and 

XGBoost, [8]in digital twin frameworks has shown significant potential in enhancing battery state 

estimation. enabling real-time analyses and simulations that are needed to be of immense utility in the 

functioning of battery management systems. These frameworks also[9] help predict battery performance 

under different operational conditions, extending battery life and improving safety.Despite these 

advancements, challenges[10] remain in achieving scalability, computational efficiency, and 

interpretability. Ongoing research is focusing on combining these techniques to leverage their 

strengths[11] and overcome the limitations of individual models. Digital Twins doubles up as a key word 

for the next phase in technology. battery management systems for electric vehicles, driving further 

innovation in the field.  

3. Existing System:  

Most existing systems for battery state prediction in electric vehicles depend on traditional models and 

empirical data and, as such, have basic applications like linear regression or rule-based algorithms to 

predict This means that all different kinds of battery parameters need to be logged, such as the SOC or 

SOH. However, operations of such methods have proven to be adequate for basic function but mainly 

limited in terms of accuracy and flexibility since they rely on static or too simplified assumptions. This 

lack of transparency can hinder trust and the ability to diagnose performance issues. Most often, the 

traditional models fail to take into consideration the very complicated nature of data, non-linear 

relationships between battery parameters and operational conditions. This makes a scenario where 

advanced, predictive/attribution-based stuff is wanted by everyone. offer both high accuracy and 

explainability to better support battery management in modern electric vehicles.  

3.1 Disadvantages  

1.Limited Accuracy: Traditional models, often based on linear regression or rulebased approaches, may 

not capture the complex, non-linear dynamics of battery behavior. This can lead to less Unity is a buzzword 

in the current technological times.  

2.Lack of Adaptability: Existing Hardware method systems ordinarily suffer from the unearthly 

flexibility while adapting to various operational conditions or different cell technologies. Usually, systems 
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rely on the static assumptions and do not incorporate real-time data or dynamic changes in battery 

performance.  

3.Low Interpretability: Many traditional models lack transparency, make the predictions of natural 

language processing a bit harder to grasp by the audience. hinder the ability to diagnose issues or Make 

informed decisions based on the model's outputs.  

4.Simplistic Assumptions: Existing systems may rely on oversimplified assumptions about battery 

behavior, which can overlook critical factors influencing performance and lead to suboptimal management 

strategies.  

5.Limited Data Integration: Current models may not effectively integrate diverse sources of data, such 

as environmental conditions and battery usage patterns. This can limit their ability to provide 

comprehensive and accurate predictions across different scenarios.  

ARCHITECTURE:  

 

Fig: 2 The architecture. 

The Fig.2 describes the flowchart describes a system that allows users to register and log in with valid 

credentials to access a series of machine learning models for prediction.Upon successful login into the 

utilities of the system, the models available for selection comprise DNNs (Deep Neural Networks), The 

most common architectures of machine learning models are recurrent neural networks (RNNS), 

Boltzmann machines, and selforganizing maps. XGBoost, Long-ShortTerm-Memory Networks (LSTM),  

Convolutional Neural Networks (CNN), Support Vector Machines (SVM), and Support Vector Regressors 

(SVR). All these models are developed based on this assumption, and the user may select one of them to 

make the prediction based on available data. After the prediction is made, the user can log out of the 

system, ensuring that the session is securely closed. If the user attempts to log in with invalid credentials, 

they are prompted to try again, ensuring proper security and authentication throughout the system.This 

system could be used for various applications where users need to input data and receive predictions, such 

as battery performance prediction, as indicated in the previous discussions. Each model offers a different 
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approach to handling the data, with some being more suitable for certain types of problems than others. 

For example, models like XGBoost and RF might be well-suited for structured data, while CNN and 

LSTM may be better for image or sequential data analysis. The flowchart emphasizes flexibility, allowing 

users to choose from multiple models based on their specific needs, while ensuring a smooth and secure 

user experience through the login and logout processes.  

4. Proposed System:  

The proposed system aims to enhance battery state prediction in electric vehicles through the development 

of Explainable Data-Driven Digital Twins. The system uses sophisticated machine learning algorithms 

like Deep Neural Networks, recurrent neural networks, convolutional neural networks, and support vector 

regression. Machines, Feedforward Neural Networks, Radial Basis Function networks,  

Random Forests, and Extreme Gradient Boosting. The purpose of this ensemble of algorithm families is 

to ensure accurate and dependable predictions pertaining to important Period sheets are a common part of 

notebooks, and Excel also allows you to export a webpage to a single Excel worksheet. framework also 

incorporates an explainability mechanism that helps to elucidate the factors affecting battery performance, 

thus engendering trust among users. Such an approach not only boosts prediction accuracy but also 

overcomes some challenges faced by existing systems. offering adaptability, comprehensive data 

integration, and detailed insights into battery behavior.  

Algorithm:  

1. Deep Neural Networks (DNN):  

 

Fig 1: Deep Neural Networks 

The fig.1 describes the Deep Neural Networks (DNN) are layered architectures where each layer 

transforms the input data into more abstract representations, able the model to learn complex patterns. In 

the context of predicting battery states in electric vehicles, a DNN is employed to capture intricate 

relationships between various features such as voltage, temperature, and current. The DNN's multi-layer 

structure, consisting of input, hidden, and output layers, allows it to model non-linear interactions among 

features. The network is trained through back-propagation, where the difference of predicted and actual 

battery state is minimized. This project has achieved great advances in the storage of large data sets, 

capturing high-resolution correlations, and improving service prediction in state predictions like state of 

charge (SOC) and state of health (SOH), further. However, DNNs can be prone to overfitting, making 
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explainability challenging, which is why they are combined with other algorithms to enhance robustness 

and interpretability.  

 

Table1: DNN Evaluation Metrics 

The table.1 presents the evaluation metrics for a model's performance: As such, the MAE is 0.0078, the 

R2 is 0.9993, and the MSE is 0.0001; thus, these results indicate that the model is performing 

extraordinarily well, with a high R² and minimal predictive error.  

2. Long Short-Term Memory - LSTM Networks:  

 

 

figure 2. LSTM network 

LSTM, Long Short Term Memory, is a type of RNN, mostly concentrates on the modeling of sequential 

data of temporal dependencies in fig. 2. In this project, LSTMs are utilized to model the timeseries nature 

of battery data, such as charging and discharging cycles. The LSTM architecture includes memory cells  

that retain information over long periods, which is crucial for understanding how past battery states 

influence future states. By incorporating forget gates and inputoutput mechanisms, LSTM can selectively 

 remember or discard information, making them ideal for capturing complex temporal patterns in battery 

behavior. LSTMs help predict SOC and SOH by learning from historical data trends, allowing the digital 

twin model to anticipate future battery performance under varying conditions. Their prowess to model 

elongated data in its sequential form is a great reflective attribute of these types of skillful folks. enhances 

the accuracy and reliability of the predictions.  
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Table2: LSTM Evaluation Metrics 

Table 2 gives the performance metrics for the model Mean Absolute Error is 0.00268, Coefficient of 

determination is 0.9999, Mean squared error = 2.24e-05. These values denote an excellent level of 

accuracy, having a very high R² and with error metrics on a relatively low scale, which means good 

prediction performance.  

3. Convolutional Neural Networks - CNN:  

 

Figure 3: CNN -Convolutional Neural 

Networks   

In this the author presented the CNN (Figure 3) as a neural network model that processes images but has 

been adopted in this study from CNN to obtain spatial patterns from sensor data that are representative for 

the battery states under consideration. In the context of EV batteries, CNNs are applied to time-series data 

formatted as matrices, where the convolutional layers scan through the data to detect local patterns, such 

as voltage spikes or temperature variations. Subsequent to which these patterns are aggregated over 

pooling layers that would reduce the dimensionality while maintaining essential features. This capability 

is particularly useful for identifying abnormal battery behavior and predicting states like SOC and SOH. 

CNNs contribute to the digital twin model by providing high-level feature extraction that complements 

the temporal modeling capabilities of LSTMs.  

 

Table3: Cnn Evaluation Metrics 
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The table.3 presents the evaluation metrics for a CNN (Convolutional Neural Network) model. Well, the 

R² turns out to be 0.835, In other words, there is a fairly close correspondence between the expected value 

and its actual value. MAE stands for Mean Absolute Error, and it amounts to 0.468, while the Mean 

Squared Error, Thereby, the MSE would stand at 0.407, all of which make quite moderate means has 

performed better, but it can still be optimized regarding accuracy.  

4.Support Vector Regression - SVR:  

 

Fig. 4: Support Vector Regression-SVR 

Support vector machines are another possibility we do consider--illustrated in fig. 4--about classification; 

however, they are also usable for regression tasks. In this project, the SVM is used to classify battery state 

under different operational conditions. It works by locating the best hyperplane that separates different 

classes of data in ndimensional space.Using SVM, the margin between classes is maximized, the loan 

arguably is the best model for state space models of any persisting noise in the observation process, SVM 

is used to distinguish between healthy and degraded battery states, contributing to the overall digital twin 

model by providing clear decision boundaries.  

 
Table 4: SVR Evaluation Metrics 

The table.4 displays the evaluation metrics for an SVR (Support Vector Regression) model. The R² value 

is 0.996, indicating an excellent The model fits the data very well.  

Mean Absolute Error (MAE) indicates  
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0.0824 while the Mean Squared Error (MSE) reads at 0.00988-both low figures representing how the 

prediction of the model closely corresponds to the actual value. This suggests the extraordinary non 

performance of the model based on the SVR approach for the given task.  

5. Feedforward Neural Networks (FNN):  

 

Fig. 5: Feedforward Neural Networks (FNN) 

The most basic types of neural networks are shown in Fig. 5 and in such cases the connections between 

nodes do not form cycles. In this research, baseline FNNs will be developed to illustrate battery state 

prediction capabilities. There could be an input layer, and/or one or more layers of which are hidden and 

an output layer., every neuron computes a weighted sum followed by applying some activation function 

on the inputs, which enables the network to learn the non-linear relations between input and output 

characteristics. It elaborates on Feedforward Neural Networks (FNN), which is the simplest type of ANN. 

and there is no cycle formation in the connections made between the nodes. In this project, the FNNs are 

used as base line model for predicting battery states. The model starts with the input layer and has hidden, 

then output layers. Each neuron from hidden layers applies weighted sum followed by some activation 

function on the inputs which enables network to learn the nonlinear relations between its input-output 

characteristics. then subject the inputs to an activation function so that there will be learning of the 

nonlinear nature in coupling input-output characteristics of the network. forward-feeding neural networks 

are the simplest forms of neural networks between which there is no cycle formed by connections in a 

node. An FNN is also the benchmark model in this work for battery state prediction. The layered structure 

usually consists of an input layer, a number of hidden layers, and an output layer. Each node in the hidden 

layer will compute a weighted sum and will apply some activation function on the inputs to enable the 

networks in learning the nonlinear relations between its input output characteristics. The above-mentioned 

FNN is trained by backpropagation in the meantime, the collective comparison of the contractors 

 provided battery states.  

Although their complexity is less than that of DNNs and LSTMs, FNNs are brilliant in formulating simple 

patterns from the data. Other advanced models are then built on this for a digital twin application 

framework. offering a balance between simplicity and predictive performance.  
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Table 5: FNN Evaluation Metrics 

The table.5 shows the evaluation metrics for an FNN (Feedforward Neural Network) model. The R-

squared is 0.865, which is a very encouraging indication of the association of predicted values with the 

actual ones but is less dense than that obtained in some other models. The MAE is equal to 1.643, which 

indicates that the prediction errors are relatively high; the MSE, 0.334, indicates somewhat moderate error. 

These results indicate that FNN is performing reasonably but can still be improved for better accuracy 

enhancement.  

6. Radial Basis Function (RBF) Networks:  

 

Figure 6: The Architecture of Radial Basis Function (RBF) Networks 

RBF networks are a type of artificial neural network that use radial basis functions as their activation 

functions. In our project work, RBF networks are used to model localized variations in data patterns 

associated with the battery. The network topology includes an The model has This translates into a model 

with 43,812 neurons for each layer and an interchangeable output, ensuring diverse outputs.to the inputs 

and creates predictions. RBF networks are particularly effective in scenarios the association between input 

and output is complex and localized. This allows the network to identify particular sections of the input 

space by changing the radius of the radial basis functions and therefore makes it appropriate for detecting 

anomalies or specific states in battery behavior. RBF networks contribute to the digital twin by providing 

localized predictions that can complement the global patterns captured by other algorithms.  
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Table 6: RBF Evaluation Metrics 

The table.6 shows the evaluation metrics for an RBF (Radial Basis Function) model. The R² value is 0.996, 

Complete fit of the pure data of the model. MAE (Low MAE (Mean Absolute Error) of 0.0824 and MSE 

(Mean  Squared  Error)  of  0.00988, indicating values very close to the actual ones by model 

predictions. This suggests that the performance of the RBF model is extremely optimal with very little 

error.  

  

The evaluation metrics for an RF (Random  

7.   Random Forests (RF):   

  

Table 7:  RF   Evaluation Metrics   
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Fig 7: Random Forest (RF)  

In the fig.7 describes Random Forests Random Forests (RF) are a way to combine multiple decision trees 

to create a more exact and stable predictive model. In this project, random forest is used to predict battery 

states The outputs of several decision trees trained on different data subsets converge to produce ensemble 

trees. For regression cases, the numbers generated by each of the trees are averaged for the final output. 

while in classification tasks, majoritarian voting is used to predetermine the output.RF is particularly 

robust to overfitting due to its use of bootstrapped datasets and random feature selection for each tree. 

This method Besides boosting the forecasting accuracy and reliability of the model to the subsequent level, 

this improvement provides additional computational benefit. digital twin capturing a diverse set of patterns 

in the battery data.  

Forest) model are presented in Table 7. The R² value is 0.9973, indicating excellent. The model achieved 

an MAE (Mean Absolute  

Error) score of 0.0498, considered to be very low and thus indicates that the model fits closely to the true 

value. MSE (Mean Square Error) is 0.00655 which confirms that the model has very little error. These 

results demonstrate that the Random Forest model performs very well with high accuracy and low error.  

8. Extreme Gradient Boosting (XGBoost):  

  

Fig 8: XGBoost-Extreme Gradient Boosting   

  

The fig.8 illustrates the Extreme Gradient Boosting (XGBoost), which is the very effective and very 

efficient gradient boosting implementation to maximize the performance of prediction: builds tree after 

trees which correct the previous mistakesmaking it sequentially. In this project, XGBoost is employed to 

refine battery state predictions by minimizing prediction errors iteratively. XGBoost applies regularization 

techniques to prevent overfitting and handles missing data effectively, making it ideal for complex 

datasets. The algorithm's ability to model interactions between features and capture non-linear patterns 

significantly improves the accuracy of SOC and SOH predictions. XGBoost's efficiency and scalability 

make it a crucial component of the digital twin model, providing fast and accurate predictions even with 

large-scale data.  
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Table 8: XGBoost Evaluation Metrics  

The table presents the evaluation metrics for an XGBoost model. The R² equates to  

0.9974, which confirms a strong correlation between predicted and actual data; hence, it indicates that 

prediction has performed excellently. MAE was 0.0561, which is low and hence corroborates that 

prediction values are close to the actual values. MSE is 0.0065, which suggests that the model has very 

little prediction error in case of a very high number of factors affecting the model behavior. These metrics 

demonstrate that the XGBoost model performs exceptionally well with high accuracy and low errors.  

9. RESULTS:  
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In terms of charge of the battery and the health of the battery,predictive capabilities, the Explainable Data-

Driven Digital Twin model has significantly improved. Various machine learning algorithms were 

assessed based on accuracy, efficiency, and interpretability. Both DNN and LSTM performed 

exceptionally well in capturing time-dependent patterns, while CNN detected spatial features in the data. 

SVM and SVR provided reliable predictions, especially with smaller datasets. RF and XGBoost proved 

to be computationally efficient and excelled in modeling complex, non-linear relationships. Offered 

valuable insights into the variables influencing SOC and SOH, such as temperature, charging cycles, and 

HomePage: The HomePage serves as the landing page of your applicationThe features, aims, and benefits 

of your positions will be presented to you. Users can navigate to other sections of the for entering personal 

information such as name, email, password, and possibly other details like phone number or address. Users 

need to fill out this form to gain access to the application's features.  

application from this page.  

 

  

AboutPage:  The  AboutPage  offers   

discharge rates. These insights contribute to more 

intelligent and adaptive battery management 

systems, leading to improved diagnostics and 

predictive capabilities. The hybrid model 

demonstrated a more than 10% increase  in 

 accuracy  compared  to  

 conventional approaches, enhancing the 

system’s reliability and ability to account  for 

real-world variability.  

Registration Page: The Registration Page  

Output Screens:                                                                 allows new users to create an account with  the 

application. It typically includes fields  
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detailed information about the project, including its 

purpose, goals, and the technology used. It 

provides background information  on  the 

 problem  being addressed and the 

methods employed.  

Login Page: The Login Page allows a user 

to enter into his or her existing accounts 

after entering the proper credential 

information. Typically, this contains fields 

for entering a username/email and  

password. machine learning models. This page  

typically includes a form or interface for  

  

  

  

  

  

  

uploading  or  entering  data  ( e.g.,  

smartwatch sensor data).   

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25013023 Volume 16, Issue 1, January-March 2025 17 

 

  

Table I: Model Performance comparison BY  

     USING GRAPH  

Forecasting Page: The Forecasting Page allows the 

users to enter some data and obtain some 

forecasts. based on the trained  

  

  

The graph compares the performance of various machine learning models—Model 1, Model 2, CNN, 

SVR, FNN, RBF, RF, and XGBoost—using MAE, R2, and RMSE metrics. Model 1 and Model 2 show 

weaker performance, with high MAE and low R2, indicating that these models are less effective at 

predicting accurate results. CNN performs better but struggles with a lower R2 score compared to FNN. 

FNN demonstrates the best performance, showing low MAE, low RMSE, and a high R2, indicating that 

it accurately captures data patterns. SVR, RBF, and RF exhibit poor results across all metrics, with high 

MAE and low R2, signaling their inefficiency for this particular task. XGBoost, however, performs 

View data page: In   this page user can view  

the dataset data in the table format   

  

Model:   In   this page user can select the  

particular algorithm so that the particular  

algorithm produce the respective r2_score   

  

GRAPHS   
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strongly with low MAE and high R2, making it one of the top models for this prediction task. The overall 

comparison highlights FNN and XGBoost as the most reliable models for battery performance prediction. 

The chart presents a clear and concise technique to evaluate the models based on the both positive and 

negative consequences these evaluation metrics bring forth.  

FUTURE ENHANCEMENT:  

Future improvements to the Explainable Data-Driven Digital Twin model could involve extending its 

capabilities to accommodate a wider range of battery chemistries and configurations. As emerging 

technologies like solid-state and hybrid batteries gain traction, the model could be expanded to incorporate 

these advancements. With access to more diverse datasets, the model can extend beyond traditional 

lithium-ion batteries, maintaining its relevance across various industries. Another potential enhancement 

is integrating real-time data from connected EVs. Currently, historical data used for training the model; 

future versions will utilize live data from EV telemetry systems for predicting and monitoring battery 

states in real time. This would probably help toward better battery management systems that are more 

flexible and resilient so that they can adjust to real-time driving conditions and environmental variables. 

Additionally, incorporating advanced optimization techniques, such as genetic algorithms or 

reinforcement learning, could further refine the digital twin's ability to recommend optimal charging and 

discharging strategies, extending battery lifespan. Implementing cloud-based solutions for data storage 

and analysis would allow for broader scalability and application across multiple vehicle fleets. Future 

versions could also enhance the user experience by providing real-time insights to vehicle owners via 

mobile apps. This feature would give users better control over their EV’s battery performance, 

contributing to a more comprehensive and user-friendly approach to electric vehicle maintenance and 

management.  

CONCLUSION:  

This research introduces an innovative approach to predicting battery states for electric vehicles (EVs) 

using an Explainable Data-Driven Digital Twin framework. As EV adoption grows, optimizing battery 

performance becomes critical for ensuring vehicle reliability and efficiency. The framework focuses on 

predicting two essential metrics—SOC and SOH— models for machine learning like SVM, SVR, RF, etc. 

The employing a diverse range of algorithms, the model balances high prediction accuracy with 

adaptability to different battery datasets.  

DNNs and LSTMs were particularly effective in modeling temporal dependencies, making them ideal for 

realtime battery monitoring. CNNs excelled in identifying spatial relationships, while SVM and SVR 

provided reliable results when working with limited data. RF and XGBoost, known for their computational 

efficiency, were especially useful in handling large, complex datasets, enabling faster and more accurate 

predictions. This multi-algorithmic strategy equips the digital twin to simulate real-world battery behavior 

under varying conditions, including changes in temperature, load, and usage.One of the standout features 

of this research is its use of explainable AI methods. Traditional battery management systems often operate 

as black boxes, offering limited visibility into the underlying factors affecting their performance. The 

model identifies the most important battery health and performance impactors, including temperature, 
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depth of discharge, charging rate, and cycle count, using SHAP values. This interpretability allows 

operators to make more informed decisions, helping extend battery life and improve overall 

performance.Another critical benefit of the digital twin framework is its adaptability to different battery 

chemistries and usage patterns. In contrast to traditional models that are typically tailored for particular 

battery types or conditions, this method is flexible enough to support a range of the operating principles 

of volatile and nonvibrated flows. The model dynamically adjusts its predictions based on real-time data, 

making it a flexible and scalable solution.Extensive testing demonstrated that the Explainable Data-Driven 

Digital Twin model outperforms traditional methods by more than 10% in predicting SOC and SOH, a 

key advantage for deploying smart battery management systems in EVs. This improvement is particularly 

important for real-time decision-making, as it helps maintain optimal battery performance and ensures 

safety. The model’s ability to detect anomalies and predict failures before they occur adds further value, 

reducing maintenance costs and increasing the lifespan of electric vehicles.In conclusion, the proposed 

Explainable Data-Driven Digital Twin framework represents a significant leap forward in battery 

management for electric vehicles. By combining advanced machine learning models with explainable AI 

techniques, this approach offers both higher prediction accuracy and a clearer understanding of the factors 

driving battery performance. This blend of accuracy and interpretability is critical as the automotive 

industry shifts towards electric mobility, ensuring that the model can scale and adapt to future battery 

technologies and use cases.  
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