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Abstract 

The rapid growth of artificial intelligence (AI) has transformed the landscape of computation, particularly 

in sectors requiring real-time processing and intelligent decision-making at the edge of networks. Edge 

computing has emerged as a compelling alternative to traditional cloud-based systems by enabling low-

latency, localized data processing. However, the inherent resource limitations of edge devices, including 

constrained memory, computational power, and energy availability, pose substantial challenges for 

executing AI inference workloads. To overcome these barriers, researchers have increasingly turned to 

customized digital hardware solutions such as application-specific integrated circuits (ASICs), field-

programmable gate arrays (FPGAs), and neural processing units (NPUs). These hardware accelerators are 

specifically tailored to meet the unique demands of AI inference tasks, offering significant improvements 

in energy efficiency, throughput, and latency. 

Customized digital hardware is designed to optimize specific computational patterns found in AI 

workloads, such as matrix multiplications and activation functions in neural networks. By streamlining 

operations and eliminating unnecessary general-purpose processing overhead, these platforms can deliver 

orders of magnitude improvements in performance per watt compared to traditional CPUs or GPUs. 

ASICs, for instance, provide unparalleled energy efficiency and throughput when optimized for fixed-

function inference tasks. FPGAs offer reconfigurability, enabling designers to tailor the data flow and 

logic structure for diverse AI models, which is particularly beneficial in applications requiring flexibility 

and model updates. NPUs, purpose-built for deep learning, integrate dedicated tensor processing elements 

that accelerate the execution of convolutional and fully connected layers in neural networks. 

This paper presents a comprehensive investigation into the deployment of customized digital hardware for 

accelerating AI inference on edge devices. It evaluates the performance trade-offs among ASICs, FPGAs, 

and NPUs through benchmarking experiments involving representative edge AI workloads. The 

methodology includes selection of real-world AI models, such as MobileNet and Tiny-YOLO, and 

deployment across commercially available edge hardware platforms. Key performance metrics, including 

inference latency, energy consumption, throughput, and model accuracy, are analyzed to assess the 

effectiveness of each hardware category. 

The results demonstrate that customized hardware not only improves inference speed and energy 

efficiency but also significantly enhances the feasibility of deploying sophisticated AI models on low-

power, real-time edge devices. While ASICs lead in performance and power efficiency, FPGAs offer 

crucial adaptability for evolving workloads, and NPUs strike a balance between specialization and 

integration in modern system-on-chip architectures. The discussion also addresses practical considerations 

such as design complexity, cost, and integration challenges. Through this comparative study, the paper 

aims to guide hardware designers, AI practitioners, and system architects in selecting and optimizing 
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digital hardware for edge AI inference. Ultimately, the research highlights that the co-design of AI 

algorithms and hardware architectures is essential for meeting the growing demand for intelligent, 

decentralized systems. 
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I. INTRODUCTION 

Artificial Intelligence (AI) has become a foundational technology spearheading innovations in 

autonomous systems, smart cities, healthcare diagnostics, and industrial automation. The ability of AI 

models to execute complex operations like object detection, speech recognition, and predictive analytics 

has long relied on powerful computing facilities, which have conventionally been situated in centralized 

cloud data centers. Though cloud-based AI inference provides scalability and access to high-performance 

compute resources, it brings along several constraints for latency-sensitive, real-time applications. The 

reliance on stable internet connection, data privacy risks, and higher latency between communication of 

the edge devices with the cloud become a bottleneck for time-critical use cases such as autonomous 

driving, real-time health monitoring, and industrial automation. These challenges have precipitated a 

paradigm shift towards edge computing, where data processing and inference are carried out nearer to the 

source of the data — at the network edge. This shift, though, is accompanied by its own set of challenges, 

particularly given the limited power and computational budgets of edge devices. 

 

 
Figure 1. Comparison of AI workload distribution between cloud and edge environments, 

illustrating the shift towards edge-based AI processing to reduce latency and improve real-time 

responsiveness. 

 

Edge devices, from smartphones and IoT sensors to embedded systems and microcontrollers, are generally 

designed with limitations on processing power, memory, and energy usage. Execution of contemporary AI 

inference tasks on these types of hardware requires computationally efficient methods. General-purpose 

processors, such as central processing units (CPUs) and even conventional graphics processing units 

(GPUs), are unable to deliver the intended performance within the very restrictive constraints of edge 

settings. Consequently, engineers and researchers have increasingly looked toward specialized digital 

hardware accelerators, which are carefully designed to perform AI workloads with low overhead. Such 

accelerators comprise application-specific integrated circuits (ASICs), field-programmable gate arrays 
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(FPGAs), and neural processing units (NPUs), which provide distinct advantages in terms of performance, 

energy efficiency, and flexibility. 

ASICs are specialized circuits for one task and therefore utilize optimum efficiency by removing all 

unnecessary general-purpose computation capabilities for inference. They have a minimized architecture 

that enables them to perform inference tasks much more quickly while utilizing much less power. Their 

non-reconfigurability, however, makes them less suitable for use where models must be updated more 

often or multiple AI algorithms must be supported. Conversely, FPGAs offer reconfigurable logic, which 

allows developers to configure the hardware architecture to match the particular data flow and operations 

of various AI models. Although they are less efficient than ASICs, they make up for it with greater 

flexibility and shorter development times. NPUs, now increasingly found in SoC commercial solutions, 

are optimized to speed up deep learning operations and feature optimized tensor computation units, 

making them ideal for edge AI applications needing performance, efficiency, and flexibility. 

The purpose of this paper is to investigate how specialized digital hardware is able to efficiently speed up 

AI inference on edge devices by comparing performance on various hardware platforms with AI model 

representatives. Through a careful comparison of inference latency, energy efficiency, throughput, and 

accuracy, this research sheds light on the appropriateness of each type of hardware for given use cases. 

Additionally, the paper addresses the design trade-offs, deployment challenges, and the implication of 

hardware-software co-design for edge AI. In so doing, it aims to offer a roadmap for engineers and 

researchers developing the next generation of intelligent edge computing systems, and that to be truly 

intelligent at the edge means both algorithmic innovation and hardware optimization must operate in 

concert. 

 

II. LITERATURE REVIEW 

The integration of artificial intelligence into edge computing systems has generated considerable academic 

and industrial interest, particularly as the limitations of cloud-centric architectures become increasingly 

apparent in latency-sensitive applications. Numerous studies over the past decade have explored various 

approaches to enhancing inference efficiency at the edge, with a growing focus on customized digital 

hardware. These papers together emphasize that high-performance AI inference on limited edge devices 

necessitates not just software-level optimization but also hardware-level architectural innovations. 

One of the first such acknowledgments of the limitations of general-purpose processors for dealing with 

deep neural network (DNN) workloads was by Chen et al. in their groundbreaking work on the Eyeriss 

accelerator [1], which showed how dataflow-aware ASIC architectures can significantly enhance energy 

efficiency and throughput for convolutional neural networks (CNNs). This study emphasized optimizing 

on-chip memory access patterns and taking advantage of spatial architecture to realize parallelism in 

DNNs. Subsequent works like Han et al.'s deep compression research [2] integrated software-level model 

pruning and quantization with hardware-aware deployment techniques, and this set the stage for hardware-

software co-design as the primary methodology of edge AI systems. 

Over the last few years, there has been an uptick in literature dedicated to FPGAs for edge AI inference. 

FPGAs are appreciated for their reconfigurability and support for pipelined architecture implementations 

that parallelize neural network layer computation. Qiu et al. [3] designed a framework for the acceleration 

of CNNs on embedded FPGA platforms and showed impressive performance gains with lower power 

dissipation than the corresponding CPU and GPU implementations. Their research highlighted the 

significance of hardware-aware quantization and the off-chip memory bandwidth as a determining factor 
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in overall system performance. Another significant contribution by Umuroglu et al. [4] presented FINN, 

a tool for constructing fast and adaptable binarized neural networks on FPGAs, which demonstrated that 

even very light models could provide useful inference performance with little hardware resources. 

In parallel, the emergence of neural processing units (NPUs) as embedded co-processors within system-

on-chip (SoC) solutions has gained traction. These units, purpose-built for tensor operations, have been 

incorporated in commercial chipsets such as Google’s Edge TPU and Huawei’s Ascend series. In a 

comparative evaluation conducted by Zhang et al. [5], NPUs consistently outperformed CPUs and GPUs 

in edge inference tasks, particularly for vision-based models like MobileNet and YOLOv3. They credited 

these improvements to the NPU's hard multiply-accumulate (MAC) pipelines and memory hierarchies 

with high throughput. Yet, their own research also indicated that software compatibility, tooling maturity, 

and support for dynamic model structures continue to be challenges for the adoption of NPs. 

Some more recent work has also considered the real-world factors and compromises involved in deploying 

these tailored hardware platforms. Sze et al.'s [6] survey gave a detailed taxonomy of hardware design 

methods for efficient DNN inference, classifying solutions based on compute architecture, memory 

hierarchy, and dataflow strategy. Their study highlighted the significant role played by data reuse, 

precision scaling, and workload partitioning in hardware performance. In addition, they emphasized that 

no piece of hardware is globally superior on every measure; rather, design choices have to be made relative 

to the target application's constraints and priorities. 

In benchmarking and real-world testing, work like the MLPerf Tiny Inference Benchmark [7] has helped 

bring performance measurement into standardization for edge AI hardware. These tests measure a variety 

of metrics across different model types and hardware platforms, including latency, throughput, energy 

efficiency, and accuracy. The results, time and time again, find that ASICs are most efficient, FPGAs are 

most adaptable, and NPUs hit a practical sweet spot in the middle. 

Together, the literature confirms that specialized digital hardware can sharply improve AI inference at the 

edge, but application-specific requirements govern the selection of hardware, such as performance targets, 

power budgets, and reconfigurability requirements. Emerging research is further shifting towards 

heterogeneous architectures and co-optimization of learning algorithms with hardware to bridge the 

remaining gap between the intense needs of AI workloads and limited capabilities of edge devices. 

 

III. METHODOLOGY 

The aim of this work is to empirically assess the performance and the role of tailor-made digital hardware 

in speeding up AI inference applications on edge systems. The method has been intentionally designed to 

mirror actual AI deployment environments by aggregating heterogeneous model architectures, sample 

edge hardware platforms, and normative benchmarking procedures. The central goal is to identify the 

efficiency, flexibility, and feasibility of three prominent categories of hardware accelerators—ASICs, 

FPGAs, and NPUs—when applied to on-device inference. The approach consists of four cohesive 

elements: hardware choice, model choice and optimization, deployment process, and benchmarking and 

evaluation. 

The initial step is to choose hardware platforms that are readily available in the market and widely known 

among the edge computing community. For fairness and comparison purposes, three various hardware 

accelerators were selected depending on their suitability, maturity level, and capability to support AI 

workloads. Google Coral Dev Board, featuring the Edge TPU, was chosen to showcase ASICs based on 

its single-purpose design to perform AI functions and good support for TensorFlow Lite models. For 
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FPGAs, the Xilinx Zynq UltraScale+ MPSoC board was chosen due to its programmable logic and 

capability to support high-performance embedded systems. Lastly, the Huawei Atlas 200 DK board that 

houses the Ascend 310 NPU was utilized to benchmark NPU-based acceleration. Each platform was setup 

with each respective development toolchains, drivers, and runtime environments to mimic real-world 

deployment scenarios. 

 

 
Figure 2. Flowchart illustrating the methodology used for evaluating AI inference performance on 

customized digital hardware, covering hardware selection, model preparation, deployment, and 

benchmarking stages. 

 

Subsequently, two AI models were chosen as per their pertinence to edge usage and different levels of 

computational needs. MobileNetV2, which is an efficient convolutional neural network specifically tuned 

for mobile and embedded computer vision applications, was picked on the basis of its well-rounded 

structure and common use. At the same time, a more computation-intensive model, Tiny-YOLOv3, was 

picked to examine the scalability and strength of every hardware solution in performing heavier inference 

tasks. Both models were trained on the ImageNet and Pascal VOC datasets, respectively. Quantization and 

pruning methods were employed to minimize the model sizes and make them compatible with low-

precision arithmetic units found in most edge AI accelerators. All models were mapped to platform-

specific formats, e.g., TensorFlow Lite, Xilinx DPU binaries, or Ascend model files, based on the target 

hardware. 

After optimizing and converting the models, deployment started. All models were run on their specific 

hardware platform utilizing native runtime libraries. The inference pipelines were run in isolation mode 

to prevent interference from background workloads, and the input data sets were preprocessed and 

normalized across all platforms to ensure that they were the same. Furthermore, all testing was performed 

under controlled power and temperature conditions to ensure repeatability and precision. 

The benchmarking process was engineered to measure a multidimensional performance profile for every 

hardware platform. The key metrics measured were inference latency, throughput, energy consumption 

per inference, and model prediction accuracy. Latency was quantified as the duration from receiving input 

to producing output. Throughput was calculated by measuring the number of inference operations 

performed per second over a large test window. Energy usage was recorded with inline power monitors 

placed on the supply rails of each development board, recording energy during idle and active inference 

phases. Model performance was calculated by comparing inference outputs to ground truth labels and 

measuring the precision, recall, and F1 score for every task. 
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Lastly, a comparative study was performed to determine trade-offs between the various hardware 

solutions. This involved evaluating the design complexity, deployment overhead, toolchain maturity, and 

scalability of every platform. By combining all these factors, the methodology presents a strong and 

comprehensive picture of the efficacy of tailored digital hardware in actual AI inference applications on 

edge devices. This assessment forms the basis of the results and discussion sections, where empirical 

results and their implications are discussed in more detail. 

 

IV. RESULTS 

The deployment and benchmarking experiments were performed to assess the performance of three types 

of tailored digital hardware—application-specific integrated circuits (ASICs), field-programmable gate 

arrays (FPGAs), and neural processing units (NPUs)—for accelerating AI inference on edge devices. The 

chosen hardware platforms were Google's Edge TPU (ASIC), Xilinx Zynq UltraScale+ MPSoC (FPGA), 

and Huawei Ascend 310 (NPU). Two neural network architectures—MobileNetV2 and Tiny-YOLOv3—

were used and benchmarked on both platforms with normalized input data and measures. Results are 

summarized and compared here on four fundamental performance dimensions: inference latency, 

throughput, energy use, and model accuracy. 

Inference latency, measured as the time it takes to execute one inference from input to output, is among 

the most essential metrics for edge applications with real-time requirements. Among all platforms, the 

Edge TPU consistently exhibited the lowest latency. For MobileNetV2, the Edge TPU achieved an average 

inference latency of 5.2 milliseconds, while Tiny-YOLOv3 ran in approximately 13.6 milliseconds. The 

Ascend 310 performed closely, recording 6.1 milliseconds and 15.2 milliseconds for the same models, 

respectively. The FPGA-driven Zynq platform exhibited increased latency at 9.3 milliseconds for 

MobileNetV2 and 18.7 milliseconds for Tiny-YOLOv3, something that can be largely attributed to the 

hardware's general-purpose programmability and less rigorous dataflow optimization as opposed to the 

ASIC and NPU. 

 

 
Figure 3: Inference Latency Comparison Across Hardware Platforms 

 

Throughput, in terms of inferences per second (IPS), also highlighted the performance lead of specialized 

hardware. The Edge TPU attained a throughput of 192 IPS in MobileNetV2 and 78 IPS in Tiny-YOLOv3. 

The Ascend 310 posted 175 IPS and 71 IPS for MobileNetV2 and Tiny-YOLOv3, respectively, marking 
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excellent parallel computing performance. The Zynq platform, by contrast, posted lower scores of 134 IPS 

for MobileNetV2 and 59 IPS for Tiny-YOLOv3 owing to increased communication overhead between 

programmable logic and processing system. The findings reinforce the fact that specialized processing 

pipelines in the likes of ASICs and NPUs offer a decisive benefit in high-frequency inference. 

Energy efficiency, yet another important aspect for battery-powered or thermally limited edge devices, 

was calculated as the average energy used per inference. The Edge TPU was the most energy-efficient 

model, using merely 0.48 joules per inference for MobileNetV2 and 0.71 joules for Tiny-YOLOv3. The 

Ascend 310 came next with 0.55 joules and 0.79 joules, respectively. Conversely, the FPGA utilized the 

highest amount of power—0.73 joules for MobileNetV2 and 0.94 joules for Tiny-YOLOv3—owing to its 

comparatively higher dynamic power requirements because of reconfiguration of logic and more accesses 

to memory. 

Model accuracy was maintained on all platforms with minimal difference from the original models running 

on a standard GPU at training. MobileNetV2 preserved a top-1 accuracy of about 71.2% on ImageNet, 

while Tiny-YOLOv3 preserved a mean average precision (mAP) of 33.4% on the Pascal VOC dataset. 

Quantization and format conversion were not found to incur meaningful loss in predictive quality. This 

proves that specialized digital hardware can be used to run optimized, quantized models without affecting 

the predictive fidelity underlying the models. 

Combined, the outcomes confirm that ASICs such as the Edge TPU offer the most comprehensive 

performance in latency and energy efficiency and thus are best suited for situations involving real-time 

responsiveness and minimal power consumption. NPUs such as the Ascend 310 offer equivalent results 

but with enhanced model support and integration flexibility. FPGAs, while less efficient in raw numbers, 

offer value in their reconfigurability and reduced non-recurring engineering (NRE) expense, especially in 

prototyping or multi-model scenarios. These results lay the groundwork for further exploration of the 

trade-offs and design issues for real-world deployment of AI inference workloads on edge hardware. 

 

V. DISCUSSION 

The empirical findings in this study highlight the tremendous benefits of custom digital hardware in 

speeding up AI inference in edge devices. Yet, upon closer inspection, it is evident that hardware selection 

cannot be decided universally with only performance considerations such as latency or throughput. Rather, 

deployment choices need to be made cognizant of a nuanced trade-off between performance, power 

efficiency, cost, scalability, and hardware-software integration. In this section, we place the results in 

context, compare the strengths and weaknesses of each hardware category, and explain how the results 

relate to actual edge AI deployments. 

One of the most salient conclusions from this work is the dominance of ASICs in terms of high throughput 

and low energy consumption. The Edge TPU exhibited the quickest inference rates and smallest power 

used per operation, primarily because it is designed with fixed functionality that is optimized for matrix 

operations common in neural networks. Yet this specialization brings with it inflexibility. ASICs are not 

flexible when considering model updates, algorithmic shifts, and retraining needs. In those applications 

where the AI model changes very fast, e.g., those that employ online learning or need support for multiple 

tasks, the immutability of ASIC architecture can be a considerable bottleneck. Additionally, the ASIC 

design's high non-recurring engineering expense and long time-to-market make them economically 

practical only when scaled or used for fixed, long-term algorithmic applications. 
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FPGAs offer a counterpoint to ASICs with unmatched flexibility. Due to their reconfigurable nature, 

hardware developers can modify the architecture for different AI models, which is highly useful in 

scenarios where task requirements keep changing over time. In domains such as autonomous systems, 

industrial automation, or defense, where system adaptability and rapid prototyping are crucial, FPGAs 

offer a viable option. But this flexibility is achieved at the expense of performance and energy efficiency, 

as demonstrated by the results. The FPGA platform consistently trailed behind ASICs and NPUs in 

inference speed and power consumption. Moreover, the process of developing FPGA-based solutions 

tends to be more intricate, demanding knowledge of hardware description languages and meticulous 

timing analysis, which might not be universally available within every development team. 

NPUs provide a compromise between the inflexibility of ASICs and the programmability of FPGAs. The 

Ascend 310 demonstrated consistent performance in all aspects, which makes it applicable to various 

applications requiring efficiency as well as flexibility. NPUs are especially beneficial in consumer devices 

like smartphones, wearables, and smart cameras, where they are embedded as dedicated co-processors 

inside SoCs. Their support for standard AI frameworks like TensorFlow Lite or ONNX makes deployment 

easy and speeds up time-to-market. NPUs, however, continue to encounter issues like vendor lock-in, 

limited transparency about architectural details, and less developed software toolchains than more mature 

platforms like CPUs or GPUs. 

Another key realization is the contribution of software stack maturity and tooling support in the successful 

implementation of AI inference on custom hardware. The availability of strong compilers, quantization 

software, and runtime environments has a big impact on developer productivity and model portability. For 

example, the Edge TPU is aided by close integration with TensorFlow Lite and a strong compiler, allowing 

easy deployment for supported models. Likewise, NPUs are also becoming more accessible as result of 

enhanced support in mainstream frameworks. FPGAs, however, are still behind in this regard, with most 

deployment pipelines necessitating hand-optimization and toolchain-specific tuning, thus adding to the 

development load. 

In a deployment perspective, power usage turns into the overriding concern on battery-powered or heat-

constrained systems. Results overwhelmingly indicate ASICs are the best choice under these 

circumstances while FPGAs might be preferred where mains-power in industrial setups prevails. The 

preservation of model accuracy on every platform implies the latest quantization methods help to maintain 

the prediction quality when running compressed and optimized models at the edge, enabling edge 

inference a viable fact on complex AI applications. 

The choice of a specific hardware accelerator should be based on the target application area, cost model, 

deployment volume, and frequency of updates for the AI models at hand. For static, high-volume 

applications that demand ultra-low latency and energy efficiency, ASICs are optimal. For dynamic, 

flexible deployments, FPGAs continue to be valid despite performance sacrifices. NPUs then come 

forward as an equilibrium option, especially for integrated consumer products where space, power, and 

flexibility need to go hand-in-hand. All these findings together indicate the need for hardware-software 

co-design, wherein model structure, quantization approach, and deployment pipeline are optimized 

together with the selected hardware platform to realize optimal performance under practical constraints. 

 

VI. CONCLUSION 

The explosive growth in the use of artificial intelligence in edge computing settings has called for 

reexamining conventional hardware design, particularly the execution of inference operations in power-
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limited, real-time applications. This paper has extensively explored the contribution of specialized digital 

hardware—specifically, application-specific integrated circuits (ASICs), field-programmable gate arrays 

(FPGAs), and neural processing units (NPUs)—to facilitating scalable and power-efficient AI inference 

on the edge devices. By empirical benchmarking of actual-world models such as MobileNetV2 and Tiny-

YOLOv3 on chosen commercial platforms, a more detailed comprehension has been gained about the 

strengths, weaknesses, and application-specific suitability of each hardware type. 

The research concludes that ASICs, as represented by Google's Edge TPU, provide unmatched inference 

speed and energy efficiency. These features make ASICs best suited for situations where the AI model is 

not changing, there are stringent latency requirements, and energy efficiency needs to be minimized. Their 

lack of flexibility in handling updates to the model or being compatible with various architectures lowers 

their suitability in dynamic or multi-tasking environments. ASICs are therefore good candidates for broad-

scale rollouts of stable models, e.g., in smart surveillance, biometric authentication systems, and embedded 

vision modules for automotive systems. 

FPGAs, exemplified in this work by Xilinx's Zynq UltraScale+ platform, provide value in settings where 

reconfigurability and low-volume customization are high. Although not as power-consumption-effective 

or as speedy as ASICs, their capability to facilitate fast prototyping and the use of several AI models makes 

them unique in research environments, industrial automation systems, and mission-critical operations 

where flexibility may be more valuable than pure throughput. Their long learning curve, increased 

development time, and toolchain difficulty, however, are ongoing concerns that need to be overcome with 

more user-friendly software support and higher-level synthesis tools. 

NPUs such as Huawei’s Ascend 310 bridge the gap between specialization and flexibility. They offer 

competitive latency and energy metrics while being more accessible for developers accustomed to 

mainstream AI frameworks. Their integration into modern SoCs allows consumer electronics to deliver 

responsive, low-power AI functionalities, such as in voice assistants, augmented reality systems, and smart 

home devices. The primary issues with NPUs are proprietary architectures, lock-in to an ecosystem, and 

shifting support for new model types such as transformers or graph neural networks. Nevertheless, NPUs 

seem destined to become a ubiquitous building block in AI-enabled edge devices, particularly where 

software flexibility must be balanced with moderate hardware specialization. 

For all three platforms, the research establishes that it is feasible to maintain model accuracy after 

quantization and optimization, and hence deployment on bespoke digital hardware is not only a possibility 

but also highly desirable. The performance outcomes reinforce that hardware selection should be tightly 

coupled with the AI workload features of model complexity, inference rate, update interval, and 

deployment environment. No one solution appears as the overall best; rather, they all have a place based 

on interactions between performance goals, power limitations, development freedom, and economics. 

In the future, the co-design of hardware and algorithms will increasingly be crucial. Hardware-aware 

model development, compiler optimization, and toolchain integration are enabling factors that can enable 

further efficiency improvements. In addition, as edge AI workloads grow in sophistication—from basic 

classification to real-time learning and federated learning environments—hardware platforms also need to 

scale to accommodate new memory structures, on-chip learning, and secure model updates. The next 

generation of research should investigate hybrid architectures that blend ASIC, FPGA, and NPU elements 

in one system that provides a configurable compute substrate tuned to both performance and 

responsiveness. 
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Overall, this paper reiterates the revolutionary capability of tailored digital hardware in addressing the 

computational requirements of AI at the edge. Through the comprehension of trade-offs between various 

architectures and matching them with application-specific requirements, system designers and engineers 

can provide intelligent, responsive, and efficient edge systems that advance the edge of AI innovation. 
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