

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 1

Revolutionizing Data Preparation and Access

for Visual and Multi-Modal Business

Analytics

Oyeronke Ladapo

ronke.ladapo@gmail.com

Abstract

In the evolving landscape of business analytics, data prepa- ration remains a critical yet time-consuming task,

particularly when dealing with unstructured data such as images, videos, and associated metadata. Traditional

systems often rely on ad-hoc solutions that are inefficient for handling large-scale visual data. This paper

introduces the Visual Data Management System (VDMS), a novel framework designed to optimize the

management, preparation, and access of visual data, while enabling seamless integration with machine learning

and analyt- ics pipelines. VDMS is built to handle massive datasets, such as images and videos, alongside feature

vectors and metadata, making it an ideal tool for business applications in retail, healthcare, and media analytics. By

centralizing data management, VDMS eliminates the need for com- plex, fragmented systems and simplifies

data access through a unified API, significantly reducing data preparation time and improving the ef- ficiency of

analytics workflows. Our evaluation, using a 13TB dataset from the YFCC100M collection, demonstrates that

VDMS outperforms traditional systems by up to 35 times, especially in large-scale environ- ments. This paper

highlights VDMS’s ability to enhance business ana- lytics, enabling faster, more accurate insights from diverse

data sources, and paving the way for more efficient, data-driven decision-making in modern enterprises.

1. Introduction

Visual computing workloads performing analytics on videos and/or images have become prolific

across a wide range of application domains. This is in part due to the growing ability of machine

learning (ML) techniques to extract informa- tion from the visual data which can subsequently be

used for informed decision making [1]. The insights this information can provide depend on the

application: retail vendors might be interested in knowing which are the most visited areas of

their stores using security video feeds as input, or a doctor might want know the effect of a specific

treatment by looking at the changes in size of a tumor from a brain scan.

Despite the increasing use of visual data processing, there has been very little research on the

management of visual data. Most of the current storage solutions for visual data are an ad-hoc

collection of tools and systems, that are re-purposed and adapted to work with visual data. The

approach of re-purposing

https://www.ijsat.org/
mailto:ronke.ladapo@gmail.com

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 2

and integrating solutions not designed for a task results in resource utilization inefficiencies [2].

For example, consider a ML developer constructing a pipeline for extracting brain tumor

information from existing brain images in a classic medical imaging use case. This requires

assigning consistent identifiers for the scans and adding their metadata in a relational or key-

value database. If the queries require a search over patient information, then patients are

associated with their brain scans. Finally, if the ML pipeline needs images with a differ- ent

resolution than the original, there is additional compute diverted towards pre-processing the

original images which are typically larger. All these steps require understanding different software

solutions that provide various function- alities that can then be stitched together with a script for

this specific use case. Moreover, if the pipeline identifies new metadata to be added for the

tumor images, most databases make it hard to change the schema on the fly. As an- other

example, many applications can be studied through the use of large and publicly available

datasets. Applications include basic image search functionality (through the use of human-generated

tags), advanced image search through the use of machine-generated tags and feature vectors [3]

for each image, and video summarization. For these use-cases, the usual first step consists on

selecting a subset of the data before running any processing, and a large effort is devoted to

cleaning and pre-processing the data. Selecting subsets of data is by itself a time consuming task,

as it involves loading all metadata into a solution that enables searching based on tags

(relational database, graph database, csv files, etc), and building the necessary pipelines for

querying and retrieving the right data.

More generally, data scientists and machine learning developers usually end up building an ad-hoc

solution that results in a combination of databases and file systems to store metadata and visual data

(images, videos), respectively. This is integrated with a set of custom scripts that tie multiple

systems together, unique not only to a specific application/discipline but often to individual

researchers or development teams. These ad-hoc solutions make replicating experiments dif- ficult, and

more importantly, they do not scale well when deployed in the real- world. The reason behind such

complexity is the lack of a system that can be used to store and access all the data the application needs,

including metadata, images, videos, and feature vectors.

In this paper, we describe VDMS and show how it provides a comprehensive solution to the data

management for applications that heavily rely on visual data. VDMS is a completely Open

Source project designed to enable efficient access of visual data. To the best of our knowledge, a

rich set of functionalities designed for visual data management, provided behind an integrated API,

is unique to VDMS and we were unable to find a system with similar functionality. While there

are a number of big-data frameworks [4, 5], systems that can be used to store metadata [6, 7],

and systems that manipulate a specific category of visual data [2, 8], VDMS can be distinguished

from them on the following aspects:

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 3

– Design for analytics and machine learning: By targeting visual data for use cases that

require manipulation of visual information and associated meta- data,

– Ease-of-use: By defining a common API that allows applications to combine their

complex metadata searches with operations on resulting visual data, and together with full

support for feature vectors. VDMS goes beyond the traditional SQL or OpenCV level interfaces

that do one or the other.

– Performance: We show how a unified system such as VDMS can outper- form an ad-

hoc system constructed with well-known discrete components. Because of the capabilities we have

built into VDMS, it handles complex queries significantly better than the ad-hoc system without

compromising the performance of simple queries.

In order to evaluate VDMS in a realistic use case, we use the YFCC100M dataset [9]. The

YFCC100M is the largest public multimedia collection. It con- tains the metadata of around 99.2

million photos and 0.8 million videos from Flickr, plus expansion packs that include a variety of

multidimensional data, all of which were shared under one of the various Creative Commons

licenses. We have used this dataset for multiple proof of concepts and applications within our

research lab.

We show how VDMS can be used as a centralize point for data management and data access

even when having multiple modalities of data: Metadata, Image, Videos, and Feature Vectors.

VDMS Design & Implementation

In this section, we describe VDMS design principles and implementation, which was briefly

introduced in previous work [1]. Figure 1 depicts the high-level archi- tecture of VDMS. VDMS

implements a client-server architecture that handles client requests concurrently, and

coordinates query execution across the meta- data and visual data components in order to

return a unified response. Users interact with both metadata and visual data (i.e., images,

videos, feature vec- tors) using a unified API, in a transactional manner.

The metadata component is the Persistent Memory Graph Database (PMGD) and the (visual) data

component is our Visual Compute Module. The Visual Compute Module enables machine-friendly

enhancements to visual data, expos- ing high-level abstractions to the Request Server for dealing

with a variety of images and video formats (through OpenCV and ffmpeg), and different methods

for indexing for feature vectors (including Facebook’s Faiss [10], TileDB [11]). Finally, a main

component of VDMS is in charge of implementing the API and orchestrating between the PMGD

and the Visual Compute Module to serve client’s requests. This component is the Request Server.

VDMS and its components are fully available as open source projects We briefly describe each of

the main components as follows:

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 4

Visual Compute Module Persistent Memory

Graph DB TileDB OpenCV

Fig. 1: VDMS Architecture

1.1 Persistent Memory Graph Database

We use the Persistent Memory Graph Database (PMGD) to provide an effi- cient storage

solution addressing the increasing popularity of connected data and applications that benefit

from graph-like processing. PMGD implements an in-persistent-memory graph database,

PMGD, optimized to run on a platform equipped with persistent memory. PMGD provides a

property graph model of data storage with the traditional atomicity, consistency, isolation, and

durability (ACID) properties expected from databases. Graph represents an easier abstrac- tion

to model complex problems [12]. Moreover, the graph model makes it very suitable for the data

and access patterns shown by visual metadata, which can be easily mapped into application-level

abstractions by developers. For instance, abstractions like BoundingBoxes associated to images or videos

can be easily rep- resented using nodes and edges. With its natural ability to extend the schema

very easily (due to the use of a property graph model), we can support new developments in

machine learning that can lead to enhancements to existing metadata over time. These are the

reasons the team chose a graph database over a relational database as the metadata

management for the implementation of VDMS. PMGD is designed and optimized for

persistent memory technolo- gies like Intel Optane [13], which promise storage providing nearly

the speed of DRAM and the durability of block-oriented storage.

Machine Learning Pipelines / End Users

Request Server

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 5

1.2 Visual Compute Module

The Visual Compute Module was designed and implemented to provide an in- ternal abstraction

layer for interacting with visual data. It enables simple visual data handling and processing (i.e.,

basic building block operations like crop, re- size, etc). For traditional formats (jpg, png, tiff, mp4,

etc.), the interface is an abstraction layer over OpenCV. However, it also provides a way to use

novel formats that are better suited for visual analytics: a novel, array-based lossless image format.

This format is built on the array data manager TileDB [11] and is well suited for images that

are used in visual analytics.

VDMS provides full support for video storage and operations, in a similar way it does for images.

This includes support for encoding, decoding, and transcoding of mp4, avi, and mov containers, as

well as support for xvid, H.263 and H.264 encoders. This is supported through the use of either

OpenCV [14] or libffmpeg [15], or both. All operations supported for images in VDMS are also

supported at the video and frame level of the API. On top of that, there are a number of

video-specific operations that are supported, such as the interval operations, enabling users to

retrieve clips at different frames-per-second (FPS) versions of the video.

Another key differentiating factor of VDMS is that it allows the creation of indexes for high-

dimensional feature vectors and the insertion of these feature vectors associated with entities,

images, and/or videos. Feature vectors are in- termediate results of various machine learning or

computer vision algorithms when run on visual data. Feature vectors are also known as descriptors

or vi- sual descriptors. We use these terms interchangeably. These descriptors can be classified,

labeled, and used to build search indexes. Feature Vectors support is provided through our

implementation based on high-dimensional sparse arrays, also using TileDB. In addition, the Visual

Compute Library provides a wrapper for another high-dimensional index implementation,

Facebook’s Faiss [10].

1.3 Request Server

Developers and users of machine learning frameworks and data science appli- cations favor simpler

interfaces to access and process data. They cannot be ex- pected to deal with two different ways of

interacting with information (metadata and visual data) instead of focusing on the algorithmic parts

of their pipelines. VDMS takes care of coordinating client requests across the metadata and the

visual data, and managing multiple clients through the Request Server. The Re- quest Server is a key

component of the system, as it implements VDMS’ API and coordinates request and responses from

the PMGD and Visual Compute Mod- ule subsystems. It decomposes the user queries into

metadata and visual data requests, invokes the relevant calls behind the scene, and returns a

coherent and unified response that is easy for the user to parse and interpret.

1.4 VDMS API

One of the most important differentiating factor of VDMS is its interface. VDMS is unique in

recognizing visual entities (i.e., images, videos, etc) as first class cit- izens. Thus, VDMS provides

an API that revolves around visual data operations and retrieval. VDMS API is easy to use and

explicitly pre-defines certain prim- itives associated with metadata, images, videos, and feature

vectors. Authors have paid particular attention to hide the complexities of our internal imple-

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 6

mentation and up-level the API to a JSON-based API, which is very popular across various

application domains. By defining a new JSON-based API, there is a trade-off between

expressiveness (compared to well-established query lan- guages like SPARQL, Gremlim, or even

SQL) and the ability to natively support visual data operations. However, we believe it is possible

for our API to achieve similar levels of expressiveness compared to more mature query languages

over time.

1.5 Client Library

The client library implements TCP/IP based connectors to the VDMS Server, similar to most

database [6, 16]. Users can connect to VDMS and implement queries using VDMS’ API by

defining JSON commands conforming to the query protocol we have defined. The client library

provides a simple method that ac- cepts a JSON string and an array or vector of blobs. Internally,

the library wraps the query string and blob using Google Protobufs [17] and sends it to the VDMS

server. It also receives a similarly formed response from VDMS and returns it to the client. The

responses require JSON parsing on the client side for the metadata string that indicates how to

interpret the blobs field. Currently, client libraries are implemented for Python and C++ client. The

client libraries are lightweight, as they simply implement the communication protocol between the

client and the server. This makes it easier for developers to implement similar client libraries using

any other programming language of their choice.

2. Evaluation

We have used the YFCC100M dataset to evaluate different aspects of our system. We use the images

in the dataset and its associated metadata to implement an image-search engine based on

properties associated with those images. This is a very common use-case we have encountered

when building applications such as smart-retail, sports applications, and video summarization.

For these type of applications, the starting point is usually a large set of data that must be

curated before proceeding with the data processing (such as neural network training). In order

to evaluate the different aspects of the performance on the image search, we have built a

baseline following the methodology used in the industry, and following what we have done in

the past in order to solve the data search problem, which we describe in Section 3.3. We have

also included performance evaluation on the Video and Feature Vectors functionality in the

appendix for further reference, together with a description of the key aspects of those

functionalities.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 7

Fig. 2: Comparison Systems: Logical view of the interaction between the client application with

VDMS (left) and the baseline system (right).

1.6 YFCC100M Dataset

The Yahoo! Flickr Creative Commons 100m (YFCC100M) dataset is a large collection of 100

million public Flickr media objects created to provide free, shareable multimedia data for

research. This dataset contains approximately

99.2 million images and 0.8 million videos with metadata characterized by 25 fields such as the

unique identifier, userid, date the media was taken/uploaded, location in longitude/latitude

coordinates, device type the media was captured, URL to download the media object, and the

Creative Commons license type information. The YFCC100M dataset also contains autotags

provided as a set of comma-separated concepts such as people, scenery, objects, and animals from

1,570 trained machine learning classifiers [9]. Together with each autotags, there is a probability

associated with each tag to indicate certainty of the classification. This is, an image can have the

autotags ”people”, ”person”, ”party”, ”outdoor”, and each autotag assigned will be accompanied by

a probability of that autotags being present in that image/frame. We have also used feature vectors

generated for every image and first frame of every video [18] to implement a similarity search.

Given that there is no standard benchmark oriented towards visual data queries, we have built a

series of queries to filter this dataset that is modeled after our internal use cases for many of the

mentioned applications we have worked with.

1.7 Experimental Setup

Given that there are no other open-source systems that provides similar func- tionality and

interfaces as VDMS, we have implemented an equivalent visual data management system as a

baseline, comprised of a combination of widely available, off-the-shelf components: MySQL

Server 5.7 (for storing metadata), Apache Web Server 2.4.18 (as interface for image access), and

OpenCV 3.3 (to provide pre-processing operations on images). We decided to use a relational

database instead of a non-relational database because [19, 20]:

– Relational databases support atomicity, consistency, isolation, and durability (ACID)

while non-relational may compromise some ACID properties.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 8

– The YFCC100m data is clearly structured.

– We need to efficiently collate and return metadata records.

The baseline implementation only partially replicates the functionalities that VDMS offers

when it comes to image and metadata handling, built for the pur- pose of an ad-hoc image

search implementation. This implementation is based upon internal tools used for ML-based

pipelines for media. We have implemented a set of client-side applications that take care of

retrieving the components from the different systems, and applies pre-processing operations when

needed. For vi- sual data workloads, building an approach like the one implemented as a baseline

for this work is the common practice in the industry [12, 21].

For all our experiments, we use two servers, one hosting a VDMS server and another hosting the

baseline implementation. Both servers have a dual-socket Intel® Xeon® Platinum 8180 CPU @

2.50GHz (Skylake), each CPU with 28 physical cores with hyper-threading enabled, for a total

of 112 logical cores per server. The server hosting MySQL has 256GB of DDR4 DRAM, while the

server hosting VDMS has 64GB of DDR4 DRAM. We decided to run VDMS server in the

machine with less DRAM to make sure MySQL had no disadvantage, and be- cause previous evaluation

indicated smaller footprint in the case of VDMS when compared to similar baselines based on

MySQL. Other than the difference in DRAM space, machines are identical. Both servers run Ubuntu

16.04. The client application running the queries and measuring round-trip time is connected to

the server through a 1GB wired link through a 10GB back-plane switch, same as both servers.

Figure 2 shows a logical view of the difference between the interac- tion of the client application

(retrieves metadata and images) with VDMS (left) and the baseline (right). The client

application was implemented using Python 3 for both VDMS and the baseline.

It is worth noting that the images are stored in a shared repository (ext4

filesystem on a RAID 6 configuration of 16TB) that both Apache WebServer and VDMS have

direct access. In the case of Videos, only the first frame is used for the image search. More

information and evaluation on video-specific func- tionalities can be found in the appendix of this

work. In the case of the baseline, metadata is stored in MySQL using an attached SSD disk. Even if

VDMS has native support for Optane Persistent Memory, we do not use it in this experi- ment

because of fairness of comparison with respect to MySQL, which was not designed for Persistent

Memory type of storage. The benefits of Persistent Mem- ory for metadata and a full evaluation of

the PMGD subsystem is material for another paper, and outside the scope of this evaluation. For

this experiment, in the case of VDMS we simply use a similar attached SSD disk to store

metadata. Even if PMGD, the graph database used by VDMS, is designed for persistent memory, it

can deliver good performance when using SSDs directly, while still providing ACID-compliant

transactions.

For the metadata, we built VDMS and MySQL databases using the YFCC100M dataset with

incremental database sizes. For simplicity, we named the database based on the approximate

number of images it contains, as follows: 1M, 5M, 10M, 50M, 100M. The VDMS and

MySQL databases have comparable number of elements. The exact number of

images/elements in each database are shown in Table 1 and 2. The differences can be

attributed to failures in data prepa- ration/loading because of incomplete/inconsistent

formatting, which is common in large datasets [22]. In our set up, that difference is very small:

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 9

less than 0.1% in terms of number of elements (images and/or metadata information).

Data Representation VDMS:

For each database size, we created an instance of VDMS using the image/video metadata, the

machine-generated autotags asso- ciated with each image/video identifier, and the list of 1,570

autotags. Internally, that information is represented as a property graph, where we have one node

for each image, one node for each tag (always 1,570 tags), and a connection between each image

and its respective tag(s). For instance, if an image has four autotags assigned, there will be four

connections between that image and the different nodes for those autotags. The probability the

autotag is present in an image is expressed as a property in the connection between the two nodes.

Figure 3 shows an example on two images, two autotags, and the connections between those au- totags

and the images. Image id 23143252 has two autotags assigned: Alligator with probability 0.285, and

Lake with probability 0.872. Image id 86756231, on the other hand, has a single autotags assigned:

Alligator with probability 0.894. On average there are 8 tags assigned to each image so there will

be around 8 times more connections than images, as shown in Table 1. Also, each image node will

contain multiple properties associated with it (some of which are listed in Section 3.1). The number

of nodes (representing images and autotags) are de- pendent on the database size and the

connections are responsible for 90% of the elements in each database instance, as shown in

Table 1. It is also important to note that we create indexes for the image identifier, autotags

properties, and longitude/latitude coordinates to enable faster retrieval.

MySQL/Baseline: Each MySQL database is created in a similar manner as VDMS but the data is

represented as three tables, following the relational model:

1) images table: contains one row per image, and a column for each property associated with the

images (some of which are listed in Section 3.1); 2) taglist table: contains one row per autotag

element (always 1,570 rows); 3) autotags table: contains one row per autotag assigned to an image.

Each row contains a foreign key to the image, a foreign key to the tag, and the probability

assigned

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 10

Fig. 3: VDMS Data Representation Using a Property Graph: Example on two images and 2

autotags with their respective probabilities expressed in the con- nection. Image id 23143252 has two

autotags assigned: Alligator with probability 0.285, and Lake with probability 0.872. Similarly, Image

id 86756231 has a single autotags assigned: Alligator with probability 0.894.

To that tag belonging to that image. Given that there are 8 autotags, on average, per image, the

autotags table has around 8 times the number of rows present in the metadata table, as can be seen

in Table 2. Using a Python client and simple queries, the taglist table is read from the list of tags

with an auto-incremented tagid as a primary key, and the metadata table is read from the

YFCC100M metadata using the identifier as a primary key. The autotags table contains the

generated autotags and probabilities for entries of the images table. To generate the table, we split

the autotags data for each database by the image identifier and autotag into new files. The new

files are read into the autotags table with the image identifier and tagid as foreign keys.

In an attempt to have the best MySQL configuration possible for this use case, we explore several

parameters to increase the performance of both load- ing the data, as well as executing the

queries. In particular, MySQL optimizes threads and transactions out-of-box, but it cannot handle

the entire YFCC100M dataset without configuring specific parameters. When creating large

databases, a data lock may occur to protect the data from concurrent updates [23]. To avoid

this mechanism, we increased the buffer pool size to increase the amount of memory allocated to

internal data structures. It is recommended to set the buffer pool size to 60-80% of the physical

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 11

memory size [16, 23]. However, the time to build a database increased. We later changed the

buffer pool size to a multiple of the default value, i.e. 16x, which produced the best results for

loading time.

By default, MySQL uses the available operating system threads to execute n requests in parallel

where n is the number of background read/write I/O threads. Setting the respective parameters in

the MySQL configuration file can limit the number of concurrent threads and the number of

background threads. When a limit is set on the number of threads, and no threads are available,

requests will go into a FIFO queue until threads are available to execute the request [16, 23]. We

ran a few experiments investigating the effects of setting a limitation on the number of concurrent

and background threads. We concluded that the default settings perform better for large databases

instead of setting a limit. Therefore, we let MySQL automatically handle the concurrency.

In the case of VDMS, we did not attempt to tune any parameter to avoid unfairness in the

comparison against the baseline. Unlike the baseline, VDMS can handle the entire YFCC100m

dataset using the default parameters provided by the implementation. For both VDMS and the

baseline, we created indexes over the properties we used for search, such as name of autotag, and

geo-location values. Building indexes for the right properties and objects is basic operation that

would be present in any real-world deployment, and measuring performance without them would lead

to useless analysis in our real-world applications and use cases.

Database Building Time One of the first things we noticed is the difference in the time needed to

build each database, where VDMS outperforms MySQL by a large margin. This analysis includes

only the metadata, as the images are stored in a shared filesystem. Figure 4 illustrates how VDMS

can build databases faster than MySQL, and how the speedup is sustained as the database size

grows. Key difference in the build times are attributed to the low-level implementation of how

MySQL reads and stores data from the files, the optimizations (increased InnoDB pool size,

etc.) needed to handle large datasets such as YFCC100M, and the efficiency of PMGD. On

average, it took MySQL around 3.72x longer to build each database than VDMS.

Database Storage Footprint Another important aspect to note is that VDMS requires more storage

for metadata, shown in Figure 4. This is space used to store information about each

node/connection. The Graph Database internal to VDMS (called PMGD) was designed for

performance, especially in environments where persistent memory is present. This design decision

comes as a trade-off for storage footprint, which is noticeable in our results. VDMS required 30-

41% more storage than MySQL for storing the same amount of metadata. This may become a

factor if storage is a limitation, but it should also be noted that even if we have a 41% increase in

metadata size, metadata accounts for less than 2% of the overall database size. For example, the

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 12

largest database (both metadata and images) we built (100M) has around 230GB of metadata

and 12TB of images. In systems where persistent memory is a scarce resource, the increased

storage foot print of PMGD may represent a challenge. On the other hand, persistent memory

is expected to be available in the order of TBs per server, which should fit the metadata of

intensive use-cases [13].

1.8 Images Search

In order to evaluate VDMS and the baseline on our use-case queries, we imple- mented 5 queries

that filter and retrieve a specific set of images. We chose these queries because they represent

typical use-cases where a cohort of images is to be retrieved and processed from a large corpus of

data. As we mentioned before, we took this approach due to the lack of standard benchmarks that

are oriented towards visual data retrieval. We use the metadata associated with the images to

filter said images.

We use the autotags (as they contain information about the content of the im- age), and geo-location

information (latitude/longitude) of the images for search and filtering. Note that, even if we use

geo-location for our study, any other property assigned to the images can be used to refine the

search in both VDMS and baseline implementations. On top of that, and for our use cases, we

would like to extract more information about the content of the image through the use of ML,

such as Convolutional Neural Networks [24]. For this, we resize the images to 224x224, which is

the input layer size for popular variations of neural networks for object detection on images [25].

To evaluate the access to metadata and images, we use the following queries, modeled after our

internal use cases:

– q1 - 1tag: Find metadata/images with one specific autotag (i.e. alligator, lake, etc).

– q2 - 1tag resize: Find metadata/images with one specific autotag and resize to

224x224.

– q3 - 1tag resize geo: Find metadata/images with one specific autotag, re- size to

224x224, and in a particular geo-location (with a 20 degrees radius in latitude and longitude).

– q4 - 2tag resize geo and: Find metadata/images with two specific auto- tags (i.e.

alligator AND lake), resize to 224x224, and in a particular geo- location (with a 20 degrees radius

in latitude and longitude).

– q5 - 2tag resize geo or: Find metadata/images with either of two specific autotags

(i.e. alligator OR lake), resize to 224x224, and in a particular geo- location (with a 20 degrees

radius in latitude and longitude).

It is important to note that when querying for images with certain autotags, we also apply a filter

using the probability. For instance, we only retrieve images with an autotag alligator and a

probability higher than 92%. These probabilities are both present in VDMS (in the form of a

property of the connection between the image and that autotag), as well as in MySQL (in the form

of a column in the autotags table that links images with tags). In the case of VDMS, the query

involves a graph traversal query that starts from the autotag node and ends in the images node,

following connections between the image and that autotag). In the case of the baseline

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 13

implementation, the query involves JOIN operations between the 3 tables. The implementation of

this evaluation, as well as all the queries, are available under the benchmarks branch of the

VDMS project.

Also, note that the size of the result (number of images retrieved) is linear with the size of the

database. This is, if a query returns 100 images for the 1M database, it will return around 1000

images for the 10M database. This poses a problem when evaluating performance as the size

of the database increase, and clearly understanding the measurements. Because of this reason, we

control the number of returned images for all the databases using the probability of the autotags

(higher probabilities returns less images), so that the queries in this experiment return a similar

number of images for all database sizes. In other words, as the size of the database increase, we

increase the probability threshold for the queries. We do this for both VDMS and the baseline, of

course. This way, we remove bottleneck introduced by network bandwidth that would otherwise

over-complicate the understanding of the results.

Image search based on metadata is very expensive in large databases. Because of the large volume

of data, the processing of the retrieved images is performed in parallel, using multi-core and/or

distributed systems. For instance, a com- mon implementation of an image processing pipeline

would involve the use of distributed processing frameworks like Hadoop [5] or Spark [4].

Consequently, it is key that the data management system used supports concurrency, providing

multiple workers with data in parallel. The ability to scale with the number of simultaneous

clients is key for the applicability of visual data management systems like VDMS. Because of

this, we put emphasis on the analysis of concurrency and throughput, rather than latency.

Concurrency Analysis Figure 5 illustrates a concurrency analysis for q2 (1tag resize), described above,

using both VDMS and the baseline. Here we evaluate the scalability of both systems, as the

number of concurrent clients grows (x-axis) and as the size of the databases grows (each full-

line represents a database size for VDMS and each dotted-line represents a database size for

the baseline).

We start by analyzing Figure 5 (top), which shows aggregated throughput (transactions per

second) when retrieving only metadata associated with the images, as the number of concurrent

clients increase. The first thing to notice is that at low concurrency (2 to 8 concurrent clients),

both systems show similar performance, except in the 100M case of the baseline. Note that, for

this particular experiment, baseline translates directly to MySQL performance, as the

metadata-only queries only involve running a query to MySQL. For the base- line system, in

the case of 100M, the increase in the size of data seems to have a larger impact in

performance. This result can be attributed to the increase in the complexity of the JOIN

operation as the number of rows in the tables increases.

Another thing to notice is that, as the number of concurrent clients increases, VDMS throughput

continues to increase up to 56 threads, which is the hard- ware concurrency of the system.

Also, more parallelism after 56 threads does not increase the delivered throughput, and it is

actually slightly detrimental (112 concurrent clients case). On the other hand, the baseline seems to

deliver less aggregated throughput after 16 threads, with an increase for 64 threads, but these

effects are hard to interpret fully as the standard deviation in the measurements is high. We noticed

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 14

throughout many experiments that MySQL results showed higher standard deviation, meaning less

consistent and noise measurements, when compared to VDMS. We tried increasing the number of

measurements and discarding outliers but were not able to get less noisy results.

We continue by looking at Figure 5 (bottom), which shows aggregated images per second delivered

by each system. Again, we evaluate the scalability of both systems, as the number of concurrent

clients grows (x-axis) and as the size of the databases grows (each full-line represents a database

size for VDMS and each dotted-line represents a database size for the baseline). Note that most of

the baseline dotted-lines are very close to each other. This is mostly an effect of the log-scale used,

which is needed to clearly depict the difference between VDMS and the baseline. Here, the

baseline is the full architecture described in Figure 2 (right). Figure 5 (bottom) shows a similar

trend as the top figure when it comes to low concurrency. The baseline does as good and even

better than VDMS with 2 or 4 concurrent clients. However, as concurrency increases beyond 4

concurrent clients, the difference in throughput becomes clear, with VDMS reaching its peak

performance at 56 concurrent clients. This query (as well as q3, q4 and q5) runs a resize operation

on the image, an operation that requires decoding, resizing, and encoding the image before

sending it back to the client. These operations are mainly compute bound, and that is the reason

for the system to stop scaling beyond the number of physical cores. In contrast, the baseline does

not scale nearly as well as VDMS, and we see that even after increasing concurrency, the increase

in throughput is just about 2x. When comparing the case of 56 or 64 concurrent clients, VDMS

delivers between 8x and 10X the throughput.

There are many reasons why we see this performance improvement, the main being that the entire

operation (metadata query, image fetching and resizing) happens on the server side in the case of

VDMS, within a single message exchange between the client and the server. Many of the

inefficiencies that come with combining tools that were designed for other use cases simply

disappear when building a tool that treats visual entities as first class citizens, as it is the case of

VDMS. Another reason, which is quantifiable in the bottom figures, is that VDMS sends resized

(smaller) versions to the client instead of the full image to be resized on the client side (as is the

case in the baseline). This is in contrast with the baseline, where 2 rounds of blocking back-and-

forth communication with the server is needed, as depicted in Figure 2. Note that on the point 1),

one could argue that the opposite will happen when the resize operation retrieves a up- sampled

(larger) version of the image instead of a down-sampled (smaller) one. In practice, retrieving an

up-sampled version is not a common use case, given that up-sampling the image does not add

any extra information that can help, for instance, improve the accuracy of a ML model. The case

of down-sampling the original image is much more common and is the common practice when it

comes to image processing through CNNs [24, 25].

Query Execution Analysis The next step in our analysis involved running a different set of

queries (described above in this section), to better understand the performance of the systems

under different query conditions. Figure 6 shows the evaluation of the queries we analysed for

our use case. Top figures show the throughput of these queries retrieving metadata associated

with the images. Bottom figures show the throughput when retrieving both metadata and images,

plus operations applied to images when applicable (queries 2, 3, 4,and 5). The experiments show

the performance of both systems (VDMS and baseline) as the database size increases in terms of

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 15

number of images. These queries were run using 56 simultaneous clients (nthr = 56), and

averaged over 10 runs (niter = 10), each client running the retrieval of the tag 2 times (ntags = 2).

The last parameter (ntags) is to avoid having some queries to finish the work too fast before other

clients can even send the query to the server. This ensures that there is enough work to do in

a query so that all queries execute in parallel on the server side. To analyze these plots, one

needs to compare the full-line (VDMS) versus the dotted-line (baseline), each color representing a

different query. For example, to compare q1 performance, one needs to look at the full- red line

(VDMS) and the dotted-red line (baseline).

Metadata Retrieval First, we analyze the top figures, showing metadata transactions per second.

We evaluate the performance when retrieving only metadata associated with the images, and

not the images themselves. In this particular case, the baseline translates directly into MySQL

performance. Note that for these figures (top), q1 and q2 are essentially the same query. This is

because the metadata retrieved for both queries does not change. The only difference between

q1 and q2 is the presence of the resize operations that does not have any impact on analyzing

performance of metadata retrieval. For q1 and q2, we can appreciate higher performance being

delivered by VDMS when compared to the baseline, and how this improvement is maintained

as the size of the database increase. For q3, we see that MySQL performs best when the

database size is small (1M images), with VDMS outperforming MySQL as the database

increases in size. For q4, we see MySQL also outperforming VDMS on small size databases, and as

the database size increase, the gap between the two narrows, similar to what we see for q5. It is

interesting to note that adding filtering by geo-location (q3, and q4) slightly increases the

performance of MySQL for small databases, and decreases it as the database sizes scales. The

behaviour is different in the case of q5, which also filters by geo-location. This is attributed to the

fact that OR queries involves processing larger results, and thus does not benefit from the

filtering of the AND operation as q4. In the case of VDMS, we see q3 performance is comparable

to q1 and q2, but q4 suffers significantly when the scale of the database increases. The reason for

that lack of scalability lies on the query implementation: given that VDMS does not yet support

operators that enable querying images that have both connections to a tagA and a tagB ; we have

to implement this transaction by doing 2 retrievals. This involves retrieving partial information

in the first retrieval, applying an INTERSECTION operation in the client, and doing a second

retrieval to bring the right metadata and/or images. The reason for this is a lack of operations

that would enable this query to be run entirely on the server is not an inherent limitation to

VDMS but rather just a missing implementation. In the case of q5, we see a similar effect,

although it is worth noting that for the OR operation there is no need for 2 retrievals. Rather, a

single retrieval is performed and the result filtered on the client. Future release will add more of

such operators (AND, OR, etc) in order to prevent unnecessary retrievals and extra filtering on

the client side.

Image Retrieval We continue by analyzing the bottom figures, showing measured throughput, as

images per second, delivered by each system. For the case of VDMS, q1 (full-red-line) shows less

throughput than q2 (full-blue-line) (bot- tom left figure). This is expected as q1 returns a full size

version of the image, whereas q2 returns a resized (smaller) version of the image, thus

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 16

transferring less data over the network. In the case of the baseline, both q1 and q2 transfer the full

size version of the image, and as part of q2, the resize is performed in the client. This is why,

contrary to the VDMS case, q1 performs better (even if slightly) when compared with q2. We

can also see that, for VDMS, q3 per- form worst than q2 because of the extra step needed for

filtering based on geo- location. Moreover, we see a great performance degradation in the case of

q4 as the database size increases. This is entirely attributed to the 2-round process needed for

this query, as we explained before. From the first 3 queries, as well as q5, we clearly see that

VDMS outperforms the baseline when retrieving visual data and applying operations. This is

one of the most important finding, as it validates the design principles of VDMS, which aims to

provide scalability and performance acceleration at the type of queries that require visual data

access and transformations.

Finally, Figure 7 summarizes the results. We see up to 35x speedup (for the case of q2), and an

average improvement in throughput of about 15x. More importantly, we see that the speedup

increases as the database size grows, showing that VDMS scales better than the baseline. We

also see how q4 shows poor performances and scalability when compared to the baseline, and

this evaluation served the purpose of understanding the importance of VDMS server side

operators that enable more complex queries for our use cases. The team will address the missing

implementation as part of future work. Most of the performance improvements can be

attributed to the design principles of VDMS, which aims to eliminate the need of combining and

re-purposing systems that were designed to handle types of date other than visual. VDMS, by

design, eliminates all the inefficiencies that result from a forced integration of components

designed for a different range of applications.

2 Conclusion

In this paper, we described VDMS design and implementation and show a comprehensive

evaluation on our Image Search Application. We use one of the largest publicly available datasets:

The Yahoo Flickr Creative Commons 100M (YFCC100M), together with the expansions packs

that include machine-generated labels and feature vectors. We show how VDMS compares against

a combination of industry standard systems, all of which are needed to replicate a only portion

of VDMS’ functionality. We see improvements up to 35x in certain queries, and an average

improvement of about 15x. The design of VDMS, which was conceived as a data management

system that treats visual entities as first class citizens, can remove inefficiencies that result from

re-purposing and combining solutions that were not designed for the job while providing

simpler and richer interfaces. VDMS’ easy-to-use interfaces outperform industry standard systems

with a set of functionalities which, to the best of our knowledge, are not avail- able in any

other single data management solution for visual data. VDMS was designed for analytics and it

can efficiently handle complex queries which can simplify the design of future applications

that rely on visual data.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 17

References

1. N. shown during submission, “Not shown during submission.,” Systems for Ma- chine Learning

Workshop (SysML) at NIPS, Montreal, Canada, 2018.

2. P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann, “The multi-

dimensional database system rasdaman,” in Proc. of the 1998 ACM SIGMOD, SIGMOD ’98, pp. 575–577,

ACM, 1998.

3. R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman, “Learning object categories from google’s

image search,” in Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, vol. 2, pp.

1816–1823, IEEE, 2005.

4. The Apache Software Foundation, “Apache spark: Lightning-fast cluster comput- ing.”

https://spark.apache.org/.

5. The Apache Software Foundation, “What is apache hadoop?.” https://hadoop. apache.org/.

6. MemSQL Inc., “The real-time data warehouse you can run anywhere.” https:

//www.memsql.com/.

7. A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and C. Bear, “The vertica

analytic database: C-store 7 years later,” Proc. of the VLDB Endow- ment, vol. 5, no. 12, pp. 1790–1801, 2012.

8. P. G. Brown, “Overview of SciDB: Large scale array storage, processing and anal- ysis,” in Proc. of

the 2010 ACM SIGMOD, pp. 963–968, ACM, 2010.

9. B. Thomee, B. Elizalde, D. A. Shamma, K. Ni, G. Friedland, D. Poland, D. Borth, and L.-J. Li,

“Yfcc100m,” Communications of the ACM, vol. 59, p. 64–73, Jan 2016.

10. J. Johnson, M. Douze, and H. J´egou, “Billion-scale similarity search with gpus,”

CoRR, vol. abs/1702.08734, 2017.

11. S. Papadopoulos, K. Datta, S. Madden, and T. Mattson, “The tiledb array data storage

manager,” Proc. VLDB Endowment, vol. 10, pp. 349–360, Nov. 2016.

12. V. Venkataramani, Z. Amsden, N. Bronson, G. Cabrera III, P. Chakka, P. Dimov,

H. Ding, J. Ferris, A. Giardullo, J. Hoon, et al., “Tao: how facebook serves the social graph,” in Proceedings

of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 791–792, 2012.

13. IntelPR, “Intel and micron produce breakthrough memory technology,” 2015.

14. G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision in C++ with the OpenCV

Library. O’Reilly Media, Inc., 2nd ed., 2013.

15. Libffmpeg, “Ffmpeg library.” http://source.ffmpeg.org.

16. Oracle Co., “The world’s most popular open source database.” https://www. mysql.com/.

17. K. Varda, “Protocol buffers: Google’s data interchange format,” Google Open Source Blog,

Available at least as early as Jul, vol. 72, 2008.

18. G. Amato, F. Falchi, C. Gennaro, and F. Rabitti, “Yfcc100m-hnfc6: A large-scale deep features

benchmark for similarity search,” in Similarity Search and Applica- tions, pp. 196–209, Springer International

Publishing, 10 2016.

19. N. Jatana, S. Puri, M. Ahuja, I. Kathuria, and D. Gosain, “A survey and compar- ison of relational

and non-relational database,” International Journal of Engineer- ing Research and Technology, vol. 1, 2012.

20. Z. Li, “Nosql databases,” Jul 2019.

21. D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel, et al., “Finding a needle in haystack:

Facebook’s photo storage.,” in 9th USENIX Symposium on OSDI, vol. 10,

https://www.ijsat.org/
https://spark.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://www.memsql.com/
https://www.memsql.com/
http://source.ffmpeg.org/
https://www.mysql.com/
https://www.mysql.com/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 18

pp. 1–8, 2010.

22. E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and F. Cappello, “Model- ing and

tolerating heterogeneous failures in large parallel systems,” in Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis, pp. 1–11, 2011.

23. G. Hoydalsvik, “Mysql connection handling and scaling,” March 2019. https:

//mysqlserverteam.com/mysql-connection-handling-and-scaling/.

24. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” in Advances in Neural Information Processing Sys- tems 25 (F. Pereira, C. J. C. Burges, L.

Bottou, and K. Q. Weinberger, eds.),

pp. 1097–1105, Curran Associates, Inc., 2012.

25. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog- nition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

https://www.ijsat.org/
https://mysqlserverteam.com/mysql-connection-handling-and-scaling/
https://mysqlserverteam.com/mysql-connection-handling-and-scaling/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 19

Fig. 5: Concurrency Analysis on q2 (1tag resize). Hardware concurrency (number of physical cores in each system)

is shown with a blue vertical line (hw- concurrency = 56). Top figure shows aggregated throughput (transactions per

second) when retrieving only metadata associated with the images, as the number of concurrent clients increase.

Bottom figure shows aggregated throughput (images per second) when retrieving resized versions of the images, as the

number of concurrent clients increases.

Fig. 6: Performance Analysis using 5 queries from our use-case described in the Experimental Setup Section. We

show queries in different figures for readability reasons. Top figures show the throughput of the queries for just

retrieving metadata associated with the images. Bottom figures show the throughput when retrieving both metadata

and images, plus operations applied to images when applicable (queries 2, 3, 4 and 5). The experiments show the

performance of both systems (VDMS and baseline) as the database size increases. These queries were run using 56

simultaneous clients (nthr = 56), and averaged out of 10 runs (niter = 10), each client running 2 transactions (ntags

= 2).

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025044 Volume 16, Issue 2, April-June 2025 20

Fig. 7: Summary of performance gains for all queries. We see up to 35x speedup (q2), and an average of about 15x.

More importantly, we see that the speedup grow as the database size increases, showing that VDMS scales are better

than the baseline.

https://www.ijsat.org/

