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Abstract 

High Performance Computing applications are diverse and they operate in dynamic environments. This 

requires a shift in compilation techniques from static, hardcoded algorithm-driven approaches to dynamic, 

real-time optimizing strategies. Current compiler methodologies primarily rely on static code analysis to 

apply optimizations during the compilation phase. Optimization techniques such as loop unrolling, 

vectorization, and function inlining are only effective for predictable workloads. However, they lack the 

adaptive ability in changing runtime conditions and hardware variability. System specific optimizations 

can be manually applied by the programmer, but this makes the code less portable and requires rewrite of 

entire programs, thus increasing the cost of maintenance. Our approach includes a real-time performance 

monitoring system that can trigger a recompilation dynamically to change code execution patterns. 

Runtime feedback is used to identify bottlenecks such as core overutilization, cache inefficiencies, and 

memory bottlenecks. A distinctive feature of the system is feedback-driven real-time compiler 

optimization. Whereas the performance benefits of dynamically compiled code is offset by the overhead 

incurred from the monitoring and recompilation system, the overall efficiency of the program throughout 

its runtime improves incrementally over each iteration of dynamically recompiled code. This efficiency 

improvement can also lead to energy savings in terms of reduction in wasted computational resources. 

The work presented here lays the foundations for adaptable and feedback-driven compiler optimization 

strategies. 

 

Keywords: High Performance Computing (HPC), Just-in-time (JIT) Compiler, Low Level Virtual 

Machine (LLVM), Intermediate Representation (IR), GNU Compiler Collection (GCC), Recompilation 

and Optimization Decision Algorithm (RODA) 

 

1.  Introduction 

High-Performance Computing (HPC) systems are fundamental to a wide array of resource-demanding 

applications, such as scientific simulations, artificial intelligence and big data analytics. These normally 

function in dynamic and heterogeneous environments, where conventional static compilation techniques 

may leave room for performance improvements. While static optimization techniques such as loop 

unrolling, vectorization, and function inlining are applicable for predictable workloads, they lack 

adaptability to real-time conditions with changing runtime conditions and variations in hardware. This 
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situation necessitates a major shift in compiler design towards dynamic, feedback-driven and efficient 

optimization methodologies. 

 

Dynamic compilation has surfaced as a viable solution over time to bridge the disparity between static 

analysis and runtime variability. Utilizing runtime-invariant data allows dynamic compilers to implement 

sophisticated optimizations such as just-in-time specialization, branch elimination, and speculative 

execution, thereby significantly improving code execution efficiency. However, the overhead associated 

with runtime instrumentation (collection of metrics) and triggering of a recompilation will likely negate 

these performance enhancements and present a challenge to efficiency. Thus far, research in this area has 

investigated strategies to handle the overhead through development of lightweight runtime compilers and 

pre-optimized machine-code templates, with some of these indicating performance improvements ranging 

from 1.2x to 1.8x. 

 

Integration of runtime performance monitoring into a dynamic compilation system adds a new layer of 

adaptability. Feedback-directed optimization frameworks in existence, such as PEAK, demonstrate the 

possibility of iterative tuning to improve program performance across variable optimization scenarios. 

These systems use decision algorithms to determine critical code segments and perform optimizations 

effectively, resulting in noticeable improvements in execution speed and reduction in tuning time. 

Similarly, frameworks like ApproxTuner illustrate the potential of predictive modeling in the same context 

of dynamic compilation. 

 

Our system introduces an architectural overview that integrates real-time performance monitoring with 

dynamic recompilation. Unlike traditional methodologies, we seek to use an iterative process that 

incrementally enhances program execution patterns over time. This enhances runtime efficiency and 

minimizes computational waste in the form of power consumption, hence promoting energy 

conservation—an important aspect in high performance computing (HPC) environments where power 

efficiency dictates operational costs. Key to this framework is a feedback-driven optimization loop, which 

monitors the runtime environment constantly and triggers a recompilation of code whenever potential for 

optimization is detected. 

 

The issues with runtime variability and hardware diversity are addressed by our proposed system and it 

demonstrates feasibility for future adaptable compiler technologies. This paper details the system 

architecture, underlying methodology and experimental validations, laying the foundation for future 

developments in real-time compilation techniques tailored for dynamic computing contexts.  

 

2.   Literature Review 

The research work ApproxTuner: A Compiler and Runtime System for Adaptive Approximations aims to 

present accuracy-aware optimization of tensor-based applications while requiring only high-level end-to-

end quality specifications. The key contribution in ApproxTuner is a novel three-phase approach to 

approximation-tuning that consists of development-time, install-time, and run-time phases. It addresses 

the challenge of automatically selecting, configuring and tuning the parameters for combinations of 

approximation techniques while meeting end-to-end requirements on energy, performance and accuracy. 

[1] 
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The research work Fast, Effective Dynamic Compilation addresses the effectiveness of dynamic 

compilation while keeping in view the challenges in implementing it. The work also presents findings on 

the effective utilization of static compilation methods to optimize simple code segments while using 

dynamic compilation to address programmer annotated code segments with code templates. The research 

targets general purpose imperative programming languages, like C. Their dynamic compilation system is 

composed of both a static and a dynamic compiler. To achieve fast dynamic compile times, the static 

compiler produces pre-compiled  machine-code templates, whose instructions contain holes that will be 

filled in with run-time constant values. [2] 

 

The research work Compiler Technology for Parallel Scientific Computation presents an approach based 

on a program decomposition, parallel code synthesis, and run-time support for parallel scientific 

computation. The program decomposition is guided by the source program annotations provided by the 

user. The synthesis of parallel code is based on configurations that describe the overall computation as a 

set of interacting components. The compiler-generated code provides runtime support through 

redistribution of computation and data during object program execution. Techniques such as data 

alignment, operator placement, wavefront determination and memory optimization are applied to parallel 

code. [3] 

 

The research work Exploiting Parallelism for Energy Efficient Source Code High Performance Computing 

experimentally shows that energy efficiency is reduced by many factors, such as optimal architecture 

utilization, poor compilation optimization, to name a few. It presents a methodology that exploits 

parallelism, inherent in multimedia DSP applications, as well as in multimedia DSP processors and 

includes profile based compilation-approach which makes the source-to-source transformation more 

energy efficient. [4] 

 

The research work Power-Aware Compilation Techniques For High Performance Processors presents 

findings on power consumption from the perspectives of register spilling, functional unit usage in 

software-pipelined loops and memory accesses due to cache misses. These form the groundwork for 

energy efficient compilation techniques and the metrics that are of most interest during compilation. [5] 

 

The research work Compiler Transformations for High-Performance Computing aims to present a 

comprehensive overview of the important  high-level program restructuring techniques for imperative 

languages such as C and Fortran. Transformations  for both sequential and various types of parallel 

architectures are covered  in depth. Major transformations include data-flow based loop optimization, loop 

reordering, loop restructuring, loop replacement, memory access, partial evaluation, redundancy 

elimination and procedure call transformation. Various transformation frameworks are also illustrated in 

detail with appropriate benchmark results. [6] 

  

The research work A Script-Based Autotuning Compiler System to Generate High-Performance CUDA 

Code presents a novel compiler framework for CUDA code generation. The compiler structure is designed 

to support autotuning and a transformation strategy generator, an optimizer that yields performance 
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transformation recipes. These comprise a search space of possible implementations. This system has been 

demonstrably better than manually tuned libraries and GPU compilers. [7] 

 

3.    Architecture of Real-Time Performance Monitor 

A.  HPC Cluster Node 

The system targets High-Performance Computing environments with the need for dynamic optimization, 

equipped with modern multicore CPUs and, optionally, GPUs. The HPC clusters run on a Linux-based 

environment, as is standard in the scientific and high-performance computing scenarios due to their 

scalability, stability, customizability and advanced performance monitoring capabilities. Linux provides 

low-overhead profiling tools like perf and hwloc for hardware topology awareness. It allows fine-grained 

CPU affinity and NUMA-aware memory allocation, both of which are necessary for dynamic optimization 

strategies. 

 
Figure 1: Architecture of Real-Time Compilation and Performance Monitoring System 

 

B.  HPC System 

A High-Performance Computing (HPC) system consists of multiple interconnected nodes, with each node 

being equipped with multicore CPUs for high throughput execution, shared/distributed memory to hold 

large datasets during execution and avoid frequent memory accesses, and optionally GPUs to speedup 

parallel execution for SIMD workloads. HPCs operate in a Linux-based environment given its tuned 

performance benefits and easier low-level resource management. HPC systems are most commonly used 

in scientific simulations, data analysis, AI training and for any other use case where operations are 

performed on a massive scale on large datasets. They utilize techniques like distributed computing and 

vectorization to maximize throughput, to ensure performance requirements are met for resource-intensive 

tasks. For dynamic recompilation context, the HPC system includes a real-time performance monitor 

hooked into the runtime environment to capture runtime metrics. It also has a performance analysis engine 

to detect bottlenecks using a decision algorithm, RODA, and a compiler trigger to allow for recompilation 

during runtime without interrupting the program execution. This ensures that there is minimal to no 

manual intervention during execution. 
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C.  HPC Workloads 

The workloads of the HPC clusters typically consist of scientific and engineering applications written in 

low-level languages such as C, C++ and Fortran. These applications often include computationally 

intensive tasks in the problem domains of numerical simulations, intensive matrix transformations and 

data analysis pipelines. This makes them good candidates for  benefitting from dynamic optimizations. 

Optimization decisions are more beneficial particularly in these use cases than in managed languages like 

Python or Java for the reason that they allow explicit control of memory through the use of pointers. 

Unlike JIT-based languages, these application workloads rely on static compilation, which makes adaptive 

recompilation very effective at improving performance dynamically based on changing runtime 

conditions. 

 

D.  HPC Cluster Configuration 

An HPC cluster is a distributed system consisting of interconnected nodes. Each node has multiple CPUs 

and GPUs and hierarchical memory systems. In most cases, shared and distributed caches are used to 

improve memory access latency. The entire system is aware of its NUMA domains and is configured to 

optimize for memory accesses. 

 

E.  Performance Monitor 

The performance monitor tracks system and application performance metrics. Tracked metrics include 

CPU utilization, memory usage and execution time. It helps with identifying bottlenecks and optimizing 

resource allocation. It also ensures that the system is under efficient operation. In HPC environments, 

performance monitoring enables real-time analysis of resource distribution and aids in tuning system 

parameters to maximize efficiency. Advanced metrics also provide additional information about the nature 

of the program being executed and its behavior, which when analyzed can be used to iron out 

inefficiencies. 

 

F.  Performance Metrics Collection 

The real-time performance monitor is implemented using the perf Linux system package to collect 

performance metrics needed for optimization decisions. It provides low-level system performance 

monitors with minimal overhead using the Perf Events API, which allows directly accessing data in 

hardware performance counters.  

 

The following data is gathered by the monitor during program execution: 

● CPU Usage 

● Memory Utilization 

● Cache Miss Rate (to identify inefficient memory accesses) 

● Branch Mispredictions (to detect inefficient control flows) 

● Cycles Per Instruction (to determine if execution is compute-bound or memory-bound) 

 

Performance data is captured by the monitor at regular intervals using a light-weight, asynchronous, 

profiling thread. This reduces overhead incurred by monitoring the performance counters. Gathered data 

is then used as the input to the analysis engine, which checks for potential optimizations and triggers a 

recompilation if found necessary for performance improvement. 
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G.  Performance Analysis Engine 

Performance data collected from the monitor is then aggregated over defined intervals to identify 

inefficiencies in various domains.  

 

The analysis engine then classifies bottlenecks into categories such as: 

● Memory-bound (high cache miss rate) - Candidate for cache-blocking 

● Compute-bound (high CPI)- Candidate for vectorization and parallelization 

● I/O-bound (high context switching) 

 

It then uses a decision algorithm to estimate the impact of optimizations on the overall runtime of the 

system. If analysis indicates potential for improvement, the engine sends out a signal to the recompilation 

module to trigger a recompilation. This ensures that the benefits of optimization are significant enough 

that the overhead of recompilation does not degrade the overall performance. This results in an 

improvement in runtime performance. Otherwise, a recompilation is not triggered and the iteration 

continues. 

 

H.  Recompilation and Optimization Decision Algorithm (RODA) 

The decision process of the analysis engine is driven by a decision algorithm to ensure that a recompilation 

is triggered only when it nets an overall improvement to the program’s runtime.  

 

The following metrics are taken into consideration: 

 

● CPU Utilization (UCPU) 

● Memory Bandwidth Usage (Bmem) 

● Cache Miss Ratio (Cmiss) 

● Instructions Per Cycle (IIPC) 

● Execution Time (Texec) 

 

The workload is then classified as follows using Roofline Modelling: 

 

Compute-bound - 

𝐼 =  
𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
,𝐼 > 𝐼𝐼ℎ𝐼𝐼𝐼ℎ𝐼𝐼𝐼 

where, 

𝐼 = operational intensity 

This likely benefits from parallelization 

 

Memory-bound -  

𝐼𝐼𝐼𝐼𝐼  >  𝐼𝐼𝐼𝐼𝐼 𝐼ℎ𝐼𝐼𝐼ℎ𝐼𝐼𝐼 

where,  

𝐼𝐼𝐼𝐼𝐼  = observed cache miss ratio 

𝐼𝐼𝐼𝐼𝐼 𝐼ℎ𝐼𝐼𝐼ℎ𝐼𝐼𝐼 = predefined threshold 

This shows optimization potential for caching 
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Before triggering recompilation, the engine calculates estimated potential speedup using Amdahl’s law: 

 

 𝐼(𝐼)  =  
1

(1−𝐼) + 
𝐼

𝐼
 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

 

where,  

𝐼(𝐼) = estimated speedup with N threads 

𝐼 = parallelizable fraction of workload 

𝐼 = number of CPU threads used for parallelization 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  = overhead incurred  

 

Recompilation is only triggered if: 

𝐼 >  1 +  
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 +  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

 

where, 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = overhead time for monitoring 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  = overhead time for RODA 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = overhead time for recompilation 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = estimated runtime of optimized code 

 

RODA takes the following steps: 

 

1. Perform Roofline Modelling to determine whether the program is compute or memory bound 

2. Use Amdahl’s law to determine effective speedup achieved through parallelization 

3. Check if recompilation is feasible using the described relation 

4. Trigger a recompilation if required, along with the appropriately identified transformation 

5. Send a trigger signal to the compiler and reset monitor mode 

6. Continue the iteration until maximum optimization level is reached. 

 

I.  Compiler 

The compiler in an HPC system is responsible for compilation of programs written in high-level languages 

to efficient low-level machine code. It performs optimizations wherever possible to reduce runtime. 

However, most compilers used in HPC systems are limited to static compilation. Our architecture extends 

this by introducing dynamic compilation in response to changing runtime conditions. Static compilation 

generates precompiled function and code templates and includes profiling instrumentation to assist the 

runtime system. Whereas dynamic recompilation is facilitated by the performance analysis engine through 

the recompilation trigger signal. This includes an appropriately identified strategy to optimize code 

dynamically. The code is recompiled with given optimization parameters and then loaded onto the runtime 

system. Optimization strategies include loop unrolling, vectorization, parallelization and cache blocking. 

 

J.  Recompilation Module 

The recompilation module performs on-the-fly code transformations based on feedback received from the 

analysis engine. It uses just-in-time (JIT) compilation to dynamically optimize hotspot code regions. The 

module applies transformations such as memory access optimizations, loop unrolling or parallelization to 
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the bottlenecks that are identified by RODA. Precompiled templates generated during the initial static 

compilation phase are used to accelerate the recompilation process. These templates include placeholders 

for runtime-specific optimizations such as the use of OpenMP to speedup execution. These templates can 

either be pre-compiled and loaded during runtime or dynamically recompiled during execution. 

Recompiled code is loaded into the runtime environment by replacing the corresponding memory regions. 

For generating the initial templates and performing dynamic code transformations, LLVM and GCC are 

used.  

 

K.  Runtime Environment 

The runtime environment is designed to dynamically load optimized code after a recompilation is 

triggered. It also supports performance monitoring through the use of a real-time performance monitor. 

Metrics collected from the runtime system are used in the performance analysis engine to drive decisions 

about whether a recompilation is necessary to improve performance of the program under execution. The 

runtime system drives the feedback mechanism of the entire performance monitoring system to facilitate 

continuous and iterative performance improvements. 

 

L. Dynamic Recompilation Trigger 

Dynamic recompilation trigger primarily consists of two components: the performance analysis engine 

that uses RODA to determine if a recompilation is necessary, and a trigger system to send out a 

recompilation signal to the compiler. The decisions made by the performance analysis engine are driven 

by an algorithmic approach. Parameters can be modified before the monitor is started, and the engine 

automatically determines bottlenecks in performance based on defined thresholds. If a recompilation is 

needed, the appropriate transformation signal is sent out to the compiler to recompile the code. If 

performance degrades after recompilation, the system reverts to the previous code state using a rollback 

mechanism. 

 

M.  Optimization Loop 

The entire runtime system is looped to allow for continuous monitoring and triggering subsequent 

recompilations when necessary. This loop stabilizes the program when no  further optimization potential 

is detected while keeping the overhead to a minimum. If a previously applied compilation resulted in a 

performance degradation, it is reverted to the state previous to the degraded state. To prevent over-

optimization, reverting between states is not done indefinitely. 

 

4. Experimental Setup 

 

A.  Hardware 

All experimental evaluations were performed on a test-bench that mimics an HPC system with following 

configurations:  

 

Processor: AMD Ryzen 7 8845HS (8 cores, 16 threads) 

Base Clock Frequency: 3.8 GHz 

Boost Clock Frequency: Up to 5.1 GHz 

Memory: 32 GB DDR5 5200 MHz RAM 
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L2/L3 Cache: 8 MB/16 MB 

 

To ensure consistent results, CPU frequency scaling and other power management features were disabled 

during testing to prevent frequency adjustments from influencing performance. The CPU governor was 

set to performance mode, and the system was allowed to cool between consecutive runs to avoid thermal 

throttling. 

 

Only CPU performance was evaluated since the testing was limited to parallelization decisions based on 

performance metrics for individual core loads and overall runtime. 

 

B.  Software 

The software environment was configured with consistency of performance measurements in mind, while 

also ensuring compatibility with parallelization frameworks. The operating system used for all 

benchmarks was Arch Linux, a lightweight distribution running the Linux 6.x Arch kernel with no desktop 

environment to ensure headless behavior. The kernel was configured with default scheduler policies and 

CPU frequency scaling was explicitly disabled to maintain fixed performance states during benchmarks. 

The CPU governor was set to performance mode using cpupower. 

 

For an overview of performance monitoring, resource utilization was tracked using standard Linux utilities 

such as htop and btop, along with a custom Python script interfacing with the /proc filesystem. The custom 

monitor script was written to instrument CPU utilization and individual core performance, which then 

used the metrics to automatically adjust the parallelization model by dynamically recompiling the Cython 

extension based on CPU utilization thresholds. The compiled shared object file (.so) is then loaded onto 

the runtime system automatically by the monitor. 

 

All benchmarking was conducted in an isolated user environment, with no background processes running 

except essential system services. The system was programmed to reboot before each run to ensure ideal 

HPC conditions on the test bench. 

 

C.  Implementation 

Cython is a programming language extension of Python. It adds static type declarations allowing 

integration of C and C++ code with Python code. It also allows Python code to be compiled into highly 

efficient C extensions, hence offering significant performance improvements in computationally intensive 

tasks, which are known to benefit from low-level system languages. By supporting direct calls to C 

libraries and facilitating parallelization through OpenMP, Cython serves as a powerful tool for optimizing 

performance-critical applications while also maintaining Python's flexibility and simplicity. 

 

OpenMP (Open Multi-Processing) is an API that enables parallel programming in C, C++, and Fortran 

for the development of multi-threaded applications. It provides compiler directives, runtime routines and 

environment variables to distribute computational tasks across multiple cores. OpenMP is widely used for 

performance and runtime improvements in shared-memory systems through task parallelism and loop-

based parallel execution. 
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Perf is a powerful performance analysis tool for Linux systems that provides detailed insights into system 

and application-level performance metrics. It utilizes hardware performance counters and software 

instrumentation to collect data on CPU usage, cache misses, instructions executed and other low-level 

metrics. Perf is commonly used in performance profiling and debugging. It helps in the identification of 

bottlenecks, optimization of code and understanding the runtime behavior of applications. Its versatility 

makes it a valuable tool for both system-wide monitoring and targeted performance analysis. 

 

The monitor was implemented in Python 3, with performance-critical and parallelizable sections written 

in Cython 3. Parallelization was achieved through OpenMP using Cython's cython.parallel module. It 

allowed direct integration of OpenMP directives into Python extensions. The underlying C code was 

compiled with GCC with the -fopenmp flag explicitly set to enable OpenMP functionality during 

recompilation, which triggered a compilation of the Cython module. The compilation process was 

managed via setuptools by setting the extra_compile_args and extra_link_args parameters dynamically to 

enable or disable OpenMP support at runtime. 

 

5. Benchmarking and Results 

An intensive matrix transformation was used with varying sizes and iteration counts to observe how the 

runtime feedback affects optimization as it is scaled up. The threshold for recompilation trigger was set to 

be overutilization of a single core, thereby indicating a potential for parallelization. Once the threshold 

was reached, the monitor automatically detected a potential bottleneck and triggered a recompilation. The 

newly compiled code was then loaded onto the runtime system and execution was continued 

automatically, without any manual intervention. It was primarily observed a monotonically increasing 

trend in both the OpenMP and non-OpenMP versions of the code. 

 

Matrix Size Iterations Recompiled 

Runtime 

Runtime Improveme

nt 

500x500 1000 1.277 2.342 45.5% 

1000x1000 2000 3.929 7.794 49.6% 

1500x1500 3000 6.452 13.113 50.8% 

2000x2000 4000 10.355 21.122 50.9% 

2500x2500 5000 15.533 30.882 49.7% 

 

Table 1: Runtime Comparison of Parallelized and Non-parallelized Code 
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Figure 2: Runtime Metrics of OpenMP code 

 

When compared with each other, it is observed that the non-parallelized code grows much faster in 

runtime than the parallelized code, hence conforming to expected behavior under parallelization. This 

indicates that there was a noticeable improvement in runtime performance with automatic code 

recompilation and parallelization. 

 

 
Figure 3: Comparison of OpenMP and non-OpenMP runtime 

On an average, a performance improvement of about 50% can be achieved using parallelization 

wherever applicable. We do notice that the improvement is slightly worse when the matrix size is below 

a threshold, indicating that the performance overhead of spawning threads and sharing memory can 
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degrade overall performance. In cases like this, the monitor can be tuned to not recompile code if the 

performance is below the given threshold. 

 

 

 
Figure 4: Performance Improvement in Parallelized Code 

 

6. Conclusion and Future Work 

This paper proposed a framework for real-time performance monitoring system and runtime feedback-

driven dynamic recompilation in high performance systems. The system architecture proposed introduced 

a performance-aware analysis engine that is driven by a decision algorithm, RODA, to analyze program 

execution behavior and trigger a recompilation when found necessary to improve performance. 

 

Recompilation triggers are accompanied by an optimizing transformation applied to the code to exploit 

parallelizability, cache locality and better memory access patterns. Our methodology highlights the 

flexibility of automatic recompilation based on predicted performance benefits, and illustrates the need 

for minimal programmer intervention to adjust performance during runtime. Preliminary benchmarking 

scoped to exploiting parallelizability of CPU heavy workloads in the form of intensive matrix 

transformations showed promising improvements in performance with no manual intervention. The key 

feature that sets the system apart is the compiler-agnostic approach to monitoring, analyzing and 

recompiling code, hence improving the portability and flexibility of dynamic recompiling systems. Our 

research lays the foundation for a new class of self-optimizing code pipelines with runtime variability in 

mind. Further developments for dynamic compilation based on runtime feedback will be based on multiple 

metrics. Including a multi-metric logic in the decision algorithm to analyze advanced metrics such as 

cache behavior, vectorization efficiency or thermal conditions will allow for more nuanced 

recompilations. Runtime behavior may be modelled using machine learning and analysis of historical data. 

Current design can be extended to support distributed and multi-nodes to integrate with job schedulers 

and MPI-based communication. Granular recompilation is another major shortcoming that needs 

addressing in future enhancements. It allows selected parts of the code to be recompiled, hence reducing 

the recompilation overhead and making dynamic and feedback driven compilation more viable for even 

non-HPC scenarios. Compiler integration needs further work during specific implementations in the form 

of plugins, to ensure portability. In addition to execution time, recompilation decisions could be driven by 
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energy efficiency, enabling energy savings and contributing to green computing. Most importantly, 

dynamic code reloading introduces security and reliability challenges that need addressing. Crash recovery 

and fault tolerance are areas that need more research and development to ensure safe transitions between 

optimized versions of code. 
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