

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024319 Volume 16, Issue 2, April-June 2025 1

Real-time Compilation and Performance

Monitoring for High-Performance Systems

Aadithya P Goutham1, Jeeva N.S2, Dr. Godfrey Winster S3

1,2Student, Department of Computing Technologies, SRM Institute of Science and Technology,

Kattankulathur, India
3Associate Professor, Department of Computing Technologies, SRM Institute of Science and

Technology, Kattankulathur, India

Abstract

High Performance Computing applications are diverse and they operate in dynamic environments. This

requires a shift in compilation techniques from static, hardcoded algorithm-driven approaches to dynamic,

real-time optimizing strategies. Current compiler methodologies primarily rely on static code analysis to

apply optimizations during the compilation phase. Optimization techniques such as loop unrolling,

vectorization, and function inlining are only effective for predictable workloads. However, they lack the

adaptive ability in changing runtime conditions and hardware variability. System specific optimizations

can be manually applied by the programmer, but this makes the code less portable and requires rewrite of

entire programs, thus increasing the cost of maintenance. Our approach includes a real-time performance

monitoring system that can trigger a recompilation dynamically to change code execution patterns.

Runtime feedback is used to identify bottlenecks such as core overutilization, cache inefficiencies, and

memory bottlenecks. A distinctive feature of the system is feedback-driven real-time compiler

optimization. Whereas the performance benefits of dynamically compiled code is offset by the overhead

incurred from the monitoring and recompilation system, the overall efficiency of the program throughout

its runtime improves incrementally over each iteration of dynamically recompiled code. This efficiency

improvement can also lead to energy savings in terms of reduction in wasted computational resources.

The work presented here lays the foundations for adaptable and feedback-driven compiler optimization

strategies.

Keywords: High Performance Computing (HPC), Just-in-time (JIT) Compiler, Low Level Virtual

Machine (LLVM), Intermediate Representation (IR), GNU Compiler Collection (GCC), Recompilation

and Optimization Decision Algorithm (RODA)

1. Introduction

High-Performance Computing (HPC) systems are fundamental to a wide array of resource-demanding

applications, such as scientific simulations, artificial intelligence and big data analytics. These normally

function in dynamic and heterogeneous environments, where conventional static compilation techniques

may leave room for performance improvements. While static optimization techniques such as loop

unrolling, vectorization, and function inlining are applicable for predictable workloads, they lack

adaptability to real-time conditions with changing runtime conditions and variations in hardware. This

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024319 Volume 16, Issue 2, April-June 2025 2

situation necessitates a major shift in compiler design towards dynamic, feedback-driven and efficient

optimization methodologies.

Dynamic compilation has surfaced as a viable solution over time to bridge the disparity between static

analysis and runtime variability. Utilizing runtime-invariant data allows dynamic compilers to implement

sophisticated optimizations such as just-in-time specialization, branch elimination, and speculative

execution, thereby significantly improving code execution efficiency. However, the overhead associated

with runtime instrumentation (collection of metrics) and triggering of a recompilation will likely negate

these performance enhancements and present a challenge to efficiency. Thus far, research in this area has

investigated strategies to handle the overhead through development of lightweight runtime compilers and

pre-optimized machine-code templates, with some of these indicating performance improvements ranging

from 1.2x to 1.8x.

Integration of runtime performance monitoring into a dynamic compilation system adds a new layer of

adaptability. Feedback-directed optimization frameworks in existence, such as PEAK, demonstrate the

possibility of iterative tuning to improve program performance across variable optimization scenarios.

These systems use decision algorithms to determine critical code segments and perform optimizations

effectively, resulting in noticeable improvements in execution speed and reduction in tuning time.

Similarly, frameworks like ApproxTuner illustrate the potential of predictive modeling in the same context

of dynamic compilation.

Our system introduces an architectural overview that integrates real-time performance monitoring with

dynamic recompilation. Unlike traditional methodologies, we seek to use an iterative process that

incrementally enhances program execution patterns over time. This enhances runtime efficiency and

minimizes computational waste in the form of power consumption, hence promoting energy

conservation—an important aspect in high performance computing (HPC) environments where power

efficiency dictates operational costs. Key to this framework is a feedback-driven optimization loop, which

monitors the runtime environment constantly and triggers a recompilation of code whenever potential for

optimization is detected.

The issues with runtime variability and hardware diversity are addressed by our proposed system and it

demonstrates feasibility for future adaptable compiler technologies. This paper details the system

architecture, underlying methodology and experimental validations, laying the foundation for future

developments in real-time compilation techniques tailored for dynamic computing contexts.

2. Literature Review

The research work ApproxTuner: A Compiler and Runtime System for Adaptive Approximations aims to

present accuracy-aware optimization of tensor-based applications while requiring only high-level end-to-

end quality specifications. The key contribution in ApproxTuner is a novel three-phase approach to

approximation-tuning that consists of development-time, install-time, and run-time phases. It addresses

the challenge of automatically selecting, configuring and tuning the parameters for combinations of

approximation techniques while meeting end-to-end requirements on energy, performance and accuracy.

[1]

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024319 Volume 16, Issue 2, April-June 2025 3

The research work Fast, Effective Dynamic Compilation addresses the effectiveness of dynamic

compilation while keeping in view the challenges in implementing it. The work also presents findings on

the effective utilization of static compilation methods to optimize simple code segments while using

dynamic compilation to address programmer annotated code segments with code templates. The research

targets general purpose imperative programming languages, like C. Their dynamic compilation system is

composed of both a static and a dynamic compiler. To achieve fast dynamic compile times, the static

compiler produces pre-compiled machine-code templates, whose instructions contain holes that will be

filled in with run-time constant values. [2]

The research work Compiler Technology for Parallel Scientific Computation presents an approach based

on a program decomposition, parallel code synthesis, and run-time support for parallel scientific

computation. The program decomposition is guided by the source program annotations provided by the

user. The synthesis of parallel code is based on configurations that describe the overall computation as a

set of interacting components. The compiler-generated code provides runtime support through

redistribution of computation and data during object program execution. Techniques such as data

alignment, operator placement, wavefront determination and memory optimization are applied to parallel

code. [3]

The research work Exploiting Parallelism for Energy Efficient Source Code High Performance Computing

experimentally shows that energy efficiency is reduced by many factors, such as optimal architecture

utilization, poor compilation optimization, to name a few. It presents a methodology that exploits

parallelism, inherent in multimedia DSP applications, as well as in multimedia DSP processors and

includes profile based compilation-approach which makes the source-to-source transformation more

energy efficient. [4]

The research work Power-Aware Compilation Techniques For High Performance Processors presents

findings on power consumption from the perspectives of register spilling, functional unit usage in

software-pipelined loops and memory accesses due to cache misses. These form the groundwork for

energy efficient compilation techniques and the metrics that are of most interest during compilation. [5]

The research work Compiler Transformations for High-Performance Computing aims to present a

comprehensive overview of the important high-level program restructuring techniques for imperative

languages such as C and Fortran. Transformations for both sequential and various types of parallel

architectures are covered in depth. Major transformations include data-flow based loop optimization, loop

reordering, loop restructuring, loop replacement, memory access, partial evaluation, redundancy

elimination and procedure call transformation. Various transformation frameworks are also illustrated in

detail with appropriate benchmark results. [6]

The research work A Script-Based Autotuning Compiler System to Generate High-Performance CUDA

Code presents a novel compiler framework for CUDA code generation. The compiler structure is designed

to support autotuning and a transformation strategy generator, an optimizer that yields performance

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024319 Volume 16, Issue 2, April-June 2025 4

transformation recipes. These comprise a search space of possible implementations. This system has been

demonstrably better than manually tuned libraries and GPU compilers. [7]

3. Architecture of Real-Time Performance Monitor

A. HPC Cluster Node

The system targets High-Performance Computing environments with the need for dynamic optimization,

equipped with modern multicore CPUs and, optionally, GPUs. The HPC clusters run on a Linux-based

environment, as is standard in the scientific and high-performance computing scenarios due to their

scalability, stability, customizability and advanced performance monitoring capabilities. Linux provides

low-overhead profiling tools like perf and hwloc for hardware topology awareness. It allows fine-grained

CPU affinity and NUMA-aware memory allocation, both of which are necessary for dynamic optimization

strategies.

Figure 1: Architecture of Real-Time Compilation and Performance Monitoring System

B. HPC System

A High-Performance Computing (HPC) system consists of multiple interconnected nodes, with each node

being equipped with multicore CPUs for high throughput execution, shared/distributed memory to hold

large datasets during execution and avoid frequent memory accesses, and optionally GPUs to speedup

parallel execution for SIMD workloads. HPCs operate in a Linux-based environment given its tuned

performance benefits and easier low-level resource management. HPC systems are most commonly used

in scientific simulations, data analysis, AI training and for any other use case where operations are

performed on a massive scale on large datasets. They utilize techniques like distributed computing and

vectorization to maximize throughput, to ensure performance requirements are met for resource-intensive

tasks. For dynamic recompilation context, the HPC system includes a real-time performance monitor

hooked into the runtime environment to capture runtime metrics. It also has a performance analysis engine

to detect bottlenecks using a decision algorithm, RODA, and a compiler trigger to allow for recompilation

during runtime without interrupting the program execution. This ensures that there is minimal to no

manual intervention during execution.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024319 Volume 16, Issue 2, April-June 2025 5

C. HPC Workloads

The workloads of the HPC clusters typically consist of scientific and engineering applications written in

low-level languages such as C, C++ and Fortran. These applications often include computationally

intensive tasks in the problem domains of numerical simulations, intensive matrix transformations and

data analysis pipelines. This makes them good candidates for benefitting from dynamic optimizations.

Optimization decisions are more beneficial particularly in these use cases than in managed languages like

Python or Java for the reason that they allow explicit control of memory through the use of pointers.

Unlike JIT-based languages, these application workloads rely on static compilation, which makes adaptive

recompilation very effective at improving performance dynamically based on changing runtime

conditions.

D. HPC Cluster Configuration

An HPC cluster is a distributed system consisting of interconnected nodes. Each node has multiple CPUs

and GPUs and hierarchical memory systems. In most cases, shared and distributed caches are used to

improve memory access latency. The entire system is aware of its NUMA domains and is configured to

optimize for memory accesses.

E. Performance Monitor

The performance monitor tracks system and application performance metrics. Tracked metrics include

CPU utilization, memory usage and execution time. It helps with identifying bottlenecks and optimizing

resource allocation. It also ensures that the system is under efficient operation. In HPC environments,

performance monitoring enables real-time analysis of resource distribution and aids in tuning system

parameters to maximize efficiency. Advanced metrics also provide additional information about the nature

of the program being executed and its behavior, which when analyzed can be used to iron out

inefficiencies.

F. Performance Metrics Collection

The real-time performance monitor is implemented using the perf Linux system package to collect

performance metrics needed for optimization decisions. It provides low-level system performance

monitors with minimal overhead using the Perf Events API, which allows directly accessing data in

hardware performance counters.

The following data is gathered by the monitor during program execution:

● CPU Usage

● Memory Utilization

● Cache Miss Rate (to identify inefficient memory accesses)

● Branch Mispredictions (to detect inefficient control flows)

● Cycles Per Instruction (to determine if execution is compute-bound or memory-bound)

Performance data is captured by the monitor at regular intervals using a light-weight, asynchronous,

profiling thread. This reduces overhead incurred by monitoring the performance counters. Gathered data

is then used as the input to the analysis engine, which checks for potential optimizations and triggers a

recompilation if found necessary for performance improvement.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024319 Volume 16, Issue 2, April-June 2025 6

G. Performance Analysis Engine

Performance data collected from the monitor is then aggregated over defined intervals to identify

inefficiencies in various domains.

The analysis engine then classifies bottlenecks into categories such as:

● Memory-bound (high cache miss rate) - Candidate for cache-blocking

● Compute-bound (high CPI)- Candidate for vectorization and parallelization

● I/O-bound (high context switching)

It then uses a decision algorithm to estimate the impact of optimizations on the overall runtime of the

system. If analysis indicates potential for improvement, the engine sends out a signal to the recompilation

module to trigger a recompilation. This ensures that the benefits of optimization are significant enough

that the overhead of recompilation does not degrade the overall performance. This results in an

improvement in runtime performance. Otherwise, a recompilation is not triggered and the iteration

continues.

H. Recompilation and Optimization Decision Algorithm (RODA)

The decision process of the analysis engine is driven by a decision algorithm to ensure that a recompilation

is triggered only when it nets an overall improvement to the program’s runtime.

The following metrics are taken into consideration:

● CPU Utilization (UCPU)

● Memory Bandwidth Usage (Bmem)

● Cache Miss Ratio (Cmiss)

● Instructions Per Cycle (IIPC)

● Execution Time (Texec)

The workload is then classified as follows using Roofline Modelling:

Compute-bound -

𝐼 =
𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
,𝐼 > 𝐼𝐼ℎ𝐼𝐼𝐼ℎ𝐼𝐼𝐼

where,

𝐼 = operational intensity

This likely benefits from parallelization

Memory-bound -

𝐼𝐼𝐼𝐼𝐼 > 𝐼𝐼𝐼𝐼𝐼 𝐼ℎ𝐼𝐼𝐼ℎ𝐼𝐼𝐼

where,

𝐼𝐼𝐼𝐼𝐼 = observed cache miss ratio

𝐼𝐼𝐼𝐼𝐼 𝐼ℎ𝐼𝐼𝐼ℎ𝐼𝐼𝐼 = predefined threshold

This shows optimization potential for caching

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024319 Volume 16, Issue 2, April-June 2025 7

Before triggering recompilation, the engine calculates estimated potential speedup using Amdahl’s law:

 𝐼(𝐼) =
1

(1−𝐼) +
𝐼

𝐼
 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

where,

𝐼(𝐼) = estimated speedup with N threads

𝐼 = parallelizable fraction of workload

𝐼 = number of CPU threads used for parallelization

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = overhead incurred

Recompilation is only triggered if:

𝐼 > 1 +
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

where,

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = overhead time for monitoring

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = overhead time for RODA

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = overhead time for recompilation

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = estimated runtime of optimized code

RODA takes the following steps:

1. Perform Roofline Modelling to determine whether the program is compute or memory bound

2. Use Amdahl’s law to determine effective speedup achieved through parallelization

3. Check if recompilation is feasible using the described relation

4. Trigger a recompilation if required, along with the appropriately identified transformation

5. Send a trigger signal to the compiler and reset monitor mode

6. Continue the iteration until maximum optimization level is reached.

I. Compiler

The compiler in an HPC system is responsible for compilation of programs written in high-level languages

to efficient low-level machine code. It performs optimizations wherever possible to reduce runtime.

However, most compilers used in HPC systems are limited to static compilation. Our architecture extends

this by introducing dynamic compilation in response to changing runtime conditions. Static compilation

generates precompiled function and code templates and includes profiling instrumentation to assist the

runtime system. Whereas dynamic recompilation is facilitated by the performance analysis engine through

the recompilation trigger signal. This includes an appropriately identified strategy to optimize code

dynamically. The code is recompiled with given optimization parameters and then loaded onto the runtime

system. Optimization strategies include loop unrolling, vectorization, parallelization and cache blocking.

J. Recompilation Module

The recompilation module performs on-the-fly code transformations based on feedback received from the

analysis engine. It uses just-in-time (JIT) compilation to dynamically optimize hotspot code regions. The

module applies transformations such as memory access optimizations, loop unrolling or parallelization to

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024319 Volume 16, Issue 2, April-June 2025 8

the bottlenecks that are identified by RODA. Precompiled templates generated during the initial static

compilation phase are used to accelerate the recompilation process. These templates include placeholders

for runtime-specific optimizations such as the use of OpenMP to speedup execution. These templates can

either be pre-compiled and loaded during runtime or dynamically recompiled during execution.

Recompiled code is loaded into the runtime environment by replacing the corresponding memory regions.

For generating the initial templates and performing dynamic code transformations, LLVM and GCC are

used.

K. Runtime Environment

The runtime environment is designed to dynamically load optimized code after a recompilation is

triggered. It also supports performance monitoring through the use of a real-time performance monitor.

Metrics collected from the runtime system are used in the performance analysis engine to drive decisions

about whether a recompilation is necessary to improve performance of the program under execution. The

runtime system drives the feedback mechanism of the entire performance monitoring system to facilitate

continuous and iterative performance improvements.

L. Dynamic Recompilation Trigger

Dynamic recompilation trigger primarily consists of two components: the performance analysis engine

that uses RODA to determine if a recompilation is necessary, and a trigger system to send out a

recompilation signal to the compiler. The decisions made by the performance analysis engine are driven

by an algorithmic approach. Parameters can be modified before the monitor is started, and the engine

automatically determines bottlenecks in performance based on defined thresholds. If a recompilation is

needed, the appropriate transformation signal is sent out to the compiler to recompile the code. If

performance degrades after recompilation, the system reverts to the previous code state using a rollback

mechanism.

M. Optimization Loop

The entire runtime system is looped to allow for continuous monitoring and triggering subsequent

recompilations when necessary. This loop stabilizes the program when no further optimization potential

is detected while keeping the overhead to a minimum. If a previously applied compilation resulted in a

performance degradation, it is reverted to the state previous to the degraded state. To prevent over-

optimization, reverting between states is not done indefinitely.

4. Experimental Setup

A. Hardware

All experimental evaluations were performed on a test-bench that mimics an HPC system with following

configurations:

Processor: AMD Ryzen 7 8845HS (8 cores, 16 threads)

Base Clock Frequency: 3.8 GHz

Boost Clock Frequency: Up to 5.1 GHz

Memory: 32 GB DDR5 5200 MHz RAM

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024319 Volume 16, Issue 2, April-June 2025 9

L2/L3 Cache: 8 MB/16 MB

To ensure consistent results, CPU frequency scaling and other power management features were disabled

during testing to prevent frequency adjustments from influencing performance. The CPU governor was

set to performance mode, and the system was allowed to cool between consecutive runs to avoid thermal

throttling.

Only CPU performance was evaluated since the testing was limited to parallelization decisions based on

performance metrics for individual core loads and overall runtime.

B. Software

The software environment was configured with consistency of performance measurements in mind, while

also ensuring compatibility with parallelization frameworks. The operating system used for all

benchmarks was Arch Linux, a lightweight distribution running the Linux 6.x Arch kernel with no desktop

environment to ensure headless behavior. The kernel was configured with default scheduler policies and

CPU frequency scaling was explicitly disabled to maintain fixed performance states during benchmarks.

The CPU governor was set to performance mode using cpupower.

For an overview of performance monitoring, resource utilization was tracked using standard Linux utilities

such as htop and btop, along with a custom Python script interfacing with the /proc filesystem. The custom

monitor script was written to instrument CPU utilization and individual core performance, which then

used the metrics to automatically adjust the parallelization model by dynamically recompiling the Cython

extension based on CPU utilization thresholds. The compiled shared object file (.so) is then loaded onto

the runtime system automatically by the monitor.

All benchmarking was conducted in an isolated user environment, with no background processes running

except essential system services. The system was programmed to reboot before each run to ensure ideal

HPC conditions on the test bench.

C. Implementation

Cython is a programming language extension of Python. It adds static type declarations allowing

integration of C and C++ code with Python code. It also allows Python code to be compiled into highly

efficient C extensions, hence offering significant performance improvements in computationally intensive

tasks, which are known to benefit from low-level system languages. By supporting direct calls to C

libraries and facilitating parallelization through OpenMP, Cython serves as a powerful tool for optimizing

performance-critical applications while also maintaining Python's flexibility and simplicity.

OpenMP (Open Multi-Processing) is an API that enables parallel programming in C, C++, and Fortran

for the development of multi-threaded applications. It provides compiler directives, runtime routines and

environment variables to distribute computational tasks across multiple cores. OpenMP is widely used for

performance and runtime improvements in shared-memory systems through task parallelism and loop-

based parallel execution.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024319 Volume 16, Issue 2, April-June 2025 10

Perf is a powerful performance analysis tool for Linux systems that provides detailed insights into system

and application-level performance metrics. It utilizes hardware performance counters and software

instrumentation to collect data on CPU usage, cache misses, instructions executed and other low-level

metrics. Perf is commonly used in performance profiling and debugging. It helps in the identification of

bottlenecks, optimization of code and understanding the runtime behavior of applications. Its versatility

makes it a valuable tool for both system-wide monitoring and targeted performance analysis.

The monitor was implemented in Python 3, with performance-critical and parallelizable sections written

in Cython 3. Parallelization was achieved through OpenMP using Cython's cython.parallel module. It

allowed direct integration of OpenMP directives into Python extensions. The underlying C code was

compiled with GCC with the -fopenmp flag explicitly set to enable OpenMP functionality during

recompilation, which triggered a compilation of the Cython module. The compilation process was

managed via setuptools by setting the extra_compile_args and extra_link_args parameters dynamically to

enable or disable OpenMP support at runtime.

5. Benchmarking and Results

An intensive matrix transformation was used with varying sizes and iteration counts to observe how the

runtime feedback affects optimization as it is scaled up. The threshold for recompilation trigger was set to

be overutilization of a single core, thereby indicating a potential for parallelization. Once the threshold

was reached, the monitor automatically detected a potential bottleneck and triggered a recompilation. The

newly compiled code was then loaded onto the runtime system and execution was continued

automatically, without any manual intervention. It was primarily observed a monotonically increasing

trend in both the OpenMP and non-OpenMP versions of the code.

Matrix Size Iterations Recompiled

Runtime

Runtime Improveme

nt

500x500 1000 1.277 2.342 45.5%

1000x1000 2000 3.929 7.794 49.6%

1500x1500 3000 6.452 13.113 50.8%

2000x2000 4000 10.355 21.122 50.9%

2500x2500 5000 15.533 30.882 49.7%

Table 1: Runtime Comparison of Parallelized and Non-parallelized Code

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024319 Volume 16, Issue 2, April-June 2025 11

Figure 2: Runtime Metrics of OpenMP code

When compared with each other, it is observed that the non-parallelized code grows much faster in

runtime than the parallelized code, hence conforming to expected behavior under parallelization. This

indicates that there was a noticeable improvement in runtime performance with automatic code

recompilation and parallelization.

Figure 3: Comparison of OpenMP and non-OpenMP runtime

On an average, a performance improvement of about 50% can be achieved using parallelization

wherever applicable. We do notice that the improvement is slightly worse when the matrix size is below

a threshold, indicating that the performance overhead of spawning threads and sharing memory can

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024319 Volume 16, Issue 2, April-June 2025 12

degrade overall performance. In cases like this, the monitor can be tuned to not recompile code if the

performance is below the given threshold.

Figure 4: Performance Improvement in Parallelized Code

6. Conclusion and Future Work

This paper proposed a framework for real-time performance monitoring system and runtime feedback-

driven dynamic recompilation in high performance systems. The system architecture proposed introduced

a performance-aware analysis engine that is driven by a decision algorithm, RODA, to analyze program

execution behavior and trigger a recompilation when found necessary to improve performance.

Recompilation triggers are accompanied by an optimizing transformation applied to the code to exploit

parallelizability, cache locality and better memory access patterns. Our methodology highlights the

flexibility of automatic recompilation based on predicted performance benefits, and illustrates the need

for minimal programmer intervention to adjust performance during runtime. Preliminary benchmarking

scoped to exploiting parallelizability of CPU heavy workloads in the form of intensive matrix

transformations showed promising improvements in performance with no manual intervention. The key

feature that sets the system apart is the compiler-agnostic approach to monitoring, analyzing and

recompiling code, hence improving the portability and flexibility of dynamic recompiling systems. Our

research lays the foundation for a new class of self-optimizing code pipelines with runtime variability in

mind. Further developments for dynamic compilation based on runtime feedback will be based on multiple

metrics. Including a multi-metric logic in the decision algorithm to analyze advanced metrics such as

cache behavior, vectorization efficiency or thermal conditions will allow for more nuanced

recompilations. Runtime behavior may be modelled using machine learning and analysis of historical data.

Current design can be extended to support distributed and multi-nodes to integrate with job schedulers

and MPI-based communication. Granular recompilation is another major shortcoming that needs

addressing in future enhancements. It allows selected parts of the code to be recompiled, hence reducing

the recompilation overhead and making dynamic and feedback driven compilation more viable for even

non-HPC scenarios. Compiler integration needs further work during specific implementations in the form

of plugins, to ensure portability. In addition to execution time, recompilation decisions could be driven by

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024319 Volume 16, Issue 2, April-June 2025 13

energy efficiency, enabling energy savings and contributing to green computing. Most importantly,

dynamic code reloading introduces security and reliability challenges that need addressing. Crash recovery

and fault tolerance are areas that need more research and development to ensure safe transitions between

optimized versions of code.

References

1. Hashim Sharif, Yifan Zhao, Maria Kotsifakou, Animesh Kothari, Benjamin Schreiber, Eddie Wang,

Sarita Yerramilli, Nuwan Jayasena, Vikram S. Adve, Sasa Misailovic, “ApproxTuner: A Compiler

and Runtime System for Adaptive Approximations”, Proceedings of the 26th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming (PPoPP), 2021, doi:

10.1145/3437801.3446108

2. Michael P. Plezbert and Ron K. Cytron, “Fast, Effective Dynamic Compilation”, Proceedings of the

ACM SIGPLAN 1997 Conference on Programming Language Design and Implementation (PLDI),

1997, doi: 10.1145/249069.231409

3. Can Özturan, Balaram Sinharoy, Boleslaw K. Szymanski, “Compiler Technology for Parallel

Scientific Computation”, Scientific Programming, Volume 3, Issue 4, 1994, doi:

10.1155/1994/243495

4. Muhammad Usman, Muhammad Shafique, Jörg Henkel, “Exploiting Parallelism for Energy

Efficient Source Code High Performance Computing”, Proceedings of the 2005 International

Conference on High Performance Computing and Communications (HPCC), 2005, doi:

10.1007/11557654_86

5. Chun-Lung Su, Cheng-Yuan Tsui, Alvin M. Despain, “Power-Aware Compilation Techniques For

High Performance Processors”, Proceedings of the 1994 IEEE Symposium on Low Power

Electronics, 1994, doi: 10.1109/LPE.1994.573723

6. David F. Bacon, Susan L. Graham, Oliver J. Sharp, “Compiler Transformations for High-

Performance Computing”, ACM Computing Surveys (CSUR), Volume 26, Issue 4, 1994, doi:

10.1145/197405.197406

7. Malik Khan, Protonu Basu, Gabe Rudy, Mary Hall, Chun Chen, Jacqueline Chame, “A Script-Based

Autotuning Compiler System to Generate High-Performance CUDA Code”, Proceedings of the 8th

International Conference on High-Performance Embedded Architectures and Compilers (HiPEAC),

2013, doi: 10.1145/2400682.2400690

https://www.ijsat.org/

