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Abstract 

The smart grid is a cutting-edge power system idea that balances communication and electricity in 

system networks. It gives producers, operators, and consumers access to real-time information. The need 

to effectively manage electricity distribution to different consuming domains, including homes, 

businesses, industries, and smart cities, is growing. In this regard, dynamic power demand must be met 

by a stable smart grid system. Because there are so many affecting factors, predicting the stability of the 

smart grid is still difficult. Participation from producers and consumers is crucial since determining their 

level of involvement can help maintain grid stability. In this study, we suggest a deep learning model for 

smart grid stability prediction that is based on Gated Recurrent Units (GRU). Other conventional 

machine learning and deep learning classifiers. Such as Recurrent Neural Networks (RNN), Long Short-

Term Memory (LSTM), and Artificial Neural Networks (ANN), are contrasted with the outcomes of the 

suggested GRU model. With a 97.45% accuracy rate, our suggested GRU model outperforms previous 

models in predicting the stability of the smart grid. 

 

Keywords: Smart Grid Dataset, Decision tree Classifier, Logistic regression, Artificial Neural 

Networks, recurrent Neural Networks, Recurrent Neural Networks, Long Short-Term Memory, Gated 

Recurrent Units. 

 

1. Introduction 

 

The term of the electrical grid is a large and interconnected network that delivers electricity from renew-

able energy resources such as power plants, thermal power, solar plants etc., to homes and industries. It 

includes components such as power stations, transmission lines and distribution networks. Traditional 

grids have been vital for supporting global development. but they face different challenges like limited 

scalability, reliability issues and inefficiency. Furthermore, because conventional grids rely on central-

ized power generation, integrating renewable energy sources like wind and solar power is more difficult. 

Due to these limitations and the demand for sustainable alternatives, smart grids more sophisticated and 

intelligent systems have been developed. 
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Smart grids are an advanced version of traditional grids, enhanced with digital technologies, communi-

cation systems and advanced controls. These characteristics make it possible to monitor and optimize 

energy flows in real time. Smart grids, as opposed to conventional grids, are able to incorporate a variety 

of energy sources, including renewable ones. Technologies like Advanced Metering Infrastructure 

(AMI) and Wide Area Measurements Systems (WAMS) improve energy distribution, making it more 

reliable and efficient. Smart grids also allow two-way energy flows and decentralized energy production. 

Smart grids monitor and control energy in real time using cutting-edge technologies. By solving prob-

lems like peak energy demand and the inconsistent availability of renewable energy, smart grids are 

transforming how we produce, distribute and use electricity. However, there are challenges, for example, 

smart grids rely heavily on digital systems. Additionally, Implementing and maintaining smart grids is 

expensive, making it harder for some regions to adopt this technology. 

 

Figure 1: Smart grid workflow 

 

To address such challenges, deep learning is type of artificial intelligence is being employed in enhanc-

ing smart grid operations. Deep learning models scrutinize the information from the real-time data or 

sources to predict potential faults and enhance grid performance in real-time. These models assist with 

activities such as predicting maintenance requirements ,detecting faults, forecasting energy, Early out-

comes indicate that smart grids with support from deep learning can conserve energy, enhance reliability 

and promote the utilization of renewable energy [1], [2]. 

The significance of smart grid stability is that it can satisfy the dynamic power requirements of different 

users with minimal interruptions in energy supply. A reliable smart grid can minimize energy losses, op-

timize the use of renewable energy sources, and manage varying levels of electrical demand. We can 

have a more dependable and sustainable electricity system with accurate grid stability predictions. This 

can greatly increase the energy distribution efficiency, lower operational expenses and better overall user 

experience for industries and consumers [3], [4]. 

Smart grid stability prediction is a universal application applicable in numerous fields. For consumers 

and homes, it allows effective power management, minimizing cost and ensuring sustainability. On the 

industrial and commercial front, stable grids are vital for enterprises that require a consistent flow of 

power. Predictive models provide low downtime and optimize energy usage, facilitating industrial effi-

ciency. Moreover in integration of renewable energy, precise predictions of stability are most im-
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portance. They allow for the smooth integration of intermittent energy sources such as wind and solar 

into the grid, overcoming issues related to their unpredictable availability  [5], [6].  

Machine & Deep Learning models provide a number of major advantage for forecasting smart grid sta-

bility. First of all, these models are very effective in dealing with complicated data since they can man-

age large  amount of data and detect patterns. Secondly, Deep learning models make predictions in real-

time, which is important to grid operators to make instant adjustments and ensure the stability of the 

grid. These models are very adaptable, with architectures such as  RNNs and GRUs specifically de-

signed to cope with sequential data, making them ideal for predicting time-based events such as grid sta-

bility. Moreover, models like LSTM and ANNs have proven high accuracy in tasks that involve learning 

from large datasets, providing better predictions than the use of traditional machine learning algorithms. 

we plan  to deliver more accurate, real-time predictions, assisting in enhancing the reliability and effi-

ciency of smart grids [7]. 

In our project, we have imported the UCI Machine Learning Repository dataset. The dataset adheres to 

the local stability study of the Decentral Smart Grid Control concept in a 4-node star system. The dataset 

consists of 14 features and 10,000 instances with associated tasks of binary classification.  

 After importing the dataset, perform data preprocessing, i.e., check for NaN values in the dataset.  

Apply Min-Max Scaling for independent variables and Label Encoding for the target variable to 

convert categorical data into numerical. 

  Train the traditional machine learning models using Scikit-learn and deep learning models using 

the Keras module. Compare them with the proposed GRU model. 

 After that, perform evaluation metrics to find out the accuracy, recall, F1-score, and ROC. 

 To visualize the results, plot the confusion matrix, training and validation accuracy, and loss. 

 

Literature Survey 

 

Daniel [8]  sought to determine the most effective machine learning  method for forecasting the reliabil-

ity of the smart grid utilizing a dataset of 60,000 observations with 12 features. They optimized hyperpa-

rameters for improved performance while training and testing a variety of models, such as Decision 

Tree, K-NN, Logistic Regression, SVM, Naïve Bayes, Random Forests and Ann-MLP. Metrics like ac-

curacy, F1-Score, and specifically were used to evaluate performance, with an emphasis on negative 

case identification and prediction accuracy. With a 94.8% F1-score and 93.5% accuracy, the Random 

Forest are the best method for predicting the reliability of smart grids and suggested using these methods 

for other power grid activities. 

MUHAMMAD et al.,[9]  inorder to anticipate voltage stability in the IEEE 4-bus system, they tested 

four models and created an ensemble model for increased accuracy using an Artificial Neural Network ( 

ANN). They evaluated the models performance using accuracy, MSE, and MAE after training them on 

80% of the dataset, which included transmission characterstics and power usage. Despite requiring more 

training and inference time, the ensemble model yielded the maximum accuracy of 98.73% with the 

lowest MSE (0.0095) and MAE (0.0141). They found that the ensemble model is a very good way to 
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forecast voltage stability. The model will be optimized in the future to reduce processing time without 

sacrificing accuracy. 

Pranobjyothi Lahon et al.,[10]  examined a number of machine learning classifiers, including deep neu-

ral networks(DNN), XGBoost, SVM with Radial Basis Function(SVM-RBF), and Linear SVM. The 

models were assessed using F1 scores, recall, accuracy and precision. The DNN model achieved the 

greatest accuracy of 96.5%, followed by Logistic Regression and Linear SVM at 95.9% and XGBoost at 

94.8%. It came to the conclusion that DNN perform best, understanding the potential of deep learning 

and machine learning to improve smart grid control. 

LEPOLESA et al.,[11]  explains how to identify electricity theft using a classification algorithm based 

on deep neural  networks. It makes use of data from the State Grid Corporation of China (SGCC), which 

comprises 42,372 customers electricity usage records collected from January 1, 2014 to October 

31,2016.Data interpolation and synthetic data generation techniques were used to address missing data 

and class imbalance (91% normal users, 9% fraudulent users). The model integrates the characterstics of 

the frequency and time domains and its performance is maximized through the use of Bayesian Hy-

perparameter tuning, PCA and Minimum Redundancy Maximum relevance (MRMR). The proposed 

method ranked second on the benchmark dataset with an accuracy of 91.8% and an area under the curve 

of 97%, which is 1% better than prior works. 

Amjad et al.,[12] focuses on forecasting smart grid stability using a Multi-Layer perceptron-Extreme 

Learning Machine(MLP_ELM) approach. It utilizes a smart grid dataset containing stability-related da-

ta, through the exact number of instances is not specified. Principal Component Analysis(PCA) is ap-

plied for feature extraction, and the models performance is evaluated through empirical assessments and 

comparisons with traditional machine learning techniques. The proposed MLP-ELM method outper-

forms conventional approaches, achieving an accuracy an accuracy of 95.8%. 

 

2. Materials and Methods 

 

The deep learning model, the assessment metrics, and the electrical smart grid stability dataset are de-

scribed in depth in this section. These components plays a crucial role in building an optimized smart 

grid stability system, leveraging deep learning predictions for enhanced performance.  

2.1  Smart grid Stability Dataset 

The dataset used in this study is the Smart Grid Stability Dataset, firstly contributed by Vadim Ar-

zamasov and made available through the University of California(UCI). This dataset which is also ac-

cessible on Kaggle, consists of 12 features, 2 dependent variables and an aggregate of 10,000 data 

points. The  primary ideal of the dataset is to assess grid stability grounded on these features and classify 

the grid as either stable or unstable. Below is a breakdown of features. Duration of response (tau1, tau2, 

tau3, tau4) Each component of the power metwork’s response time is represented by these four charac-

teristics. These attributes have values ranging from 0.5 to 10. The provider knot is represented by the 

tau1 point, while the consumer bumps are represented by the tau2, tau3, tau4 points. Power generation 

and use (p1, p2, p3, p4) These characteristic show how much electricity each system participant gener-

ates and uses. Power product is represented by a positive value, whereas power consumption is repre-

sented by a negative value. The supplier is represented by point p1, while the customers are represented 
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by points p2, p3, and p4. These traits have values in the range of -0.2 to -0.5. Additionally, the negative 

sum of p2, p3, and p4 is considered p1. Price-elasticity Measure (g1, g2, g3, g4) These four attributes 

denote the price--elasticity measure for each party, with values falling between 0.05 and 1.00. The point 

g1 corresponds to the supplier, while g2, g3, and g4 correspond to the consumers. The letter" g" in these 

features stands for gamma. Stability (stab, stabf) While the first 12 features serve as prophetic inputs, the 

final two attributes, stab and stabf, act as dependent variables. The stab point calculates a stability value, 

and its sign determines the stabf  classification. However, the grid is considered unstable, whereas a 

negative stab signifies a stable grid, If stab is positive. 

2.2 Steps Involved in Working with Datasets for Deep Learning 

 Cleaning and converting unprocessed data into a format that may be used is known as data pre-

processing.  

 Feature scaling uses a variety of methods, including standardization, Min-Max scaling, and ro-

bust scaling to guarantee that all numerical features are on the same scale. 

 Label Encoding, often known as one-hot encoding, is the process of converting category data in-

to numerical notation. 

 Dividing the dataset into testing and training sets in order to assess model performance. 

 Using X and Y to update data divides the dataset into target labels (Y) and features (X). 

 Using preprocessed data to apply machine learning and deep learning models through a variety 

of processes, including model selection, compilation, training, and evaluation. 

 Data distribution and model performance can be better understood by displaying data patterns. 

 

These procedures enable us to deploy machine learning and deep learning models, preprocess data effec-

tively, and visualize the results, which improves model performance and produces more accurate predic-

tions. 

 

Figure 2:  ML and  DL model workflow 

 

2.3 Machine Learning 

Within the field of artificial intelligence (AI), machine learning focuses on creating models and algo-

rithms that let computers learn from data and perform better without explicit programming. It  entails 

sending vast volumes of data into algorithms, which use the data to find patterns, decide what to do, and 
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forecast results. Machine learning can be roughly divided into three categories: supervised learning, 

which involves training models on labeled data; unsupervised learning, which uses unlabeled data to 

cover hidden patterns; and reinforcement learning, which involves rewarding or punishing models as 

they learn. This technology powers many modern applications, such as recommendation systems, image 

and speech recognition, autonomous vehicles, and fraud detection, making it a critical component in the 

advancement of AI and data-driven decision-making. 

In this Traditional Machine Learning Models We used Decision Tree Classifier, Logistic Regression 

models for Smart grid Dataset. 

2.3.1 Decision Tree Classifier  

A decision tree is a popular  supervised machine learning approach that uses a tree-like structure to di-

vide a dataset into smaller groups for both classification and regression problems. The core nodes in this 

structure stand for feature tests, the branches display the results of these tests and the leaf nodes provide 

the final output or conclusion. The best feature is selected  at the root node to divide the data according 

to criteria like information gain or gini impurity. The decision path from root to leaf is followed to make 

predictions as this splitting proceeds recursively until the stopping condition is satisfied [13]. 

2.3.2  Logistic Regression 

Another supervised machine learning approach is logistic regression, which is primarily used for binary 

classification tasks like making yes/no or 1/0 predictions. Contrary to what its name suggests, It is used 

for classification rather than regression and calculates the likelihood that a given class of data points will 

belong to it. It first calculates the weighted sum of the input features, then squeezes the result between 0 

and 1 using a sigmoid activation function, and then classifies the output according to a threshold(usually 

0.5). Based on study hours, for instance, it forecasts an 85% likelihood of passing an exam, resulting in a 

“pass” classification. For data that is linearly seperable, logistic regression is easy quick and efficient 

[14]. 

2.4 Deep Learning 

Deep Learning is a kind of machine learning that uses multi-layered artificial neural networks to simu-

late how the human brain processes information. Through a process known as training, it learns patterns 

from massive datasets and uses optimization methods to minimize errors by adjusting the networks 

weight and biases. Each neuron uses activation function like ReLu, sigmoid, or softmax to process and 

transfer information in the architecture, which normally consists of an input layer, many hidden layers 

and an output layer. Without requiring human feature engineering, deep learning models such as Recur-

rent neural networks and Gated recurrent Units for sequential data automatically extract and learn hier-

archical features.  Large volumes of data and processing power are used by these models, which fre-

quently make use of GPUs for quicker processing. Deep learning is a potent tool for resolving challeng-

ing real-world issues since it is extensively used in fields including image identification, natural lan-

guage processing, and smart grid stability prediction. In order to anticipate the stability of the smart grid 

, we proposed Artificial Neural Networks, Recurrent Neural Networks, Long Short-Term Memory and 

Gated Recurrent Unit models. 
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2.4.1  Artificial Neural Networks 

A computational model that is modeled after the structure and operation of a biological neural network is 

called an artificial neural network. Each neuron processes information using weighted sums and activa-

tion functions in its input, hidden and output layers. Data travels through the network during forward 

propagation and the loss function determines the discrepancy between expected and actual outputs. 

Weights are updated and the loss is decreased across several training iterations using gradient descent 

and back propagation. This model can capture non-linear patterns and handle high-dimensional data, 

making them powerful tools in deep learning. However, they require large datasets are computationally 

intensive and can be difficult to interpret [15]. 

2.4.2 Recurrent Neural Networks 

A recurrent neural network is a kind of neural network  that is intended for sequential data, such as 

speech, text,  time series and in which the output is influenced by information from the past. Because 

RNNs contain memory, unlike standard neural networks, they can use loops in their architecture to re-

member information from earlier steps. They are ideal for jobs  like language translation and text pro-

duction because they update the current state and generate an output at each time step by combining the 

input with prior concealed state. Based on context, like the next word in a sentence, these models are 

able to forecast results. They perform well on sequence based tasks, but because of delayed training and 

disappearing gradients, they may have trouble with lengthy sequences. They are also prone to forgetting 

long-term dependencies without enhancements like LSTM or GRU [16]. 

2.4.3 Long Short-term Memory 

A particular kind of recurrent neural network called Long Short-Term Memory was created to tackle the 

vanishing gradient issue that ordinary RNNs frequently face and retain information over extended peri-

ods of time. For tasks where context from far back in the sequence is crucial such as language model-

ling, machine translation, and speech recognition, LSTM are very useful. They employ a memory cell 

layout with input, forget, and output gates that regulate which data should be retained, discarded, or out-

put. This enables the model to exclude unnecessary input while preserving significant data over a wide 

range of time steps. During training, LSTM adjust their gates  using backpropagation through time to 

better capture long-range dependencies. Although they are more complex and computationally intensive 

than basic RNN, they offer better performance in handling long-term context in sequential data [17]. 

2.4.4 Proposed Gated Recurrent Unit 

One kind of recurrent neural network (RNN) that may effectively handle sequential input and resolve the 

vanishing gradient problem is the Gated Recurrent Unit (GRU). Because it uses fewer gates and parame-

ters, it is computationally less expensive than Long Short-Term Memory (LSTM) networks. GRU’s abil-

ity to manage long-term dependencies without requiring a significant amount of computing power has 

led to its widespread use in time-series prediction, speech recognition, and Natural Language Processing 

(NLP). Using gating methods to selectively update the concealed state at each time step is the fundamen-

tal concept of a Gated Recurrent Unit (GRU). The network’s information flow is managed by these 

techniques. The reset gate and the update gate are the two gates used by the GRU. While the update gate 

decides how much of the new input goes toward updating the hidden state, the reset gate governs how 

much of the prior hidden state should be deleted. This updated concealed state is the source of the 

GRU’s final output. 
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The following formulas are used to determine a GRU’s reset gate, candidate hidden state, update gate, 

and final hidden state: 
  

Reset gate (rt) = 𝜎(𝑊𝑟 ∗ [ℎ𝑡−1 , 𝑥𝑡] +  𝑏𝑟)                                                  (1) 

 

Candidate Hidden state (h̃t)   = 𝑡𝑎𝑛ℎ(𝑊ℎ ∗ [𝑟𝑡  ⨀ ℎ𝑡−1 , 𝑥𝑡] + 𝑏ℎ )             (2) 

 

Update gate (zt) = 𝜎(𝑊𝑧 ∗ [ℎ𝑡−1 , 𝑥𝑡] +  𝑏𝑧)                                                (3) 

 

Final hidden state (ht) = 𝑍𝑡 ⨀ ℎ𝑡−1 + (1 − 𝑍𝑡) ⨀  h̃𝑡                                  (4) 

Where xt is the input, ht−1 is the previous hidden state, W and b are the weight and bias , tanh ensures 

non-linearity, ⊙ denotes element-wise multiplication, h̃t is new candidate state. 

 

Fig.3, represents the workflow of GRU model. It represents the how works the  reset gate, candidate 

hidden gate and update gate  
 

 
   

                                    Figure 3: GRU model workflow 

 

2.5 Evaluation metrics 

In order to evaluate the effectiveness of machine learning and deep learning models and make sure they 

produce accurate and trustworthy predictions, evaluation metrics are quantifiable measurements. 

Depending on whether a model is used for ranking, regression, or classification tasks, various models 

need different evaluation metrics. 

 

A typical evaluation statistic for classification models is accuracy, which quantifies the proportion of 

examples that are properly classified: 

 

 𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                         (5) 

 

Precision (Positive Predictive Value) measures how many predicted  

𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                   (6) 
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Recall (Sensitivity) indicates how many actual positives were correctly identified: 

 

𝑅𝐸𝐶𝐴𝐿𝐿 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                         (7) 

F1-score is the harmonic mean of precision and recall, balancing both metrics: 

 

𝐹1 − 𝑆𝐶𝑂𝑅𝐸 =
2.𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                   (8) 

Plotting the true positive rate (TPR) against the false positive rate (FPR) allows AUC-ROC (Area Under 

the Receiver Operating Characteristic Curve) to assess a model’s capacity to discriminate between clas-

ses. 

 

3. Results and Discussions  

The data includes 12 features, such as price elasticity coefficient, power balance, and producer and con-

sumer reaction times, in order to maximize grid stability. 20% of the dataset is used for testing, and the 

remaining 80% is used for training. Lastly, the GRU model performed noticeably better than the other 

models, including the Artificial Neural Network, Recurrent Neural Network, Long Short-Term Memory, 

Decision Tree, and Logistic Regression. The benchmark results for the GRU and other models are 

shown in Table 1. 

Table 1 : Findings from the Learning Models 

 

 

We present the prediction performance of the GRU model over a period of fifty epochs. The model 

showed little overfitting, despite the fact that overfitting is a frequent problem during training, as seen in 

Fig.4 and Fig.5. Over the course of the training procedure, the accuracy increased steadily, reaching 

97.45% in the final five epochs. 

Models Accuracy Precision Recall F1 score ROC 

Decision Tree 0.8435 0.85 0.84 0.84 0.832 

Logistic Regression 0.8160 0.81 0.82 0.80 0.792 

ANN 0.9639 0.96 0.96 0.96 0.995 

RNN 0.9325 0.93 0.93 0.93 0.986 

LSTM 0.9639 0.97 0.96 0.96 0.941 

GRU 0.9745 0.97 0.97 0.97 0.996 
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Figure 4: The GRU Model’s Accuracy 
 

 
   

Figure 5: GRU Model Loss 

 

The confusion matrix for the GRU model for actual over-predicted outcomes is shown in Fig.6, This 

chart shows that the model produces 701 true negatives, 1248 true positives, 23 false positives, and 28 

false negatives. The GRU model’s testing classification results for class 0 and class 1 accuracies are 

displayed in Table 2  along with the accuracy, weighted average, and macro average. 
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Figure 6: Matrix of Confusion for the GRU Model 

Table 2: GRU Model Testing Classification Outcomes 

 

                          

 

 

 

 

 

 

 

 

 

 

                                            

 

During the testing phase, the total accuracy was measured at 97.45%, with class 0 accuracy of 96% and 

class 1 accuracy of 98%. The metric value 2000 in the performance report often indicates the number of 

real instances the number of real instances of a specific class that are involved in the model evaluation 

process. Nevertheless, this metric also aids in comprehending the data that is accessible to evaluate the 

model performance and reliability of a specific issue. 
 

The GRU model retains the statistical significance and depth of performance indicators, including 

precision, recall, and F1-Score , during the validation phase, closely matching the outcomes of training 

and testing. 

 

4. Conclusion 

 

The capacity of GRU, LSTM, RNN, ANN, Decision Tree, Logistic Regression to categorize data ex-

tracted from a smart grid dataset in order to forecast grid stability was investigated in this study. In order 

to improve the forecast of smart power grid stability, we then suggest a GRU model. Both user-

consumed energy and smart grid-generated energy were included in the test simulation data. The accura-

cy of the GRU model is 97.45%, while its loss is only 10.33%. Additionally, 97% precision, 97% recall, 

and 97% F1-Score are attained with the GRU model. However, the accuracy of the LSTM, RNN, ANN, 

Evaluation Metric Precision  Recall F1-score Support 

Accuracy of class 0 0.96 0.97 0.96 724 

Accuracy of class 1 0.98 0.98 0.98 1276 

Accuracy   0.97 2000 

Macro Avg 0.97 0.97 0.97 2000 

Weighted Avg 0.97 0.97 0.97 2000 
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Decision Tree classifier, and Logistic Regression models is 96.39%, 93.25%, 96.39%, 84.35%, and 

81.60%, respectively. The model with the highest accuracy among the examined models was determined 

to be the most appropriate for predicting the stability of smart grids. The findings demonstrate how deep 

learning approaches can enhance grid stability evaluation, which is crucial for effective power distribu-

tion in contemporary energy systems. To improve real-time prediction ability, future research can con-

centrate on refining these models even more and adding more affecting variables. 
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