

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024540 Volume 16, Issue 2, April-June 2025 1

Automated Specification-Based Test Generation

for Web Clients and

RESTful APIs Using Symbolic Execution

Manasa hegde1, Ayush lakhani2, Dr I Bremnavas3

1,2PG Student, School of CS & IT, JAIN (Deemed-to-be University) Bangalore, India

3Professor, School of CS & IT, JAIN (Deemed-to-be University) Bangalore, India
1manasah161@gmail.com,2mrlakhani009@gmail.com

ABSTRACT:

Automated testing is essential for ensuring the dependability of contemporary web applications and

RESTful APIs. While conventional methods concentrate on individual API requests, issues related to

business logic frequently arise from intricate, state-dependent API interactions. This paper suggests an

innovative approach to automated test generation based on specifications, utilizing state charts, symbolic

execution, and API mocking to enhance test coverage for both web clients and RESTful APIs.

Our method presents a formal language for API specifications, drawing inspiration from design-by-

contract principles to represent API interactions. By employing symbolic execution, we systematically

produce abstract test cases (ATCs), which are subsequently transformed into concrete test cases for

execution. The proposed framework guarantees comprehensive testing by incorporating state-aware

interactions and identifying hidden failures that traditional isolated API tests often overlook.

Experimental findings indicate that our combined testing strategy significantly lessens manual labour,

boosts test coverage, and enhances the reliability of web applications by revealing critical business logic

issues.

KEYWORDS

RESTful APIs, Web Application Testing, Specification-Based Testing, Symbolic Execution, Abstract

Test Cases, API Mocking, Design-by-Contract, State-Aware Testing, Test Automation, API

Specifications, Constraint Solving, ExpoSE, Test Case Generation, Formal Verification, Software

Reliability, Automated Testing Framework, Business Logic Validation, API Workflows, Model-Based

Testing, JavaScript Symbolic Execution

1. INTRODUCTION

APIs and web clients are vital components of contemporary applications. Verifying their reliability and

accuracy is important for smooth operation.

https://www.ijsat.org/
mailto:manasah161@gmail.com
mailto:mrlakhani009@gmail.com

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024540 Volume 16, Issue 2, April-June 2025 2

In the current digital age, web applications depend on APIs to facilitate data exchange and execute

functions effectively. Nevertheless, manual testing of these APIs takes a lot of time and frequently

overlooks significant errors.

”In the fast-changing world of web applications, maintaining the reliability and accuracy of APIs and

web clients has become a major challenge. Contemporary applications rely heavily on RESTful APIs for

communication among various services, making them essential components of software systems.

However, traditional testing methodologies often concentrate on individual API calls instead of the

complete interaction flow, leading to voids in business logic validation. As applications grow more

intricate, the demand for automated and systematic test generation techniques is increasing.

Manual API testing is not only labour-intensive but also susceptible to human errors, which can create

inconsistencies in test coverage. Standard testing methods, such as unit testing and integration testing,

primarily verify isolated API calls, but they do not adequately capture interactions that depend on the

state. Business logic faults frequently occur when multiple API calls interact in unexpected ways,

making it crucial to validate sequences of APIs rather than merely examining separate endpoints. The

lack of a structured testing framework results in undetected vulnerabilities, performance issues, and

functional failures in actual applications.

To combat the shortcomings of traditional testing, specification-based testing has emerged as a

promising solution. This approach involves creating formal API specifications that detail expected

behaviours, constraints, and business logic rules. By employing specification-based methods, testers can

methodically generate test cases that evaluate API workflows instead of just isolated functions. This

strategy ensures that APIs comply with predefined standards and perform as anticipated across various

scenarios.

One potent technique for automating specification-based testing is symbolic execution, which assesses

program behaviour without executing it using specific inputs. Symbolic execution treats input variables

as symbolic values and systematically explores all possible execution paths. By incorporating symbolic

execution into API testing, we can produce comprehensive test cases that consider various state

transitions and error-handling situations, resulting in greater test coverage and enhanced robustness of

web applications.

Despite extensive research on both web client testing and RESTful API validation, a gap remains in

fusing these approaches into a cohesive testing framework. Web applications typically depend on

multiple API calls, and failures can arise from incorrect API responses, poor state management, or

security issues. Our research seeks to fill this gap by proposing a hybrid testing methodology that

integrates web client testing, RESTful API validation, state-aware execution, and symbolic analysis to

enhance test reliability.

A key drawback of conventional API testing is its inability to assess state-dependent API interactions.

Our proposed framework utilizes API mocking to replicate expected API behaviours and employs state-

aware test case generation to validate business logic. By substituting actual API calls with mocked

responses, we can devise realistic test scenarios that emulate user interactions while maintaining control

over test execution. This ensures that APIs operate correctly under real-world conditions without

necessitating extensive manual intervention.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024540 Volume 16, Issue 2, April-June 2025 3

Automating the generation of test cases provides numerous benefits, such as reduced manual labour,

lesser human errors, and improved efficiency. By utilizing formal API specifications, symbolic

execution, and automated test case derivation, our approach guarantees that test cases are not only

thorough but also reusable and adaptable to changing API designs. Furthermore, automated testing

significantly cuts down testing time, allowing developers to concentrate on enhancing application

functionality rather than investing excessive effort in debugging and error detection.”

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024540 Volume 16, Issue 2, April-June 2025 4

2. METHOD USED FOR AUTOMATED TEST GENERATION

A. API Specification and Test Input Representation

API specifications play a vital role in outlining the anticipated behaviour of APIs, thereby guaranteeing

consistency, reliability, and thorough validation. Our testing framework utilizes formal API

specifications to systematically create test cases. By outlining an API’s functional properties, limitations,

and expected outcomes, we ensure extensive coverage of actual API interactions.

Our methodology employs the design-by-contract principle, which consists of three essential

components:

Preconditions – Requirements that must be met before making an API call. For instance, a user login

API should only be invoked after the user registration API has successfully completed.

Postconditions – Anticipated results after executing an API call, such as a successful login returning a

valid session token.

Invariants – Conditions that must consistently be true throughout the API’s lifecycle, like preserving

session integrity during user interactions.

To depict test inputs, we introduce test strings, which represent a sequence of API calls that reflect a

business logic workflow. A test string for an e-commerce API might incorporate user authentication,

adding products to a cart, and completing a transaction. By ensuring the correct order, we minimize

state-transition errors, such as trying to complete a checkout without prior authentication.

The representation of test inputs also involves classifying them into valid, invalid, and boundary cases.

Valid inputs confirm that APIs operate correctly under expected conditions, while invalid and boundary

cases highlight vulnerabilities such as SQL injection threats or inadequate authentication handling. By

integrating these testing strategies, we enhance accuracy and reliability in API testing.

B. Abstract Test Case Generation

”Abstract Test Cases (ATCs) offer a systematic and adaptable method for API testing. They function as

overarching representations of test scenarios, ensuring that APIs align with their defined specifications.

In contrast to conventional test cases that depend on specific values, ATCs employ symbolic variables,

allowing them to be flexible for a variety of execution paths.

ATCs are derived directly from API specifications and encompass three essential components:

API function calls that illustrate various interactions.

Symbolic variables that act as stand-ins for user input.

Assertions that confirm anticipated outputs and API behaviour.

For example, an ATC for authenticating a user may feature:

A signup function call with symbolic variables representing the username and password.

A login function call utilizing the same symbolic placeholders.

Assertions that check for successful authentication.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024540 Volume 16, Issue 2, April-June 2025 5

Negative test scenarios that ensure failures occur with incorrect credentials.

ATCs offer numerous benefits:

Enhanced test coverage through the systematic generation of scenarios.

Increased flexibility to adapt to new changes in the API.

Automated error detection achieved via symbolic execution.

By incorporating ATCs into our API testing framework, we remove dependencies on manual input and

guarantee thorough API validation. ”

C. ExpoSE JavaScript Code Generation

After generating ATCs, they need to be converted into executable code for verification. This is done with

ExpoSE, a JavaScript symbolic execution tool designed for the dynamic analysis of API interactions.

ExpoSE enables the exploration of all potential execution paths by treating inputs as symbolic variables.

In contrast to conventional testing approaches that depend on fixed inputs, symbolic execution

guarantees thorough API validation by emulating actual user interactions. The process of code

generation consists of: Transforming ATCs into JavaScript functions that replicate real API workflows.

Incorporating symbolic variables for inputs, API responses, and state transitions. Establishing assertions

to confirm API correctness. For instance, a test case for a shopping cart API may consist of: A symbolic

user ID that represents various users. Dynamic API calls to add and remove items from the cart.

Assertions to ensure proper item counts and session management. By utilizing ExpoSE for symbolic

execution, we effectively produce and examine API test cases, ensuring enhanced accuracy and

dependability.

D. Symbolic Execution and Constraint Solving

”Symbolic execution is crucial to our methodology as it systematically examines all possible execution

paths of the API. In contrast to conventional execution, where test cases operate with pre-defined input

values, symbolic execution views inputs as variables, enabling more extensive test coverage.

Our framework utilizes theorem solvers such as Z3 to evaluate API constraints and identify achievable

execution paths. This approach allows us to automatically uncover vulnerabilities, such as security

issues and logical inconsistencies.

For example, in a payment gateway API:

Successful transactions should result from valid card information.

An error message must be generated with invalid credentials.

Duplicate transactions should be prevented.

By implementing these constraints, symbolic execution guarantees thorough API validation, reducing

unpredictable behaviours and potential security threats. ”

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024540 Volume 16, Issue 2, April-June 2025 6

E. Mocking for State-Aware Testing

Mocking is a crucial method in API testing that enables us to replicate API interactions without

depending on live services. This technique is especially beneficial for state dependent APIs, where the

output of an API call is influenced by previous interactions.

Our method employs implicit mocking, where predefined responses substitute actual API calls,

guaranteeing consistent and controlled test execution. This helps to mitigate potential problems such as

varying network conditions, server outages, or inconsistent responses from external APIs.

For instance, in a banking API:

A user’s account balance should reflect updates accurately after transactions.

Unauthorized transactions should be prevented.

API responses need to remain uniform across various test cases.

By utilizing state-aware mocking, we ensure that test cases are stable, precise, and reproducible, thereby

enhancing the efficiency of API validation.

3. CONCLUSIONS

By combining formal API specifications, abstract test cases, symbolic execution, and state-aware

mocking, our method provides a thorough, automated, and scalable solution for API testing. The

integration of these strategies guarantees extensive test coverage, minimized manual effort, and

improved software reliability, establishing it as a robust framework for contemporary API-driven

applications.

REFERENCES

1. ”RESTful API Automated Test Case Generation” by Andrea Arcuri. This paper proposes a fully

automated white-box testing approach using evolutionary algorithms to generate test cases for

RESTful webservices. IEEE XPLORE

2. ”DeepREST: Automated Test Case Generation for REST APIs Exploiting Deep Reinforcement

Learning” by Davide Corradini et al. The authors introduce DeepREST, a tool that leverages deep

reinforcement learning to automatically craft test scenarios for REST APIs, enhancing reliability and

trustworthiness. ARXIV

3. ”Automatic Generation of Test Cases for REST APIs: A Specification Based Approach” by

Massimiliano Di Penta et al. This study presents a method to generate test cases based on API

specifications, particularly the OpenAPI Specification, ensuring APIs meet defined requirements.

4. IEEE XPLORE

5. ”Automated Generation of Test Oracles for RESTful APIs” by Jose M.´ Alen-Cordero et al. The

paper addresses the challenge of automated´ test oracle generation for RESTful APIs, proposing a

novel approach to enhance error detection beyond server failures and specification

6. non-conformities. JAVALENZUELA

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024540 Volume 16, Issue 2, April-June 2025 7

7. ”Automated Test-Case Generation for REST APIs Using Model Inference” by Andrea Arcuri. This

research discusses the use of evolutionary algorithms in EvoMaster, a tool designed to automatically

generate test cases for microservices’ REST APIs by inferring models.

8. ARXIV

9. ”KAT: Dependency-aware Automated API Testing with Large Language Models” by Tri Le et al.

The authors present KAT, an AI-driven approach that utilizes large language models to

autonomously generate test cases for validating RESTful APIs, improving test coverage and

reducing false positives. ARXIV

10. ”Empirical Comparison of Black-box Test Case Generation Tools for RESTful APIs” by Davide

Corradini et al. This empirical study compares automated black-box test case generation tools for

REST APIs, evaluating their robustness and test coverage across real-world services. ARXIV

11. ”Improving Test Case Generation for REST APIs Through Hierarchical Clustering” by Dimitri

Stallenberg et al. The paper proposes an approach that employs agglomerative hierarchical clustering

to enhance the effectiveness of test case generation for REST APIs, leading to improved branch

coverage and fault detection. ARXIV

12. ”Automated Specification-Based Testing of REST APIs” by Andreea M. Preda et al. This study

introduces a solution that automates the generation of test cases for REST APIs based on their

specifications, incorporating user interaction to augment the process with human expertise. MDPI

13. ”RESTful API Automated Test Case Generation” by Andrea Arcuri. The paper presents a fully

automated white-box testing approach using evolutionary algorithms to generate test cases for

RESTful web services, rewarding tests based on code coverage and fault finding. ARXIV

14. ”DeepREST: Automated Test Case Generation for REST APIs Exploiting Deep Reinforcement

Learning” by Davide Corradini et al. The authors introduce DeepREST, a tool that leverages deep

reinforcement learning to automatically craft test scenarios for REST APIs, enhancing reliability and

trustworthiness. IEEE XPLORE

15. ”Automatic Generation of Test Cases for REST APIs: a SpecificationBased Approach” by

Massimiliano Di Penta et al. This study presents a method to generate test cases based on API

specifications, particularly the OpenAPI Specification, ensuring APIs meet defined requirements.

16. MODELING LANGUAGES

17. ”Automated Generation of Test Oracles for RESTful APIs” by Jose M.´ Alen-Cordero et al. The

paper addresses the challenge of automated´ test oracle generation for RESTful APIs, proposing a

novel approach to enhance error detection beyond server failures and specification non-conformities.

JAVALENZUELA

18. ”Automated Test-Case Generation for REST APIs Using Model Inference” by Andrea Arcuri. This

research discusses the use of evolutionary algorithms in EvoMaster, a tool designed to automatically

generate test cases for microservices’ REST APIs by inferring models.

19. ARXIV

20. ”KAT: Dependency-aware Automated API Testing with Large Language Models” by Tri Le et al.

The authors present KAT, an AI-driven approach that utilizes large language models to

autonomously generate test cases for validating RESTful APIs, improving test coverage and

reducing false positives. ARXIV

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25024540 Volume 16, Issue 2, April-June 2025 8

21. ”Empirical Comparison of Black-box Test Case Generation Tools for RESTful APIs” by Davide

Corradini et al. This empirical study compares automated black-box test case generation tools for

REST APIs, evaluating their robustness and test coverage across real-world services. ARXIV

22. ”Improving Test Case Generation for REST APIs Through Hierarchical Clustering” by Dimitri

Stallenberg et al. The paper proposes an approach that employs agglomerative hierarchical clustering

to enhance the effectiveness of test case generation for REST APIs, leading to improved branch

coverage and fault detection. ARXIV

23. ”Automated Specification-Based Testing of REST APIs” by Andreea M. Preda et al. This study

introduces a solution that automates the generation of test cases for REST APIs based on their

specifications, incorporating user interaction to augment the process with human expertise. MDPI

https://www.ijsat.org/

