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Abstract 

In the age of smart cities, maintaining safe and reliable data transmission over large-scale sensor networks 

is becoming more important. These networks, which are often made up of smart cameras and IoT devices, 

are susceptible to abnormalities like rogue nodes, sensor failures, and traffic spikes, which may jeopardize 

system integrity and performance. Traditional centralized anomaly detection methods suffer from latency 

and scalability difficulties, particularly in high-density settings. To solve this issue, this paper proposes a 

new anomaly detection system that combines Ant Colony Optimization (ACO) and clustering approaches 

in an OMNeT++ simulation environment. The system uses a fog-cloud architecture, with fog nodes doing 

localized processing and clustering to decrease latency and data overhead, and ACO for efficient data 

routing and anomaly detection. Simulations were run with three distinct sensitivity settings: baseline, high, 

and low, to assess detection accuracy, precision, recall, and F1-score. The suggested technique showed 

considerable increases in all measures, with baseline scenario accuracy improving from 86.5% (without 

detection) to 92.4% (with detection), and F1-score from 0.64 to 0.837. Furthermore, the system 

demonstrated improved processing efficiency and decreased network use at both the fog and cloud levels, 

indicating its applicability for real-time anomaly identification in dynamic and scalable smart city 

networks. 

 

Keywords: OMNeT++, ACO, Clustering, Smart City Networks, Fog Computing. 

1 Introduction  

The emergence of the Internet of Things (IoT) is seen by many experts as a major breakthrough in 

information and communication technology (ICT) after the creation of computers and the Internet. The 

IoTs may connect a variety of smart devices and sensors to the network, allowing for the collection of data 

from the actual world. This feature makes it possible to store and handle the collected data in an automated 

and dynamic manner [1], [2]. The rise of IoT-powered smart cities has fundamentally altered the way how 

the cities function and expand. 

To increase operational effectiveness, sustainability, and the general quality of life for their residents, these 

cities make use of digital connections and a vast sensor network [3]. However, an unprecedented amount 

of data has entered urban surroundings as a result of the growth of IoT devices. Although this data is 
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essential to the real-time operations and decision-making processes of a smart city, it also poses serious 

difficulties, especially in the areas of administration and security [4]. Finding abnormalities in big urban 

data is one of the most important difficulties. 

A security breach in a smart city may have a significant effect on economic stability, governmental 

services, and community confidence. Data leaks, denial of service (DoS) attacks, ransomware, phishing, 

and IoT device manipulation are typical cyberthreats in smart cities [5]. Research and development efforts 

have been focused on strengthening smart cities' cybersecurity posture because of the severity of these 

threats. Firewalls, encryption mechanisms, and intrusion detection systems are examples of current 

solutions. But these conventional methods often fall short in tackling the particular problems faced by 

smart cities [6]. 

The goal of anomaly detection is to find trends or occurrences that substantially depart from the typical or 

anticipated behavior of a data collection. In the case of smart cities, this job is crucial since it encompasses 

a wide range of applications, from seeing electrical grid manipulation to spotting cyberthreats and 

predicting malfunctions in vital urban systems [7] , [8]. In addition to being beneficial, early anomaly 

detection is essential for averting unforeseen disruptions, protecting public safety, and preserving the 

integrity of urban systems. IoT devices act as the nerve ends of a smart city's complex fabric, continually 

monitoring and gathering data from a variety of urban living factors, such as energy use, intelligent 

transportation systems, environmental conditions, and public security.   As a result, the growth of IoT in 

smart cities has created massive amounts of data, which have put a strain on the network and processing 

power. These massive amounts of data require a lot of computational power, communication bandwidth, 

storage space and real time threat detection. Handling the massive amounts of data generated by IoT 

applications is proving to be a significant problem for the academic and scientific community [9], [10]. 

This challenge highlights the need for innovative solutions such as data-proxy anomaly detection in smart 

cities. 

In response to this problem, the Cloud of Things (CoT) emerged as a result of the convergence of cloud 

computing with IoT [11]. Furthermore, cloud computing offers a centralized computing approach with a 

large amount of storage and processing power. This connection makes it possible to collect data from IoT 

devices in a seamless manner and streamlines the processing of the collected data [12].  Therefore, the 

CoT model, in which devices send data straight to the cloud, is shown in Figure 1. Following that, a 

suitable choice is made based on the findings of the analysis and calculation, which are both done in the 

cloud. 

 
Figure 1 The communication model of the Cloud of Things 

Among the many advantages of this strategy is the low maintenance and monitoring requirements. It has 

thus created a multibillion-dollar business. However, centralized cloud-based models for anomaly 
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detection present notable limitations such as increased network jitter, higher bandwidth consumption, 

scalability issues and latency concerns related to data privacy  [13], [14]. These constraints limit the 

efficacy of timely threat detection and rapid incident response in smart city environments, where real-time 

decision-making is crucial. 

To address these challenges, Cisco has created the fog computing wherein computational resources are 

transferred to the network edge. Fog computing minimizes resource contention at the edge and maximizes 

resource usage by coordinating the use of geographically dispersed network edge devices and using cloud 

resources. Because of this, fog computing is able to balance resource use and enhance overall resource 

efficiency [15].  

By bringing computing resources closer to the network's edge, fog computing allows real-time threat 

response and detection with decreased latency and network load. Fog computing decouples the 

decentralized method to offer faster processing of edge device-created data, making possible real-time 

anomaly detection as well as local mitigation measures in smart city environments. Figure 2 demonstrates 

the basic architecture of fog computing, consisting of the three-layers. 

 

Figure 2 Fog Computing Architecture 

Despite its advantages, anomaly detection system development and testing in fog scenarios is still a 

challenging task given the complexity, heterogeneity, and size of smart city networks. Real-world testing 

and deployment are costly and mostly impractical. Hence, simulation-based evaluation frameworks that 

can support controlled, repeatable, and scalable detection algorithm testing in realistic conditions are 

increasingly in demand. 

An extendable modeling library for creating network simulations is called OMNeT++. It is free for non-

commercial and academic usage and is an open source product. Model component architecture is provided 

by OMNeT++. C++ is used to program the components (modules), which are then put together using the 

NED language to create bigger components and models [16]. The integrated development environment in 

OMNeT++ offers a wealth of features for examining models.  INET is the most widely used modeling 

library that extends OMNeT++.  It offers agents, protocols, and more models for data network operations 

[17].  

OMNeT++ provides a modular, flexible simulation framework well suited to model fog-based networks. 

By combining with optimization algorithms such as Ant Colony Optimization (ACO) for effective 

resource allocation and clustering algorithms for pattern analysis of behavioral patterns, OMNeT++ is an 

effective platform for developing adaptive, scalable, and high-accuracy anomaly detection systems. This 
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research is thus motivated by the need to create a fog-enabled OMNeT++ framework that supports real-

time, intelligent threat detection tailored to the dynamic and distributed nature of smart city ecosystems. 

The key contributions of this research include: 

• To develop a fog-enabled anomaly detection framework using OMNeT++ that supports real-time, 

distributed threat identification in smart city IoT environments. 

• To enhance the efficiency and accuracy of anomaly detection by integrating intelligent algorithms 

such as Ant Colony Optimization (ACO) and clustering techniques within the simulation. 

• To demonstrate the advantages of fog computing over traditional cloud-based approaches, 

including reduced latency, lower bandwidth consumption, and improved scalability for large-scale urban 

networks. 

• To provide a privacy-aware, simulation-based testing environment that overcomes the cost and 

complexity of real-world deployments, enabling reproducible and realistic evaluation of smart city 

cybersecurity solutions. 

The remaining sections will be structured as follows: Section 2 delves into the associated work, which 

involves studying the literature for our suggested approach and identifying any gaps in the research. 

Section 3 provides background information on the suggested models. Section 4 covers the suggested 

methodology, which includes a data collection description of the dataset, preprocessing, segmentation, and 

model. Section 5 explains the experiment, analyzes the results, and compares them. Section 6 presents the 

study's conclusions and future directions. 

2 Literature Review  

This section reviews the literature with a focus on fog computing simulation models, optimization 

techniques, and IoT-based systems.  Current methods for anomaly detection in smart city environments 

are explored, and significant research is highlighted. 

Anomaly detection in IoT and smart city networks 

Urban security benefits greatly from big data, but integrating these data systems is a challenging task.  The 

complex data management procedure for big data integration that occurs when smart cities combine 

datasets from cloud platforms, edge computing systems, and Internet of Things devices is described by 

[18]. For security professionals, integrating many data sources seamlessly and accurately maintaining data 

dependability is a major difficulty. According to [19], big data helps researchers create comprehensive risk 

assessment models that look at environmental factors, system vulnerability traits, and past security 

occurrences.  [20] explains how big data allows data-driven judgments by merging data from cybersecurity 

monitoring devices, emergency units, social media feeds, and surveillance systems.  Administrators can 

identify security threats, initiate emergency responses, and improve police protocols by analyzing this 

data. 

A smart city is susceptible to a number of sophisticated cyberattacks, however. Deep autoencoder 

techniques are proposed by [21] to identify cyberattacks in self-driving cars. In order to facilitate data 

interchange and optimize vehicle operation, the research examines how electronic control units (ECUs) 

behave in connected and autonomous cars (CAVs), which are linked via in-vehicle networks (IVNs). 

Machine learning and deep learning techniques are used in the analysis to find cyberattacks that find 
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inaccurate data on car data buses. Gradient boosting, k-nearest neighbor (KNN), decision trees, and long 

short-term memory (LSTM) are a few of the techniques used in the research. A split-training technique 

was used by  [22] to identify anomalies in gas turbine engines. To create a simulation model and extract 

input data, a clustering approach was used. By streamlining the whole process, a regression model 

improves model performance while classifying the data points.  

For anomaly identification, [23] suggest a split active learning approach in conjunction with unsupervised 

techniques. To lower labeling expenses, the research used autoencoders with active learning. The 

suggested approach outperforms conventional learning techniques by cutting training time and increasing 

performance by 20%. A strategy for data splitting in independently and identically distributed (IID) testing 

splits is put out by [24]. A variety of techniques were used to examine the performance, and the receiver 

operating characteristic (ROC) curve was used for validation. For network anomaly detection, [25] use 

adaptive multiclass balancing in conjunction with semi-supervised learning. To address data imbalance, 

the research used an adaptive confidence threshold function and a multiclass split balancing approach. The 

suggested method outperforms alternative baseline models and improves anomaly detection performance. 

Fog-Based Anomaly Detection in IoT 

A fog computing-based IDS architecture for IoT networks was proposed by [26]. Their suggested method 

makes use of fog computing to detect and stop intrusions, hence enhancing network security. One of the 

results is an improvement in network resilience to cyberthreats. A thorough literature evaluation of IDS 

and prevention in fog-based IoT settings was conducted by [27]. By analyzing several intrusion detection 

methods, this study improves the suggested design and adds to the corpus of work by literature. They 

provide a more thorough perspective by looking at several approaches, as opposed to literature which 

focus on putting up a specific architectural concept. This study lays the groundwork for future 

advancements in the subject and makes it easier to identify research needs.  

In order to identify attacks in IoT-fog situations, [28] suggested SIMAD, a secure and intelligent technique. 

They provide a logical plan to strengthen network security, building on previous studies complaint about 

the need for more sophisticated IDS. By improving network security and threat detection capabilities, their 

suggested method aims to address some of the shortcomings noted in the literature study. 

A fog computing-based DDoS attack mitigation strategy for Internet of Things networks was presented by 

[29]. This approach expands research in IoT-fog settings by tackling specific threats like DDoS assaults. 

By allocating detection and mitigation tasks across fog nodes, their approach aims to increase network 

resilience against DDoS attacks while simultaneously enhancing network security. Moreover,  [30] 

suggested a safe architecture for the Internet of Things based on fuzzy logic and fog. By adding fuzzy 

logic-based decision-making processes to this architecture, fog computing environments become more 

secure . They  provide a security architecture that addresses a broader variety of issues in IoT systems, 

such as intrusion detection, in contrast to Lawal et al.'s focused attention on specific threats like DDoS 

assaults. 

For fog-assisted IoT systems, [31] presented a secure integrated framework. Their architecture 

successfully addresses the security issues in IoT devices by combining fog computing capabilities with 

traditional security measures. This paradigm, which builds on the work of Zahra and Chishti, provides a 

thorough understanding of IoT security by combining traditional and fog-based security measures. 
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Furthermore, [32] suggested a general and lightweight security solution for identifying malicious activity 

in uncertain IoT using fuzzy logic and a fog-based approach. They continued to research the security 

implications of fuzzy logic in IoT systems despite constraints. 

Simulation-Based Evaluation of Fog Computing Network Performance 

The following is a discussion and review of the most relevant papers about simulation fog computing 

network performance: In order to produce unique patterns that aid in data movement and gauge the degree 

of infrastructure development, [17] relied on the development of simulation models for the fog computing 

infrastructure based on OMNeT++ in addition to tools for evaluating the network's condition and the 

dynamics of its PlayStations on a set of statistical models.  

A study and architectural idea for combining IoT application development and simulation in edge and fog 

computing network settings was proposed by [33]. The FogNetSim++ extension and the node-RED 

application middleware serve as the foundation for the suggested design. The manager component of this 

integration is in charge of facilitating data exchange between the simulator and the middleware. The 

outcomes of the tests demonstrate how the integration works and how IoT applications may be validated 

using them.  

In order to overcome some of the disadvantages of conventional cloud computing, namely its high energy 

consumption, [34] used network modeling toolkits. The finest network simulation program for evaluating 

fog computing and conventional cloud computing critically in terms of planning, data management, and 

energy efficiency was found via an analysis. They demonstrate that implementing fog computing layer 

technology lowers energy consumption in comparison to standard cloud computing architecture using the 

iFogSim network simulation toolbox. Additionally, the differences between fog and cloud computing data 

centers are examined with regard to data management and energy consumption.  

According to research by [35], a technique was used to help improve the unique simulator MobFogSim, 

which incorporates dynamic network slicing in service management for mobile fog networks. It also 

helped add an empirical assessment of why network slicing in the fog environment benefits mobile device 

reception and may result in higher resource consumption, as well as a posting tool for requests generated 

from the nodes. 

Optimization and clustering techniques in network security 

Researchers have created a wide range of approaches, including hybrid models, clustering and 

optimization algorithms, to tackle the many difficulties in intrusion detection for IoT networks. Finding 

trends and outliers is aided by clustering, which combines related data points according to similarity or 

distance measurements [36]. Clustering is an unsupervised learning approach used in IoT network attack 

detection to group similar traffic patterns or behaviors in order to find anomalies that could point to 

possible assaults. Without labeled data, clustering may identify anomalous behavior and reveal hidden 

patterns by evaluating data according to distance or similarity metrics. By differentiating between 

malicious and legitimate communication, it improves intrusion detection, particularly in dynamic IoT 

contexts. However, the difficulty of choosing the best method, high processing costs, and sensitivity to 

parameter adjustment may restrict its efficacy. In large-scale IoT networks, common methods like 

DBSCAN [37], Clique  [38] and K-means [38]  are often used to find clusters of anomalous behavior. 

These developments demonstrate how intrusion detection techniques are constantly changing due to the 
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unique needs and features of Internet of Things networks as well as the ever-changing nature of network 

threats, emphasizing the need for flexible and creative solutions. 

Regarding network security optimization techniques, [39] discovered that the ACO algorithm 

demonstrated clear benefits in terms of random number generation, encryption strength, encryption and 

decryption times, and key distribution times. This suggests that the ACO algorithm has significant 

potential for use in encryption systems for computer network communication security. Furthermore, for 

the purpose of identifying cyberattacks in smart cities, [35] proposed a unique white shark equilibrium 

optimizer and hybrid deep learning techniques. The goal of the research is to maximize power management 

in order to enhance resource efficiency and quality of life. The White Shark Equilibrium Optimizer with 

a Hybrid Deep-Learning-based Cybersecurity Solution (WSEO-HDLCS) is used in the research to solve 

the problem of DDoS assaults interfering with critical services. Although the research addresses practical 

implementations and scalability difficulties, and the findings seem good, the study's major emphasis is 

restricted to DDoS assaults. Additionally, [40] examined several performance-based AI algorithms to 

accurately forecast IoT device issues and assaults. Ant colony optimization, genetic algorithms, and 

particle swarm optimization (PSO) were used to illustrate the efficacy of the proposed method with respect 

to four distinct parameters. The suggested approach using PSO produced results that were around 73% 

better than those of the current systems. 

 

2.1 Research gap  

Despite extensive efforts in designing anomaly detection systems for IoT-based smart city networks, 

existing solutions tend to be non-real-time responsive, scalable, and adaptable to dynamic distributed 

environments. Most existing solutions heavily depend on centralized cloud infrastructures, which bring 

latency, bandwidth limitations, and possible privacy issues. While fog computing and intelligent 

algorithms such as ACO and clustering have proven potential separately, there exists a significant lack of 

research integrating these methods in a simulation-based environment such as OMNeT++ to model, 

analyze, and test adaptive, privacy-preserving, and resource-conscious anomaly detection systems 

specifically designed for smart cities. This research intends to bridge this gap by designing a fog-based 

OMNeT++ platform integrating optimization and clustering methods for real-time threat detection and 

analysis. 

3 Background  

3.1 OMNeT++ 

OMNeT++ is a discrete event simulator built in C++ that may be used to represent multiprocessors, 

communication networks, and other distributed or parallel systems. Because OMNeT++ is open-source, 

it is allowed to be used for non-profit purposes under the terms of the Academic Public License. A robust 

open-source discrete event simulation tool that academic, educational, and research-focused commercial 

organizations may use to simulate computer networks and distributed or parallel systems was the driving 

force behind the development of OMNeT++. OMNeT++ is an example of a framework method. It offers 

the fundamental equipment and resources needed to create simulations for computer networks, queuing 

networks, and other areas rather than direct simulation components. Leveraging this modular and 

extensible architecture, researchers and developers have been able to build a wide range of simulation 

models for various domains, including wireless and ad-hoc networks, sensor networks, IP and IPv6 

networks, MPLS, wireless channels, peer-to-peer networks, storage area networks (SANs), optical 
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networks, queuing networks, file systems, high-speed interconnections (InfiniBand), and others, 

simulation models have been created by numerous individuals and research groups since their initial 

release.  

Model Structure 

Modules that communicate via message passing make up an OMNeT++ paradigm. Using the simulation 

class library, the active modules—also known as simple modules—are developed in C++. The number of 

hierarchical levels is unlimited; simple modules may be combined into compound modules, and so on. It 

is possible to send messages directly to their target modules or via connections that span across modules. 

DEVS [41] atomic and linked models have similarities with the idea of simple and complex modules. 

Module types include both basic and complicated modules. Module types are defined by the user when 

defining the model; instances of these module types function as building blocks for more intricate module 

types. In the end, the user constructs the system module as a network module, a unique kind of compound 

module devoid of gateways to the outside world. There is no difference between a simple and complex 

module when it is used as a building block. This enables the user to re-implement the functionality of a 

compound module in a single simple module, or to transparently divide a module into several simple 

modules inside a compound module, without impacting current users of the module type. Model 

frameworks such as the INET Framework [42]and the Mobility Framework [43], together with its 

expansions, demonstrate the viability of model reuse. 

 

Figure 3  Model Structure of OMNeT++ 

Module messages may include arbitrary data in addition to standard features like timestamps. While 

simple modules normally transmit messages via gates, they may also send them directly to their target 

modules. Modules have input and output interfaces, with messages transiting via output and input gates. 

An input and output gate may be connected. Connections may be made inside a single module hierarchy 

level, such as connecting gates of two submodules or one submodule and a compound module gate. To 

ensure model reuse, connections across hierarchy levels are not allowed. Messages generally pass along a 

chain of links in the hierarchical architecture, starting and arriving in basic modules. Compound modules 

behave as 'cardboard boxes' in the model, transparently transmitting messages between internal and 

external components. 

Properties like propagation delay, data throughput, and bit error rate may be applied to connections. 

Connection types with certain features (called channels) may be defined and reused in several locations. 

A module may contain parameters. Parameters are mostly used to send configuration data to basic modules 

and establish model topology. Parameters may be textual, numeric, or Boolean. As program objects, 

parameters can represent constants, generate random numbers, prompt the user for values, and store 

expressions referencing other parameters. Compound modules may transmit parameters or expressions to 

submodules. 
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3.2 Ant Colony Optimization Algorithm 

Ant colony optimization (ACO) is a metaheuristic optimization approach that relies on the behaviour of 

ants. The development of this technology was place in the early 1990s by Dorigo [44]. The first concept 

stems from the study of ants' use of food resources. While ants may have low individual cognitive ability, 

they possess the collective intelligence to efficiently locate the quickest route between a food source and 

their colony. 

When searching for food, ants first explore the area around their nest in a random manner. If an ant 

discovers a food supply, it assesses it and returns some food to the nest. During its return voyage, the ant 

leaves a pheromone trail on the route taken. The deposited pheromone is proportional to the amount and 

quality of the food, and it directs other ants to this source. Pheromone trails constitute indirect 

communication (also known as stigmergy) among ants, helping them to locate the shortest distance 

between their colony and food sources. This method is shown in Figure 4. 

 

Figure 4 Ant colony choose the quickest way. An ant discovers a food source (F) and returns to its nest 

(N) by dispersing a pheromone along its route [45]. 

The artificial ACO uses genuine ant colony capabilities to approximate optimization solutions. Although 

the first version of ACO only applies to discrete domains, the pheromone method has now been expanded 

to include continuous domains [46]. This is accomplished by creating a so-called solution archive, which 

contains a list of potential solutions that lead to a Gaussian mixed probabilistic model. Because of the 

evolutionary interaction between the probabilistic model and solution archive, the ACO in continuous 

domains is also known as the Estimation of Distribution algorithm [47]. The key phases of this method 

are outlined as follows: 

• Initialization: An initial population of n ants is formed randomly in a search area, and their fitness 

functions are assessed. 

• Generation of the solution archive: Initial solutions are ranked based on their fitness. The best 

and worst solutions are indicated by 𝑥1 and 𝑥𝑛, respectively. 

• Weight Attribution: The solutions regrouped in the archive are assigned a weight by using the 

following equation:  

𝑤𝑖∞
1

√2𝜋𝛼𝑛
exp [−

1

2
(

𝑖−1

𝛼𝑛
)

2

]                         (1) 
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∑ 𝑤𝑖
𝑛
𝑖=1 = 1                                                  (2) 

• Generating the probabilistic model: The probabilistic model based on the Gaussian mixture is 

given by the following equation:  

 

𝐺𝑘(𝑥[𝑘]) = ∑ 𝑤𝑖
𝑛
𝑖=1 𝑁(𝑥[𝑘]; 𝜇𝑖[𝑘]; 𝜎𝑖[𝑘])   (3)         

𝑁(𝑥; 𝜇, 𝜎) =
1

√2𝜋𝜎
exp [−

1

2
(

𝑥−𝜇

𝜎
)

2

]         (4)    

where 𝑥[𝑘] denotes the kth element in 𝑥 and 𝑘 is the decision variable. 

The probabilistic paradigm is implemented by computing the mean and standard deviation of the Gaussian 

mixture, as demonstrated in the following expressions: 

           𝜇𝑖[𝑘] = 𝑥𝑖[𝑘]                                          (5)       

      𝜎𝑖[𝑘] =
𝜂

𝑛−1
∑ [𝑥

𝑙
𝐽[𝑘]]

𝑛

𝑙
𝐽

=1

                   (6)                   

Sampling: m new samples are created as offsprings of the preceding archive by utilizing 

g=(𝐺1, 𝐺2, . . . , 𝐺𝑛𝑥). Offspring are evaluated based on the fitness function. 

Selection: In this stage, the offspring creates a new solution archive and finds the best solutions. The fittest 

solution in the archive is therefore the optimal solution of the optimization process. This operation is 

continued until a stop condition is fulfilled. 

3.3 Clustering  

Clustering is an unsupervised learning technique, in contrast to classification. Clustering methods have 

been used throughout the years in a variety of fields, including intrusion detection [48], networking [49], 

data mining, document analysis [50], image processing [51], and more. 

K Means Clustering: 

Large data sets are often clustered using the well-liked data mining clustering method K-means [52]. It 

was among the simplest unsupervised learning methods used to the problem with the famous cluster. The 

K-means Clustering is a situation in which the centroid of the cluster serves as its representation. The 

chosen centroids are not required to belong to the cluster. Figure 5 depicts the basic steps. 

 

Figure 5 Basic steps of K-means Clustering 
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The algorithm of the K-Means works as per below steps:  

• Step 1 : Choose the centroids for each cluster at random. 

• Step 2 : Determine each data point's distance from the centroids, then group them into the nearest 

cluster.                 

• Step 3 : Calculate each cluster's new centroids by averaging all of its data points. 

• Step 4 : Continue steps 2 and 3 until the centroids stop moving and all the points have converged. 

 

There are two separate phases available in the algorithm. In the first stage, k centres are chosen at random; 

k is a predetermined number. After that, it is required to deliver every data items to the closest centre. The 

distance between the cluster centres and every data point is often calculated using the Euclidean distance. 

Early grouping and the first stage are finished when each data item belongs to a few clusters. Recalculating 

the early-formed clusters' average. The criteria function is iterated through until the lowest value is 

obtained. 

The criteria function is defined as follows, considering that x is the target item and that xi is the cluster Ci 

average: 

2

1 i

K

i

i X C

E x x
= 

= −                 (7) 

For each database entry, E is the squared error total. The Euclidean distance is the length of the criteria 

function, which finds the shortest path between the cluster centre and each data point.  

The Euclidean separation of a single vector X and another vector Y. 

Where , 𝑋 =  (𝑋1, 𝑋2, … … 𝑋𝑛)  

              Y =  (𝑌1, 𝑌2, … … 𝑌𝑛) 

The Euclidean gap (distance) is calculated through the following equation. 
1/2

2

1

( , ) ( )
n

i i i i

i

d X Y x y
=

 
= − 
 
            (8) 

 

Algorithm 1. K- Means Standard Algorithm                                                  

1:           # Initialisation                                                 

2:            Value of : { 1,..., };N x xn=  

3:            Value of : { 1,..., };M k =  

4:             # Categorization 

5:             For ix N  and k M   

6:             Euclidean gap from every ix  to k  Clustering Calculation 

7:             Designate object ix  to nearest Centroid k  

8:             Calculation for Centroid: 

9:             Calculate Centroid k  

10:             # Convergence: 

11:                  If : { 1,..., }M k =  remains unaffected in Two successive iterations 

                        then:   

12:                       End the Procedure; 

13:                   else 
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14:                        Go to Categorization  

15:     End 

 

Density-Based Clustering 

Density-based spatial clustering of applications with noise (DBSCAN), which was first presented by 

Rehman et al., defines clusters as high-density regions that divide from low-density regions. It can identify 

any kind of cluster and is outlier-tolerant and noisy [53]. It has emerged as one of the most popular and 

widely used clustering techniques due to its ability to recognise clusters of various shapes and handle 

datasets with varying densities. Depending on the dataset density in the features region, DBSCAN 

identifies core, border, and noise points [54].  In order for an area to be considered dense, it needs two 

parameters: (1) minPts, which is the smallest number of points that must be clustered together, and (2) 

eps, which is the distance measure that will identify the points in the vicinity of any point. Figure 6 

provides an illustration of the fundamental stages. 

 

Figure 6 Basic steps of DBSCAN. 

• Step 1: Find the minPts and eps values. 

• Step 2: Choose a beginning data point at random. The points belong to the same cluster if there 

are at least minPts within an eps radius of the initial data point. If not, the point is regarded as a noise. 

• Step 3: Continue from step 2 until every point has been reached. 

Certain problems and situations are addressed by other DBSCAN versions and improvements. For 

instance, k-DBSCAN improves on DBSCAN by addressing the problem of dimensionality and providing 

guidance on feature selection and handling huge data. Using local density, the local outlier factor (LOF) 

[55] extension finds outliers in data. These improvements and adjustments demonstrate DBSCAN's 

adaptability to different clustering conditions. By integrating new techniques and modifications, these 

enhancements increase the algorithm's efficacy and applicability across a range of fields, including 

geographical analysis of data, anomaly detection, and pattern identification. 

4 METHODOLOGY 

This research employs a simulation-based approach to develop and test anomaly detection in a smart city 

network, using the OMNeT++ framework, Ant Colony Optimization (ACO), and clustering algorithms.  
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The process includes the following important steps: 

Network Simulation (OMNeT++ + INET Framework) 

The smart city network simulation is built and run on the OMNeT++ simulation environment, which is 

integrated with the INET framework. The network architecture consists of many components, including 

WirelessHosts that represent smart devices, Routers that manage data transfer, and StandardHosts that 

simulate static network elements such as servers and gateways. These components interact to simulate a 

real-world smart city infrastructure. 

Simulation settings are carefully set to specify communication behaviors, IP addresses, data transmission 

intervals, and sensor node functioning via wireless and Ethernet connections. At the application layer, 

sensor-based applications such as traffic sensors, smart lighting systems, and environmental monitors are 

installed. These programs produce and send realistic traffic data to a centralized gateway node. The 

gateway takes data and sends it to a backend server, where it is recorded and processed for future analysis. 

This complete configuration allows for the analysis of communication patterns and the identification of 

abnormalities in a simulated smart city setting. 

Step 1 Network Simulation Setup 

1: Initialize OMNeT++ simulation environment 

2: Define network topology using .ned file 

3: Configure simulation parameters in omnetpp.ini 

4: Deploy sensor nodes with applications: 

trafficSensorApp, smartLightApp, envSensorApp 

5: Define data flow to gatewayApp and serverApp 

6: Start simulation and monitor network metrics 

Data collection and logging 

In the simulation, the dataset is created synthetically using two essential methods inside the OMNeT++ 

code, allowing for both regular network data production and the insertion of abnormalities. The dataset is 

generated in real time throughout the simulation run, guaranteeing that it accurately depicts dynamic 

network circumstances and behaviors. 

Normal Network Data Generation 

The collectNetworkData() function contains the first mechanism, which creates data points based on 

realistic parameters with normal distributions. Among these criteria are: 

Traffic Rate: Produced using the standard deviation (normalTrafficStdDev) and mean 

(normalTrafficMean) of average network traffic rates. 

Latency: Similarly, latency has a normal distribution, with mean (normalLatencyMean) and standard 

deviation normalLatencyStdDev) values. 

Packet Loss: This is constructed using a uniform distribution, with values ranging from 0 to 5%. 
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Energy Consumption: Energy consumption similarly follows a uniform distribution, with values ranging 

from 0.5 to 1.5. 

Step 2 Data Collection and Logging 

1: Collect the following parameters for each time step t: 

2: - Traffic Rate: TR(t) 

3: - Latency: L(t) 

4: - Packet Loss: PL(t) 

5: - Energy Consumption: E(t) 

6: Store: X(t) = [TR(t), L(t), PL(t), E(t)] 

Anomaly Injection 

The second approach, implemented in the inject Anomaly() function, alters the usual parameters to 

generate anomalous data points. The anomaly Probability option controls the likelihood of an anomaly 

being injected; by default, it is set to 0.08 (or 8%). Three different sorts of abnormalities are injected: 

• Traffic Spike: The traffic rate increases by 2-5 times the typical rate, resulting in greater packet 

loss rates. 

• Sensor Failure: Latency is raised by 3-8 times the typical amount, accompanied by a significant 

packet loss. 

• Malicious Node: Traffic increases somewhat, while energy usage rises significantly. 

 

Dataset characteristics 

For a 100-second simulation, the resulting dataset comprises the following features: 

 

• There are around 1,000 data points, and fresh data is created every 0.1 seconds. 

• Based on an anomaly probability of 8%, there were around 80-90 injected abnormalities. 

• Each data point includes the following attributes: timestamp, traffic rate, latency, packet loss, and 

energy usage. 

• Ground truth labels are added to indicate whether the data point is normal or represents a certain 

sort of abnormality (for example, a traffic surge, sensor failure, or malicious node). 

 

Step 3 Anomaly Injection 

1: Define normal data vector: X = [TR, L, PL, E] 

2: For anomaly probability p, inject anomaly if r < p, r ∼ U(0, 1) 

3: Modify features as: 

4: Traffic Spike: TR′ = αTR,α ∈ [2, 5] 

5: Sensor Failure: L′ = βL,β ∈ [3, 8], PL′ = 100% 

6: Malicious Node: E′ = γE, γ ∈ [2, 4] 
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Clustering and ACO-Based Anomaly Detection 

Once the data has been gathered and abnormalities discovered, clustering and Ant Colony Optimization 

(ACO) are used to improve the anomaly identification procedure. 

Clustering: Clustering is a technique for grouping data points based on common traits, which may aid in 

distinguishing between normal and abnormal behavior. K-means and DBSCAN algorithms are used to 

cluster network traffic data based on traffic rate, packet loss, delay, and energy usage. Anomalous data 

points that do not fit into any cluster or emerge as outliers in sparse clusters are readily spotted. 

Ant Colony Optimization (ACO): ACO is used to improve various important parts of the anomaly 

detection process, including: 

1. Clustering Parameters: ACO optimizes the number of clusters for more accurate anomaly 

detection. 

 

2. Node Selection for Fog location: In the smart city network, ACO helps to determine the 

appropriate location of fog nodes based on network traffic patterns, which improves performance and 

security. 

 

3. Path Optimization: ACO may also optimize data pathways, assisting in the identification of 

aberrant or malicious network routes, hence improving security and anomaly detection. 

Using ACO for parameter optimization and pathfinding assures that the anomaly detection system can 

handle dynamic and complicated network behaviors. 

 

Step 4 Clustering 

1: Input: Data points X = {x1, x2, . . . , xn}, number of clusters k 

2: Initialize centroids µ1, . . . , µk 

3: repeat 

4: Assign each point xi to the nearest cluster using: 
2arg || ||mini i j

j

C x = −
 

  

5: Update centroids: 

1

| |
i j

j i

x Cj

x
C




=   

 

6: until centroids converge 

  

7: Anomaly Score (distance from centroid): 

2|| ||
ii i CA x = −  

8: Mark xi as anomaly if Ai > θ 
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Step 5 ACO for Optimization 

1: Initialize pheromone matrix τij and heuristic matrix ηij 

2: for each iteration do 

3: for each ant do 

4: Construct solution using transition probability: 

i

ij ij

ij

ik ikk N

T
P

T

 

 







=


 

5: end for 

6: Update pheromones: 

  

(1 ) ant

ij ij ij

ants

T    − +   

where: 

( , )

0

ant

antij

Q
if edge i j is used by ant

L

otherwise






 = 



 

7: end for 

8: Output best solution 

 

Simulation and Optimization in OMNeT++ 

The simulation runs in OMNeT++, which includes both clustering and ACO algorithms. During the 

simulation, the data created by network operations is recorded in real time. Clustering methods are used 

to categorize normal activity and identify abnormalities, while ACO is used to optimize network 

parameters and improve overall anomaly detection efficiency. These new approaches may be evaluated 

and verified in a realistic network environment, thanks to OMNeT++'s extensive simulation capabilities. 

Post-Processing and Evaluation 

After the simulation runs and the data is analyzed, the outcomes are assessed using a variety of 

performance measures. The system's identified anomalies are compared against ground truth labels 

(normal vs. particular anomaly kinds) to determine the detection system's accuracy. The clustering and 

ACO-based anomaly detection system's efficacy is assessed using metrics such as Precision, Recall, F1-

Score, and ROC AUC. Any false positives or missing abnormalities are reported, and the system is fine-

tuned for better performance. 

 

Step 6 Evaluation and Post-Processing 

  

1: Input: True labels Y , Predicted labels Yˆ 

2: Compute: 

TP TN
Accuracy

TP FP FN TN

+
=

+ + +

 

Re
TP

call
TP FN

=
+

 

Pr
TP

ecision
TP FP

=
+

 

2 Pr Re
1

Pr Re

ecision call
F Score

ecision call

 
− =

+

 

3: Plot ROC curve, compute AUC 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25024645 Volume 16, Issue 2, April-June 2025 17 

 

5 RESULTS AND DISCUSSION 

5.1 Results 

In this part, we report the findings from anomaly detection simulations performed in the context of a Smart 

City Network. The simulation used the OMNeT++ framework to discover anomalies using Ant Colony 

Optimization (ACO) and Clustering algorithms. These strategies were implemented in the system to 

identify rogue nodes, traffic surges, and sensor failures. The system's performance was examined in three 

scenarios: baseline, high sensitivity, and low sensitivity, employing important performance indicators such 

as accuracy, precision, recall, and F1 score. 

 

  Scenario Accuracy  Precision  Recall  F1 Score  

With anomaly 

Baseline 0.924 0.886 0.793 0.837 

High Sensitivity 0.896 0.802 0.943 0.867 

Low Sensitivity 0.917 0.945 0.644 0.767 

 

    Accuracy  Precision  Recall  F1 Score  

Without anomaly 

Baseline 0.865 0.69 0.598 0.64 

High Sensitivity 0.852 0.672 0.54 0.598 

Low Sensitivity 0.84 0.658 0.471 0.55 

 

 

Figure 7 Comparison of Accuracy with and without anomaly detection 
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Figure 8 Comparison of Precision with and without anomaly detection 

 

Figure 9 Comparison of Recall with and without anomaly detection 

 

Figure 10 Comparison of F1-Score with and without anomaly detection 

The proposed OMNeT++ + ACO + Clustering-based Framework for Network Anomaly Detection in 

Smart City Environments performs much better across all evaluation criteria when anomaly detection is 

used. In the baseline situation, accuracy improved from 0.865 (without detection) to 0.924 (with 

detection), precision from 0.690 to 0.886, recall from 0.598 to 0.793, and F1 score from 0.640 to 0.837. 

The High Sensitivity configuration resulted in a considerable increase in recall—from 0.540 to 0.943—as 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25024645 Volume 16, Issue 2, April-June 2025 19 

 

well as increases in accuracy (0.672 to 0.802) and F1 score (0.598 to 0.867). This trend was also observed 

in the Low Sensitivity scenario, with accuracy climbing from 0.840 to 0.917, precision from 0.658 to 

0.945, recall from 0.471 to 0.644, and F1 score rising from 0.550 to 0.767. These findings clearly show 

that adding ACO and clustering approaches into the OMNeT++ simulation framework improves network 

anomaly identification, particularly in dynamic and large-scale smart city scenarios. 

With anomaly detection 
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Without anomaly detection 

 

 

 

The confusion matrices demonstrate the efficacy of the proposed OMNeT++ + ACO + Clustering-based 

Anomaly Detection Framework in smart city settings. In the Baseline scenario, with anomaly detection 

enabled, the model accurately recognized 855 normal and 69 abnormal cases, with just 27 misclassified 

instances. In comparison, without detection, accurate classifications fell to 842 normal, 52 abnormalities, 

and 57 misclassifications, indicating a significant decrease in accuracy. In the High Sensitivity scenario, 

anomaly detection resulted in 82 true positives and 844 true negatives, vs 58 and 819 without it. This 

indicates an improvement in both anomaly and normal detection accuracy, despite a minor increase in 

false positives. The Low Sensitivity option further verifies the model's robustness: with detection, just 3 

anomalies and 31 normal cases were misclassified, but without detection, misclassifications increased 

dramatically to 12 anomalies and 42 normal data points. Overall, these comparisons show that adding 
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anomaly detection considerably decreases false positives and false negatives, increasing the network 

monitoring system's dependability and accuracy. 

 

Number 

of 

Cameras 

Fog 

Latency 

(ms) 

Cloud 

Latency 

(ms) 

Fog 

Network 

Usage 

(KB) 

Cloud 

Network 

Usage 

(KB) 

Fog 

Detection 

Accuracy 

(%) 

Cloud 

Detection 

Accuracy 

(%) 

Fog 

Processing 

Efficiency 

(%) 

Cloud 

Processing 

Efficiency 

(%) 

1 2.8 4.6 430 580 94.5 88.5 85 65 

2 3.5 5.5 880 1,150 94.7 88.8 80 66.5 

4 4.5 7.2 1,700 2,300 94.5 87.5 77 61.3 

8 5.2 8.5 2,400 3,000 94.2 86.5 75 58 

16 6.3 10.1 4,800 5,800 92.9 84.2 73 53.5 

32 8 12.2 8,600 10,400 91.4 82.8 70 50.7 

64 10 15 14,800 17,600 89.8 80.2 65 45 

128 14.5 19 22,300 26,000 87.5 75.5 60 40.5 

 

By incorporating OMNeT++, Ant Colony Optimization (ACO), and clustering into the current system, we 

can dramatically increase the performance of the smart camera network. ACO improves data routing 

between fog and cloud nodes, lowering latency at both levels. This reduces fog latency and cloud latency, 

hence improving real-time processing capabilities. Furthermore, the use of clustering reduces the data load 

sent from fog nodes to the cloud, resulting in decreased network usage at both the fog and cloud levels. 

This, in turn, minimizes fog network usage and cloud network usage, both of which are critical for 

managing big camera networks. The streamlined data flow and edge processing increase detection 

accuracy at both the fog and cloud levels, with fog detection accuracy benefiting the most from local 

processing capabilities. While cloud processing efficiency declines marginally when fog nodes handle 

more data locally, fog processing efficiency rises dramatically owing to improved data flow and decreased 

redundancy. Overall, these enhancements result in a more efficient and scalable system capable of 

managing the growing complexity of smart camera networks while maintaining high levels of 

performance. 

6 Conclusion 

This research suggested and tested an integrated anomaly detection system for smart city settings that 

employs OMNeT++, Ant Colony Optimization (ACO), and clustering approaches. The system was meant 

to identify a variety of network abnormalities, including rogue nodes, sensor problems, and anomalous 

traffic patterns. The proposed model was evaluated across three sensitivity scenarios—baseline, high, and 

low—using performance measures such as accuracy, precision, recall, and F1-score. When anomaly 

detection techniques were used, the results showed substantial performance improvement. For example, 

in the baseline case, accuracy increased from 86.5% to 92.4%, and the F1-score increased from 0.64 to 

0.837, showing a strong detection system capable of effectively recognizing anomalies with few false 

positives and false negatives. 
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Furthermore, the system's fog-cloud design improved scalability and efficiency, especially as the number 

of networked smart cameras grew. By using ACO for optimal routing and clustering for effective data 

aggregation, the framework reduced both fog and cloud network utilization while improving real-time 

detection. Fog-based processing was particularly successful, with greater detection accuracy and 

processing efficiency than centralized cloud-based processing. In conclusion, the combination of 

OMNeT++, ACO, and clustering provides a highly efficient, scalable, and accurate solution to network 

anomaly detection, helping to construct intelligent and resilient smart city infrastructures. 
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