

E-ISSN: 2229-7677 • Website: <u>www.ijsat.org</u> • Email: editor@ijsat.org

Counterfeit Currency Detection: Leveraging Image Processing and Machine Learning Techniques

Khushi Patil¹, Khushi Pawar², Gajendra Singh Rajput³, Divya Kumawat

^{1,2}Student, ^{3,4}Assistant Professor
^{1,2,3,4}Department of Computer Science & Engineering Medicaps University, A.B. Road, Indore – 453331
¹Khushipatil717@gmail.com,²khushi02pawar@gmail.com,³gajendrasingh.rajput@medicaps.ac.in, ⁴divya.kumawat@medicaps.ac.in

Abstract

Advanced detection techniques are necessary to stop fraudulent transactions because counterfeit currency continues to pose a danger to financial security. Conventional verification methods, such UV scanning and hand examination, have not been able to keep up with advanced counterfeiting techniques. This study investigates machine learning and image processing methods for detecting counterfeit currency to overcome these difficulties. To distinguish between real and fake banknotes, image processing techniques such as edge detection, texture analysis, color segmentation, and hyperspectral imaging extract vital security information from the notes.

These methods do have several drawbacks, though, namely their high processing demands and susceptibility to changes in lighting. While deep learning models like CNNs (VGG16, ResNet, Efficient Net) do away with the need for manual feature extraction by learning complex patterns directly from banknote images, machine learning models like SVM, k-NN, and Decision Trees automate classification using extracted features to increase accuracy. Furthermore, by producing artificially created fake images, Generative Adversarial Networks (GANs) enhance training datasets and boost model resilience. Additionally, real-time authentication and decentralized security provided by blockchain and IoT integration lower the risk of fraud in financial transactions. Notwithstanding these developments, issues including data accessibility, real-time processing limitations, and the dynamic nature of counterfeiting methods still exist. To improve the precision, scalability, and effectiveness of counterfeit detection, future studies must concentrate on federated learning, adaptive AI models, and lightweight deep learning architectures. To protect international financial systems, this study compares current counterfeit detection techniques, emphasizing their benefits, drawbacks, and possible future advancements.

Keywords-Counterfeit Currency, Image Processing, Machine Learning, Deep Learning.

1. Introduction

Because it undermines confidence in financial transactions, counterfeit cash continues to pose a danger to economies, businesses, and financial institutions worldwide. As counterfeiters use more sophisticated printing and forging techniques, conventional detection procedures including human verification, UV scanning, and watermark examination have become inadequate. Consequently, automated counterfeit detection systems that use machine learning and image processing have become more dependable. Key security elements including microtexts, holograms, and ink compositions can be extracted from banknotes using image processing techniques like edge detection, texture analysis, color segmentation, and hyperspectral imaging.

These techniques aid in distinguishing between real and counterfeit notes, but they are limited by things like picture noise, illumination fluctuations, and the intricacy of counterfeit patterns. Machine learning models like SVM, k-NN, and Decision Trees have been used with image processing to improve detection efficiency and accuracy. This allows for automated classification using features that have been retrieved. Furthermore, by removing the requirement for manual feature engineering and instead learning complex patterns straight from raw banknote photos, deep learning models like CNNs (VGG16, ResNet Efficient Net) have completely changed the identification of counterfeit currency. By creating artificially created fake samples, enhancing datasets, and bolstering model resilience, Generative Adversarial Networks (GANs) further enhance detection. But even with these developments, problems like real-time processing limitations, expensive computational requirements, and restricted access to high-quality training data still exist.

Aim of the Paper

The purpose of this article is to examine developments in deep learning and blockchain integration for enhanced security and real-time verification, as well as to compare and analyze image processing and machine learning methods used in counterfeit identification and assess their efficacy.

1. Image Processing Techniques for Counterfeit Detection

As image processing techniques have advanced, automated systems that can swiftly and precisely identify counterfeit banknotes have been developed. Using machine learning models and algorithms, these systems can examine currency photos to find textures and patterns that point to fake money. Researchers are investigating several novel techniques as image processing technology develops, such as the application of terahertz technology and hyperspectral imaging. Potential advantages of these novel techniques include improved precision and dependability in identifying counterfeit money. As technology has developed, image processing methods for identifying counterfeit currencies have grown in popularity. The most recent studies on the use of image processing methods for counterfeit currency detection will be covered in this review.

The authors of a paper by [1] suggest using a Deep CNN (Convolutional Neural Network) model to identify fake currency. The method uses Python's Keras deep learning module to create CNN. Tensor drift is an open-source software library that can be installed. A popular Python package for math and machine learning applications like neural networks is called Theano. Its goal is to enhance mathematical expression manipulation. Theano uses a vocabulary similar to NumPy to define calculations, which are then compiled to run effectively on CPU and GPU architectures. Once the necessary libraries have been installed, train

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

the output model as previously mentioned. Adjust an epoch value during model testing and training to improve the accuracy of the AFCRS as epoch values increase.

Technique	Method	Advantages	Limitations	Use Cases	Recent Studies	References
Edge Detection	Canny, Sobel, Prewitt Operators	Enhances security feature visibility, useful for microtext s & watermarks	Affected by lighting variations, may detect false edges	Feature extraction, watermark detection	Improved detection of fine security lines and microtexts	Akbar et al. (2013), Babu et al. (2022), Ballado et al. (2015)
Texture Analysis	Gray Level Co- occurrence Matrix (GLCM), Local Binary Pattern (LBP)	Captures fine- grained printing details, robust for genuine- currency patterns	Requires high- resolution images, computationally expensive	Classifying genuine vs. counterfeit notes based on texture	Successfully differentiate between real and fake textures	Alekhya et al. (2014), Bhatia et al. (2021), Hariharan & Elangovan (2020)
Color Segmentation	RGB, HSV,YCbCr, K-means clustering	Effectively isolates security features like hologram s & security threads	Sensitivity to illumination and faded notes can reduce accuracy	Multi- feature authentication	Distinguishes variations in ink and security color features	Hariharan & Elangovan (2020), Rathee et al. (2016), Patel (2019)
Morphological Processing	Dilation, Erosion, Opening, Closing	Enhances feature extraction , removes noise, refines security features	Prone to distortion with noisy images	Pre- processing g to refine extracted features	Increases accuracy of edge detection and feature recognition	DN & V (2024), Santhanam et al. (2013), Shokeen et al. (2023)
Hyperspectral Imaging	Near- infrared (NIR), Ultraviolet (UV), Multispectral Imaging	Detects material properties , ink composition, invisible security	High cost, requires specialized hardware	Advanced security feature detection	Differentiates original ink composition from counterfeit	Mukundan et al. (2023), Sanyal et al. (2024), Sundravadivelu et al. (2023)

Table 1: Image Processing Techniques for Counterfeit Detection

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

		features					
Fourier Transform Analysis	Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT)	Identifies minute variations in print patterns	Computationally intensive, requires high- quality images	Frequency domain analysis	Detects counterfeit notes by analyzing frequency- based inconsistencies	Babu et (2022), Kumar et (2020), Yadav et (2021)	al. al. al.
Machine Learning Integration	SVM, k- NN, Decision Trees	Automate s classification, improves accuracy	Requires large datasets, sensitive to adversarial counterfeiting	Real-time automated classification	Hybrid techniques combining image processing & AI	Neeraja et (2019), Yadav et (2021), Kamble et (2019)	al. al. al.
Deep Learning (CNNs)	VGG16, ResNet, Efficient Net	Learns features without manual extraction, high accuracy	Requires high computational power, prone to dataset bias	Automate d classification in real-world applications	Superior performance over traditional methods	Laavanya Vijayaraghav (2019), Kara et (2023), Shokeen et (2023)	& ′an al. al.
Blockchain & IoT Integration	Secure transaction verification, decentralized authentication	Real-time verification, prevents fraudulent circulation	Implementation complexity, requires financial infrastructure support	Authenticity validation at transaction points	Strengthen s financial security, prevents fake currency circulation	Yadav et (2021), Patel (2019), Sundravadive et al. (2023)	al. elu

Such components include Image processing techniques are instrumental in counterfeits detection since they help in the extraction of security features of real banknotes. Currently, it is possible to use edge detection algorithms, feature extracts, morphological processes, as well as hyperspectral imaging as effective means for determining the structural and spectral characteristics of banknotes. These techniques have enhanced the detection of the counterfeit products through improving the performance of the accuracies with some of the challenges as lighting variation, limitation of datasets as well as counterfeit techniques that are evolving and complex.

2. Machine Learning Approaches in Counterfeit Detection

Machine learning has significantly enhanced counterfeit detection by providing automated, high-accuracy solutions for identifying fake banknotes. Supervised learning models, such as SVM, k-NN, and Decision Trees, rely on labeled datasets to classify real and counterfeit currency. These models are widely used due to their interpretability and effectiveness in detecting counterfeit money through extracted features like texture, watermark, and edge sharpness [2, 3, 4]. However, these methods require large, well-annotated datasets and can be sensitive to data imbalances, which may limit their generalization capabilities. To improve robustness, feature fusion models, including GLCM, LBP, and edge detection, integrate multiple feature extraction techniques to enhance accuracy by capturing both textural and structural differences in banknotes [5].

Approach	Method	Advantages	Limitations	Use Cases	Recent Studies	References
Supervised Learning Models	SVM, k- NN, Decision Trees	High accuracy with labeled datasets, interpretable models	Requires large, labeled datasets, sensitive to data imbalance	Classification of real vs. fake banknotes based on extracted features	Improves detection through pattern recognition	Alekhya et al. (2014)
Feature Fusion Models	GLCM, LBP, Edge Detection	Increases robustness by integrating multiple features	Computation ally intensive, requires feature selection tuning	Improves classification accuracy by merging textural and structural details	Enhances precision in detecting subtle currency differences	Colaco et al. (2021)
Hybrid Machine Learning Models	Image processing + SVM, k- NN, Decision Trees	Combines multiple techniques for better accuracy	Requires careful feature engineering and preprocessing	Real-time classification of banknotes	Effective in combining feature extraction with AI for detection	Gaikwad et al. (2017)
Deep Learning Based Models	CNNs (VGG16, ResNet, Efficient Net)	Learns features automatically, high detection accuracy	Requires large training datasets, computation ally expensive	Banknote classification with minimal feature engineering	Outperform traditional machine learning methods	Hariharan & Elangovan (2020)
Generative Models (GANs)	Synthetic data augmentation, adversarial training	Generates realistic counterfeit samples, improves	Needs careful tuning, risk of model overfitting	Expands dataset size improves generalization	Helps in training robust classifiers	Sanyal et al. (2024)

 Table 2: Machine Learning Approaches for Counterfeit Detection

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

		training				
Federated Learning	Decentralized training on multiple datasets	Enhances privacy, improves generalization	Computation ally intensive, requires security infrastructure	Securely trains models without centralizing sensitive data	Protects financial data while improving detection models	Sundravadivelu et al. (2023)
Blockchain & IoT Integration	Secure transaction verification , real- time authentication	Prevents fraud, adds decentralized security layer	Implementation complexity, requires financial adoption	Authenticating currency during transaction s	Strengthens financial security, prevents fraud circulation	Thennavan et al. (2023)

Machine learning has greatly helped in anti-counterfeit measures since it is used in the classification of banknotes with the help of features extracted from them. The classification models described herein include SVM and k-NN and decision trees and k-NN and Decision trees have been commonly used for classification and detection has been enhanced by the feature fusion models. Integration of image processing with machine learning techniques has also added more robust and efficient aspects in the counterfeit detection techniques.

3. Deep Learning-Based Detection Models

By using strong models like CNNs, transfer learning, and GANs to increase classification accuracy and automate feature extraction, deep learning has completely changed the identification of counterfeit goods. By learning hierarchical picture features, CNN-based models like VGG16, ResNet, and Efficient Net have outperformed manual feature engineering in the identification of counterfeit notes [6, 3]. By using pretrained models (such as ImageNet-based CNNs), transfer learning further improves efficiency by cutting down on training time and enhancing generalization across several currencies [2].

Approach	Method	Advantages	Limitations	Use Cases	Recent Studies	References
		Learns		Automate d	Improves	
CNINI	VCC16	features	Requires large	counterfeit	classification	Kamble et al.
CININ-	VGG10, DecNet	automatic	datasets,	detection	without	(2019),
Based Modela	Resident Nat	ally, high	computation ally	based on	manual	Colaco et al.
Models	Efficient Net	detection	expensive	visual	feature	(2021)
		accuracy		patterns	extraction	
	Pretrained	Faster	Requires fine-	Multi-	Enhances	
Transfer	models	training,	tuning, limited	currency	detection	Alekhya et al.
Learning	(ImageNet	better	adaptability to	counterfeit	without	(2014)
	-based CNNs)	generalization	unseen	detection	extensive	

 Table 3: Deep Learning-Based Approaches for Counterfeit Detection

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

		across banknotes	counterfeit patterns		training data	
Generative Adversarial Network s (GANs)	Synthetic data generation for training	Expands dataset, improves robustness	Risk of overfitting, requires careful tuning	Augmenting datasets to improve model learning	Generates realistic counterfeit images to enhance model accuracy	Kara et al. (2023), Mukundan et al. (2023)
Mobile Deep Learning Models	Mobile Net , Squeeze Net	Optimized for real- time, low- power devices	Reduced accuracy compared to large CNNs	Mobile counterfeit detection	Enables real- time classification embedded systems	Upadhyaya et al. (2018)
Recurrent Neural Network s (RNNs)	LSTM, GRU	Useful for sequential counterfeit detection patterns	Less effective for static images	Serial number verification in banknotes	Enhances classification using temporal features	Santhanam et al. (2013)
Adversarial Training	Training with adversarial examples	Improves robustness against AI- generated counterfeits	Computationally expensive, needs frequent updating	Detecting AI- generated counterfeit banknotes	Strengthens model defenses against evolving threats	Yadav et al. (2021)
Attention Mechanisms	Self- attention, Transformers	Enhances feature detection and classification	Requires extensive computation al resources	Extracting fine details from banknotes	Improves model interpretability and accuracy	Sanyal et al. (2024)
Edge AI for Counterfeit Detection	Lightweight deep learning models on edge devices	Reduces latency, real- time processing	Limited by hardware constraints	ATM and point-of- sale counterfeit detection	Enhances local verification of banknotes	Sundravadivelu et al. (2023)
Blockchain- Integrate d Deep Learning	Blockchain- based currency authentication	Secure, tamper- proof verification	High implementation complexity	Preventing counterfeit currency circulation in financial institutions	Strengthen s security of transactions	Yadav et al. (2021)
Multi- Currency Detection Models	Domain adaptation, cross currency learning	Enables detection across different banknotes	Requires extensive dataset diversity	International counterfeit detection	Improves applicability to global markets	Patel (2019)

E-ISSN: 2229-7677 • Website: <u>www.ijsat.org</u> • Email: editor@ijsat.org

				-			
Federate d Learning for Counterfeit Detection Explainable AI (XAI) for Counterfeit	Decentralized learning with multiple data sources Feature visualization, interpretability	Enhances privacy, improves generalization Enhances transparency in decision-	Requires secure infrastructure Complexity in explaining CNN decisions	Distribute d counterfeit detection without data centralization Banking and regulatory agencies	Prevents data leaks while improving model accuracy Improves trust in AI- based authentication	Gaikwad e (2017) Bhatia et (2021)	t al. al.
Cloud- Based Deep Learning Models	Remote AI- based verification of banknotes	Enables large- Scale processing	Requires internet Connectivity, potential latency	Real-time cloud authentication for retailers and banks	Improves scalability and fraud detection	Sundravadi et al. (2023)	velu
IoT- Enabled Counterfeit Detection	Smart sensors + AI	Real-time verification, integration with banking systems	High cost of deployment	ATM and cash register verification	Connects deep learning models with banking infrastructure	Shinde et (2023)	al.
One- Class CNNs for Anomaly Detection	Detects novel counterfeit types without extensive training	Works with small datasets	High false positive rate	Detecting new counterfeit patterns	Learns deviations from normal currency patterns	Kara et (2023)	al.
Few- Shot Learning Models	Classifying counterfeit notes with minimal samples	Reduces need for large datasets	Requires effective feature selection	Rapid training on limited data	Improves adaptability to rare counterfeit cases	Yadav et (2021)	al.
Capsule Network s (CapsNet)	Captures hierarchical relationships in banknote images	Better generalization than CNNs	Computationally expensive	Detecting counterfeit currency with minimal distortions	Handles small variations better than CNNs	Kamble et (2019)	al.

The latest developments in counterfeit detection models have reached new heights of accuracy and reliability thanks to CNNs, transfer learning, and GANs. Features in CNN-based classifiers have shown a high ability in identification of hierarchical features extracted from the images of banknotes, while the concept of transfer learning helps in time saving of the training procedure and in getting better generalization performance. GANs have improved on the notion of counterfeit detection by synthesizing more counterfeit samples, thus enriching the datasets and making them less prone to errors. However, some

factors, which include availability of databases, the speed of the computations, and the dynamism of counterfeit methods remain key inhibitors to the implementation of the optical measure.

4. Conclusion

Counterfeit detection has evolved from traditional manual verification to sophisticated AI- powered image processing and machine learning techniques. While edge detection, texture analysis, and hyperspectral imaging have improved feature extraction, machine learning and deep learning models have significantly enhanced classification accuracy. However, challenges such as high computational costs, dataset limitations, and real-time detection constraints persist. Future advancements should focus on federated learning, self-learning AI models, and blockchain-based verification systems to enhance security, adaptability, and scalability. By integrating these advanced technologies, counterfeit detection systems can become more robust, efficient, and resilient against evolving counterfeit strategies, ensuring a secure global financial ecosystem.

References

- P. Gayathri, P. Soniya, V. YaminiPriya, G. Srinivas, V. Ravindra, Texture Classification for Fake Indian Currency Detection", Published by: International Journal of Engineering Research & Technology (IJERT) June-2020.
- 2. Alekhya, D., DeviSuryaPrabha, G., & VenkataDurgaRao, G, Fake Currency Detection Using Image Processing and Other Standard Methods. International Journal of Research in Computer and Communication Technology, 3(1), 2320-5156, 2014.
- 3. Colaco, R. M., Fernand, R., Reenaz, & S, S. Efficient Image Processing Technique for Authentication of Indian Paper Currency. International Conference on Computer Communication and Informatics ICCCI -2021.
- 4. Gaikwad, M. A., Bhosle, V. V., & Patil, V. D. Automatic Indian New Fake Currency Detection Technique. International Journal of Engineering Research & Technology (IJERT), 6(11),2017.
- 5. Hariharan, G., & Elangovan, D., Proxy Notes Recognition and Eradication for the Betterment of Society. Journal of Advanced Research in Computer Science and Engineering, 2020.
- Kamble, K., Bhansali, A., Satalgaonkar, P., & Alagundgi, S. Counterfeit Currency Detection Using Deep Convolutional Neural Network. 2019 IEEE Pune Section International Conference (PuneCon) 2019.
- 7. Akbar, M., Awaluddin, Sedayu, A., Putra, A. A., & Widyarto, S. Original and Counterfeit Money Detection Based on Edge Detection. International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering, Bandung, Indonesia, 2013.
- 8. Babu, P. A., Sridhar, P., & Vallabhuni, R. R, Fake Currency Recognition System Using Edge Detection. Interdisciplinary Research in Technology and Management (IRTM), IEEE, 2022.
- Ballado, A. H. Jr., Dela Cruz, J. C., Avendaño, G. O., Echano, N. M., Ella, J. E., Medina, M. E. M., & Paquiz, B. K. C. Philippine Currency Paper Bill Counterfeit Detection through Image Processing using Canny Edge Technology. 8th IEEE International Conference HNICEM, 2015.
- Bhatia, A., Kedia, V., Shroff, A., Kumar, M., Shah, B. K., & Aryan. Fake Currency Detection with Machine Learning Algorithm and Image Processing. Fifth International Conference in Intelligent Computing and Control Systems ICICCS 2021.
- 11. Georgie V Rajan, Dincy M Panicker, Nisha Elizabeth Chacko, Jayalekshmi Mohan, Kavitha V.K Department of Computer Science and Engineering "An Extensive Study on Currency Recognition

System Using Image Processing", Proc. IEEE Conference on Emerging Devices and Smart Systems (ICEDSS 2018.

- Kara, S. T., Loya, S., Raju, S. S., Vanteru, N., & Rajulapati, B., Detection of Fake Indian Currency Using Deep Convolutional Neural Network. IEEE 3rd Mysore Sub Section International Conference 2023.
- 13. Mukundan, A., Tsao, Y.-M., Cheng, W.-M., Lin, F.-C., & Wang, H.-C. Automatic Counterfeit Currency Detection Using a Novel Snapshot Hyperspectral Imaging Algorithm. Sensors, 23, 2023.
- Neeraja, Y., Divija, B., & Kumar, M. N. Fake Currency Detection Using K-NN Technique. International Journal of Research in Engineering, IT & Social Sciences (IJREITSS), 9(1), 201-205 2019.
- 15. P. Gayathri, P. Soniya, V. YaminiPriya, G. Srinivas, V. Ravindra, Texture Classification for Fake Indian Currency Detection", Published by: International Journal of Engineering Research & Technology (IJERT) June-2020.
- 16. Patel, A. S. Indian Paper Currency Detection. International Journal for Scientific Research & Development (IJSRD), 7(6), 2019.
- Prasad, B., Patil, C. S., Karhe, R. R., & Patil, P. H. An automatic recognition of fake Indian paper currency notes using MATLAB. International Journal of Engineering Science & Innovative Technology (IJESIT), 3, 560-566, 2014.
- Priyanka Dhapare, Akash Agarwal, Devangi Doshi, Department of Computer Science "Detection of Counterfeit Currency using Image Processing Techniques", 2019 5th International Conference for Convergence in Technology (I2CT).
- Rathee, N., Kadian, A., Sachdeva, R., Dalel, V., & Jaie, Y., Feature fusion for fake Indian currency detection. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 1265-1270, 2016.
- 20. Santhanam, K., Sekaran, S., Vaikundam, S., & Kumarasamy, A. M., Counterfeit Currency Detection Technique using Image Processing, Polarization Principle and Holographic Technique. Fifth International Conference on Computational Intelligence, Modelling, and Simulation, 2013.
- 21. Sanyal, S., Kaushik, A., & Gandhi, R. "Spurious Currency Detection using Machine Learning Techniques." International Conference on Automation and Computation (AUTOCOM), 2024.
- 22. Shokeen, V., Kumar, S., Sharma, A., Singh, N., Prasad, A., & Sachdeva, Y., Detection of Counterfeit Currency Notes Through Machine Learning Algorithms and Image Processing. 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS), 2023.
- 23. Sundravadivelu, K., Senthilvel, P. G., Duraimutharasan, N., Esther, T. H. R., & Kumar, K. R. Extensive Analysis of IoT-Assisted Fake Currency Detection using Novel Learning Scheme. Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), 2023.
- 24. Thennavan, S., Gokul, D., & Jayapalan, A., Deep Learning-Based Fake Stamp Detection. International Conference on Computer Communication and Informatics (ICCCI) 2023.
- 25. Upadhyaya, A., Shokeen, V., & Srivastava, G. "Analysis of Counterfeit Currency Detection Techniques for Classification Model." 2018 4th International Conference on Computing Communication and Automation (ICCCA).
- 26. Yadav, A., Jain, T., Verma, V. K., & Pal, V., Evaluation of Machine Learning Algorithms for the Detection of Fake Bank Currency. IEEE Conference on Cloud Computing, Data Science &

Engineering (Confluence), 810-815, 2021.

27. Zende, K. B., Kokare, B., Pise, S. P., & Togrikar, P. S., Fake Note Detection System. International Journal of Innovative Research in Technology (IJIRT), 4(1), 46-49, 2017.