

# Ideals On Neutrosophic Crisp Supra Topological Spaces

# Dr. P.Rajasekhar<sup>1</sup>, K.Umarani<sup>2</sup>, B.Nagamani<sup>3</sup>

<sup>1,3</sup> Assistant professor, Department of Science and Humanities, NRI Institute of Technology, Visadala, Medikonduru, Guntur, A.P.

<sup>2</sup> Assistant professor, Department of Basic Science and Humanities, MAM Women's Engineering College, Kesanupalli, Narasaraopet, Palnadu, A.P.

#### Abstract:

Ideals on neutrosophic crisp supra topology, neutrosophic crisp supra local functions, neutrosophic crisp supra L-open sets, L-continuity are introduced in this paper and some of its basic properties are investigated.

Keywords: NCS, NCSTS, NCSOS&NCSCS.

#### 1. Introduction:

The concept of fuzzy set [17] was introduced by Zadeh in 1965. Generalization of fuzzy set intutionistic fuzzy set was introduced by K.Atanassov [3] in 1983. Neutrosophic set is a generalization of intutionistic fuzzy set. Neutrosophic set was proposed by Smarandache [13, 14] also its properties have been developed by salama et al. [12, 16, 9, 8, 10, 11, 1, 5, 6, 7]. Salama & alblowi [16] define neutrosophic crisp topological space and introduced some of its properties. Salama & Smarandache [15, 7, 14, 16] are introduced the concepts of neutrosophic crisp sets and they investigate some of its operators. The concept of neutrosophic crisp points and neutrosophic crisp ideals are introduced by [7] in 2013. Amarendra Babu & Rajasekhar [2] introduced the concept of neutrosophic crisp supra topology in 2020. In this paper we establish the concepts of neutrosophic crisp supra topology, neutrosophic crisp supra local functions, neutrosophic crisp supra L-open sets, L-continuity and we verify some of its properties.

#### 2. Preliminaries:

The authors [16] introduced the concepts and definitions of neutrosophic crisp set (NCS), neutrosophic crisp types of  $\varphi_N \& X_N$ , neutrosophic crisp union & intersection, neutrosophic crisp subsets, neutrosophic crisp complement, family of union & intersection of neutrosophic crisp sets, image and pre image of a map in neutrosophic crisp sets and the authors [2] are introduced neutrosophic crisp supra topology (NCST), neutrosophic crisp supra open sets (NCSOS) and neutrosophic crisp supra closed sets (NCSCS).

**2.1. Definition:** [7] Let X be a non empty set and L be a non empty family of neutrosophic crisp sets. Then L is said to be a neutrosophic crisp ideal (NCL) on X if satisfies the following



(i)  $A \in L$  and  $B \subseteq A \Rightarrow B \in L$ (ii)  $A \in L, B \in L \Rightarrow A \cup B \in L$ .

#### 3. IDEALS ON NEUTROSOPHIC CRISP SUPRA TOPOLOGICAL SPACES

**3.1. Definition:** Let  $(X, \tau^{\mu})$  is a neutrosophic crisp supra topological space and L is a neutrosophic crisp ideal on X. Then  $(X, \tau^{\mu}, L)$  is said to be a neutrosophic crisp ideal supra topological spaces (NCLSTS). **3.2. Example:** Let  $X = \{\delta_1, \eta_2, \psi_3, \sigma_4\}, \tau^{\mu} = \{\varphi_N, X_N, L, M, N\}$ , where  $L = \langle \{\delta_1, \eta_2\}, \varphi, \{\psi_3\} \rangle$ ,  $M = \langle \{\delta_1, \eta_2\}, \varphi, \{\psi_3, \sigma_4\} \rangle$ ,  $N = \langle \{\eta_2\}, \varphi, \{\delta_1, \psi_3\} \rangle$  then  $(X, \tau^{\mu})$  is a NCSTS and  $L = \{\varphi_N, A, B, C\}$  is NCL on X , where  $A = \langle \{\delta_1, \eta_2\}, \{\psi_3\}, \{\sigma_4\} \rangle$ ,  $B = \langle \{\delta_1\}, \{\psi_3\}, \{\sigma_4\} \rangle$ ,  $C = \langle \{\eta_2\}, \{\psi_3\}, \{\sigma_4\} \rangle$ . Hence  $(X, \tau^{\mu}, L)$  is NCLSTS.

**3.3: Theorem:** Let  $\omega: (X, \tau^{\mu}) \to (Y, \sigma^{\mu})$  be a map and  $L_1$  and  $L_2$  are two NCLs on X and Yrespectively. Then

(i)  $\omega(L_1) = \{\omega(A) : A \in L_1\}$  is NCL.

(ii) If  $\omega$  is one-one then  $\omega^{-1}(L_2)$  is NCL.

#### **Proof:**

(i) Now show that  $\omega(L_1) = \{\omega(A) : A \in L_1\}$  is NCL.

Let  $\omega(A)$  and  $\omega(B)$  are two NCLs of  $\omega(L_1)$ , where A and B are NCLs of  $L_1$ .

That implies  $A \bigcup B \in L_1$ . Now show that  $\omega(A) \bigcup \omega(B) \in \omega(L_1)$ .

Now  $\omega(A) \bigcup \omega(B) = \omega(A \bigcup B) \in \omega(L_1)$  (::  $A \bigcup B \in L_1$ ).

Therefore  $\omega(L_1)$  is a NCL.

(ii) Given that  $\omega$  is one-one.  $\omega^{-1}(L_2)$  is NCL. Let A and B are two NCSs in  $\omega^{-1}(L_2)$ .  $A \in \omega^{-1}(L_2)$  and  $B \in \omega^{-1}(L_2) \Rightarrow \omega(A) \in L_2$  and  $\omega(B) \in L_2 \Rightarrow \omega(A) \bigcup \omega(B) \in L_2$ 

 $\Rightarrow \omega^{-1}(\omega(A)) \bigcup \omega^{-1}(\omega(B)) \in \omega^{-1}(L_2) \Rightarrow A \bigcup B \in \omega^{-1}(L_2). \text{ Therefore } \omega^{-1}(L_2) \text{ is NCL.}$ 

**3.4. Theorem:** Let  $(X, \tau^{\mu}, L)$  be a NCLSTS. Then  $L \cap (\tau^{\mu})^{C} = \{A \text{ is NCS: There exists a NCSCS} B \in L \text{ such that } A \subseteq B \}$  is a NCL.

#### **Proof:**

(i)Let  $T \in L \cap (\tau^{\mu})^{C}$ ,  $R \subseteq T$ . Since  $T \in L \cap (\tau^{\mu})^{C}$  then there exists a NCSCS  $B \in L$  such that  $T \in B \Rightarrow R \subseteq B \Rightarrow R \in L \cap (\tau^{\mu})^{C}$ .

(ii)Let  $G, H \in L \cap (\tau^{\mu})^{C}$ . Now show that  $G \cup H \in L \cap (\tau^{\mu})^{C}$ . By the definition of  $L \cap (\tau^{\mu})^{C}$  there exists two NCSs  $T_1$  and  $T_2$  such that  $G \subseteq T_1$  and  $H \subseteq T_2$ .

 $T_1, T_2 \in L \text{ and } T_1, T_2 \in L \cap (\tau^{\mu})^C \Longrightarrow G \bigcup H \subseteq T_1 \bigcup T_2 \in L \text{ and } T_1 \bigcup T_2 \in L \cap (\tau^{\mu})^C$  $\Longrightarrow G \bigcup H \subseteq T_1 \bigcup T_2 \in L \cap (\tau^{\mu})^C \Longrightarrow G \bigcup H \in L \cap (\tau^{\mu})^C.$ 

**3.5. Definition:** Let  $(X, \tau^{\mu}, L)$  be a neutrosophic crisp ideal supra topological space. For a subset A of X we define  $NCSA^*(L, \tau^{\mu}) = \bigcup \{p_N \in X : A \cap U \notin L \text{ for every } U \in N(p_N)\}$ , where



E-ISSN: 2229-7677 • Website: <u>www.ijsat.org</u> • Email: editor@ijsat.org

 $N(p_N) = \{U \in \tau^{\mu} : p_N \in U\}$ . Hence  $NCSA^*(L, \tau^{\mu})$  is called neutrosophic crisp supra local function of A with respect to  $\tau^{\mu} \& L$ .

**3.6. Example:** Let  $X = \{\delta_1, \eta_2, \psi_3, \sigma_4\}, \tau^{\mu} = \{\varphi_N, X_N, L, M, N\}$ , where  $L = <\{\delta_1, \eta_2\}, \varphi, \{\psi_3\} >, M = <\{\delta_1, \eta_2\}, \varphi, \{\psi_3, \sigma_4\} >, N = <\{\eta_2\}, \varphi, \{\delta_1, \psi_3\} >$ then  $(X, \tau^{\mu})$  is a NCSTS and  $L = \{\varphi_N, S, T, V\}$  is NCL on X, where  $S = <\{\delta_1, \eta_2\}, \{\psi_3\}, \{\sigma_4\} >, T = <\{\delta_1\}, \{\psi_3\}, \{\sigma_4\} >, V = <\{\eta_2\}, \{\psi_3\}, \{\sigma_4\} >.$  Hence  $(X, \tau^{\mu}, L)$  is NCLSTS. Let  $A = <\{\delta_1\}, \varphi, \{\psi_3\} >$  is any NCS in X and  $N(p_N) = U_1 = <\{\delta_1\}, \varphi, \{\psi_3\} >,$ 

$$\begin{split} U_2 =&<\{\eta_2\}, \varphi, \{\psi_3\} >, U_3 =<\{\delta_1\}, \varphi, \{\sigma_4\} >, U_4 =<\{\eta_2\}, \varphi, \{\sigma_4\} >, U_5 =<\{\eta_2\}, \varphi, \{\delta_1\} >, \\ U_6 =&<\{\delta_1, \eta_2\}, \varphi, \{\psi_3\} >, U_7 =<\{\delta_1, \eta_2\}, \varphi, \{\psi_3, \sigma_4\} >, U_8 =<\{\eta_2\}, \varphi, \{\delta_1, \psi_3\} >. \end{split}$$
 Then

$$\begin{split} \mathbf{A} \bigcap U_1 \not\in L, \mathbf{A} \bigcap U_2 \not\in L, \mathbf{A} \bigcap U_3 \not\in L, \mathbf{A} \bigcap U_4 \not\in L, \mathbf{A} \bigcap U_5 \not\in L, \mathbf{A} \bigcap U_6 \not\in L, \qquad \mathbf{A} \bigcap U_7 \not\in L, \mathbf{A} \bigcap U_8 \not\in L \qquad . \\ \end{split}$$
Therefore  $NCSA^*(L, \tau^{\mu}) = <\{\delta_1, \eta_2\}, \varphi, \{\psi_3, \sigma_4\} > . \end{split}$ 

**3.7. Theorem:** Let  $(X, \tau^{\mu})$  be a NCSTS and  $L_1, L_2$  be two ideals in X. Then for any NCSs A and B on X the following are holds.

(i)  $A \subseteq B \Rightarrow NCSA^*(L, \tau^{\mu}) \subseteq NCSB^*(L, \tau^{\mu})$ (ii)  $L_1 \subseteq L_2 \Rightarrow NCSA^*(L_2, \tau^{\mu}) \subseteq NCSB^*(L_1, \tau^{\mu})$ (iii)  $NCS(A \cup B)^*(L, \tau^{\mu}) = NCSA^*(L, \tau^{\mu}) \cup NCSB^*(L, \tau^{\mu})$ Proof:

### (i) Let $A \subset B$ . Now show that $NCSA^*(L, \tau^{\mu}) \subset NCSB^*(L, \tau^{\mu})$ .

Let  $p_N \in NCSA^*(L,\tau^{\mu})$ . In a contrary way suppose that  $p_N \notin NCSB^*(L,\tau^{\mu})$ . Then  $\exists U \in N(p_N) \ni B \cap U \in L$ . Since  $A \subseteq B \Rightarrow A \cap U \subseteq B \cap U \in L \Rightarrow A \cap U \in L \Rightarrow p_N \notin NCSA^*(L,\tau^{\mu})$ . A contradiction, so  $p_N \in NCSB^*(L,\tau^{\mu})$ .

(ii)Let  $L_1 \subseteq L_2$  and  $p_N \in NCSA^*(L_2, \tau^{\mu})$ . Now show that  $p_N \in NCSB^*(L_1, \tau^{\mu})$ . In a contrary way suppose that  $p_N \notin NCSB^*(L_1, \tau^{\mu}) \exists U \in N(p_N) \ni B \cap U \in L_1$ . Since  $L_1 \subseteq L_2 \Longrightarrow A \cap U \in L_2 \Longrightarrow p_N \notin NCSA^*(L_2, \tau^{\mu})$ . A contradiction, so

$$p_N \in NCSB^*(L_1, \tau^{\mu})$$
.

(iii)Let  $p_N \in NCS(A \cup B)^* (L, \tau^{\mu}) \Leftrightarrow (A \cup B) \cap U \notin L$  for any  $p_N \in U \Leftrightarrow (A \cap U) \cup (B \cap U) \notin L \Leftrightarrow (A \cap U) \notin L$  or  $(B \cap U) \notin L \Leftrightarrow p_N \in NCSA^*(L, \tau^{\mu})$  or

 $p_N \in NCSB^*(L, \tau^{\mu}) \Leftrightarrow p_N \in NCSA^*(L, \tau^{\mu}) \bigcup p_N \in NCSB^*(L, \tau^{\mu}).$ 

**3.8. Theorem:** Let  $\tau_1^{\ \mu}, \tau_2^{\ \mu}$  be two neutrosophic crisp supra topologies on a non empty set X. Then for any NCL in X,  $\tau_1^{\ \mu} \subseteq \tau_2^{\ \mu} \Rightarrow NCSA^*(L, \tau_2^{\ \mu}) \subseteq NCSA^*(L, \tau_1^{\ \mu})$ .

**Proof:** Let  $\tau_1^{\mu} \subseteq \tau_2^{\mu}$  and  $p_N \in NCSA^*(L, \tau_2^{\mu})$ . Then  $A \cap U \notin L$  for  $U \in N(p_N)$ , where  $N(p_N) = \{U \in \tau_2^{\mu} : p_N \in U\}$ . Since  $\tau_1^{\mu} \subseteq \tau_2^{\mu}$  then  $A \cap U \notin L$  for  $U \in N(p_N)$ , where  $N(p_N) = \{U \in \tau_1^{\mu} : p_N \in U\}$ . Then  $p_N \in NCSA^*(L, \tau_1^{\mu})$ .



E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

**3.9. Definition:** Let  $(X, \tau^{\mu}, L)$  be a neutrosophic crisp ideal supra topological space. For a subset A of X we define  $A^{\#}(\tau^{\mu}, L) = \{x \in X : A \cap NCS - cl(U) \notin L \text{ for every NCSOS } U \}$  is denoted by  $NCSA^{\#}(\tau^{\mu}, L)$  is called neutrosophic crisp supra local closure function.

**3.10. Example:** Let  $X = \{\delta_1, \eta_2, \psi_3, \sigma_4\}, \tau^{\mu} = \{\varphi_N, X_N, O, P, Q\}$ , where  $O = \langle \{\delta_1, \eta_2\}, \varphi, \{\psi_3\} \rangle, P = \langle \varphi_N, X_N, Q \rangle$  $\{\delta_1, \eta_2\}, \varphi, \{\psi_3, \sigma_4\} >, Q = <\{\eta_2\}, \varphi, \{\delta_1, \psi_3\} >$ then  $(X, \tau^{\mu})$  is a NCSTS and  $L = \{\varphi_N, S, T, V\}$  is NCL on X, where  $S = <\{\delta_1, \eta_2\}, \{\psi_3\}, \{\sigma_4\} >, T = <\{\delta_1\}, \{\psi_3\}, \{\sigma_4\} >, V = <\{\eta_2\}, \{\psi_3\}, \{\sigma_4\} >.$ Hence  $(X, \tau^{\mu}, L)$  is NCLSTS. Let A =< { $\psi_3$ }, { $\eta_2$ }, { $\delta_1$ } > and  $U_1 = O, U_2 = P \& U_3 = Q$  (:: U is NCSOS). Then  $A \cap \text{NCS-} cl(U_1) \notin L$ ,  $A \cap \text{NCS-} cl(U_2) \notin L$ ,  $A \cap \text{NCS-} cl(U_3) \notin L$ . **3.11. Lemma:** Let  $(X, \tau^{\mu}, L)$  be a NCLSTS. Then  $NCSA^*(L, \tau^{\mu}) \subset NCSA^{\#}(\tau^{\mu}, L)$  for every  $A \subset X$ . **Proof:** Let  $p_N \in NCSA^*(L, \tau^{\mu})$ . Then A  $\cap U \notin L$ , for any  $U \in N(p_N)$ . Since  $A \cap U \subset A \cap NCS - cl(U) \Rightarrow NCS - cl(U) \notin L$ Hence  $p_N \in NCSA^{\#}(\tau^{\mu}, L)$ . **3.12. Theorem:** Let  $(X, \tau^{\mu}, L)$  be a NCLSTS and A, B are any two NCSs on X. Then  $NCSA^{\#}(\tau^{\mu}, L) \bigcup NCSB^{\#}(\tau^{\mu}, L) = (NCSA(\tau^{\mu}, L) \bigcup NCSB(\tau^{\mu}, L))^{\#}$ . **Proof:** Let  $NCSA^{\#}(\tau^{\mu}, L) \bigcup NCSB^{\#}(\tau^{\mu}, L) \subset (NCSA(\tau^{\mu}, L) \bigcup NCSB(\tau^{\mu}, L))^{\#}$ . Now it is enough to show that  $(NCSA(\tau^{\mu}, L) \bigcup NCSB(\tau^{\mu}, L))^{\#} \subseteq NCSA^{\#}(\tau^{\mu}, L) \bigcup NCSB^{\#}(\tau^{\mu}, L)$ . Let  $p_N \in (NCSA(\tau^{\mu}, L) \bigcup NCSB(\tau^{\mu}, L))^{\#}$ .  $\Rightarrow p_N \in NCSA^{\#}(\tau^{\mu}, L) \text{ and } p_N \in NCSB^{\#}(\tau^{\mu}, L).$ Therefore Ξ  $U \& V \in \tau^{\mu}$  $\rightarrow$  A  $\cap$  NCS $cl(U) \notin L$  and  $B \cap$ NCS-  $cl(U) \notin L$  $= (A \cap NCS - cl(U)) \bigcup (B \cap NCS - cl(V))$  $= (A \cap NCS - cl(U) \cup B) \cap (A \cap NCS - cl(U) \cup NCS - cl(V))$  $= (A \bigcup B) \cap (NCS - cl(U) \bigcup B) \cap (A \bigcup (NCS - cl(V))) \cap (NCS - cl(U) \bigcup NCS - cl(V))$ 

 $\supseteq NCS - cl(U \cap V) \cap (A \cup B) \notin L. \text{ Hence } p_N \in (NCSA(\tau^{\mu}, L) \cup NCSB(\tau^{\mu}, L))^{\#}.$ 

So  $NCSA^{\#}(\tau^{\mu}, L) \bigcup NCSB^{\#}(\tau^{\mu}, L) = (NCSA(\tau^{\mu}, L) \bigcup NCSB(\tau^{\mu}, L))^{\#}$ .

**3.13. Definition:** Let  $(X, \tau^{\mu}, L)$  be a neutrosophic crisp ideal supra topological space.

Then A is called neutrosophic crisp L-supra open set (NCLSOS) if there exists

 $\Delta \in \tau^{\mu} \ni A \subseteq \Delta \subseteq NCSA^{*}(L, \tau^{\mu})$ . The family of all neutrosophic crisp supra L-open sets are denoted by NCLSOS(X).

**3.14. Definition:** The complement of 3.13. Definition is called neutrosophic crisp L-supra closed sets (NCLSCS). The family of all neutrosophic crisp supra L-closed sets are denoted by NCLSCS(X).

**3.15. Theorem:** Let  $(X, \tau^{\mu}, L)$  be a NCLSTS. Then  $A \in NCLSOS(X)$  if and only if  $A \subseteq NCS$  int ( $NCSA^*(L, \tau^{\mu})$ ).



E-ISSN: 2229-7677 • Website: <u>www.ijsat.org</u> • Email: editor@ijsat.org

**Proof:** Let  $A \in NCLSOS(X)$  then  $\exists \Delta \in \tau^{\mu} \ni A \subseteq \Delta \subseteq NCSA^{*}(L, \tau^{\mu})$  but

*NCS* -int  $(NCSA^*(L,\tau^{\mu})) \subseteq NCSA^*(L,\tau^{\mu})$  and  $\Delta = NCS$  -int  $(NCSA^*(L,\tau^{\mu}))$   $(\because \Delta \in \tau^{\mu}$  i.e.  $\Delta$  is NCSOS). Hence  $A \subseteq NCS$  int  $(NCSA^*(L,\tau^{\mu}))$ .

Conversely  $A \subseteq NCS$  int  $(NCSA^*(L,\tau^{\mu})) \subseteq NCSA^*(L,\tau^{\mu})$  then  $\exists \Delta = NCS$  -int  $(NCSA^*(L,\tau^{\mu})) \subseteq NCSA^*(L,\tau^{\mu}) \Rightarrow A \in NCLSOS(X)$ .

**3.16. Theorem:** Let  $(X, \tau^{\mu}, L)$  be a NCLSTS. If A, B be any NCSs in X and A  $\in NCLSOS(X)$ , B  $\in \tau^{\mu}$  then A  $\cap$  B  $\in NCLSOS(X)$ .

**Proof:** Let  $A \in NCLSOS(X) \Rightarrow A \subseteq NCS$  int  $(NCSA^*(L, \tau^{\mu})).$  (from 3.15)

Then  $A \cap B \subseteq NCS$  int  $(NCSA^*(L, \tau^{\mu})) \cap B = NCS$  int  $(NCSA^*(L, \tau^{\mu}) \cap B)$ , we have  $A \cap B \subseteq NCS$  int  $(NCS(A \cap B)^*(L, \tau^{\mu})) \Rightarrow A \cap B \in NCLSOS(X)$  (from 3.15).

**3.17. Definition:** Let  $(X, \tau^{\mu}, L)$  be a neutrosophic crisp ideal supra topological space and  $\beta$  is neutrosophic crisp set in X. Then the neutrosophic crisp supra ideal interior & closure of  $\beta$  defined as follows

(i) NCL-NCS-int ( $\beta$ ) =  $\bigcup$ { $\lambda : \lambda$  is NCLSOS in X &  $\lambda \subseteq \beta$ }

(ii) NCL-NCS-cl ( $\beta$ ) =  $\bigcap \{\lambda^* : \lambda^* \text{ is NCLSCS in } X \& \beta \subseteq \lambda^* \}$ 

**3.18: Definition:** A map  $\omega: (X, \tau^{\mu}) \to (Y, \sigma^{\mu})$  with neutrosophic crisp ideal L in X is said to be neutrosophic crisp L-supra continuous (NCL-SCSM) if for every  $\Delta \in \sigma^{\mu}, \omega^{-1}(\Delta) \in NCLSOS(X)$ .

**3.19. Theorem:** A map  $\omega: (X, \tau^{\mu}) \to (Y, \sigma^{\mu})$  with neutrosophic crisp ideal L in X is

NCL-SCSM then

(i) The inverse image of each NCSCS in Y is a NCLSCS.

(ii)For a neutrosophic crisp point  $p_N$  in X and each  $\Delta \in \sigma^{\mu}$  containing  $\omega(p_N) \exists A \in NCLSOS(X)$ containing  $p_N \ni \omega(A) \subseteq \sigma^{\mu}$ .

**Proof**: (i) Given  $\omega: (X, \tau^{\mu}) \to (Y, \sigma^{\mu})$  with neutrosophic crisp ideal L in X is NCL-SCSM. Let  $\Delta \in Y$  is NCSCS then  $\Delta^{C}$  is NCSOS,

by  $\omega^{-1}(\Delta^C) = (\omega^{-1}(\Delta^C)) \in NCLSOS(X)$  thus  $\omega^{-1}(\Delta)$  is NCLSCS.

(ii)Since  $\Delta \in \sigma^{\mu}$  containing  $\omega(p_N)$  then  $\omega^{-1}(\Delta) \in NCLSOS(X)$  (::  $\omega$  is NCL-SCSM).

By putting  $A = \omega^{-1}(\Delta)$  we have  $\omega(A) \subseteq \sigma^{\mu}$ .

**Conclusion:** NCL in neutrosophic crisp supra topology, neutrosophic crisp supra local functions, NCLSOS, NCL-SCSM are introduced and some of its basic properties are investigated and finally there is new way for further research in this area related to neutrosophic crisp supra topology.

#### **References:**

1. Albowi.S.A. Salama.A.A. & Esia.Mohmed, "New concepts of Neutrosophic sets" International journal of Mathematics & computer application research (IJMCAR), vol.4,Issue 1,(2014),59-66.



E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

- 2. Amarendra Babu.V & Rajasekhar .P "On neutrosophic crisp supra semi- $\alpha$  closed sets" International journal of advanced science and technology" vol.29, No.6.(2020) pp 2947-2954.
- 3. Atanassov.K, "Intutionistic fuzzy sets" Fuzzy sets & systems". 1986, 20: 87-96.
- 4. Bourbaki.N "General topology" part-I Addison wesly, Reading Mass, 1966.
- 5. Hanafy.I, Salama.A.A & Mahfouz.K "Correlation of neutrosophic data". International Refereed Journal of Engineering and science (IRJES), Vol.(1),Issue 2, (2012),39-43.
- Hanafy.I, Salama.A.A & Mahfouz.K "Neutrosophic crisp Events and probability. International Journal of Mathematics and computer application Research (IJMCAR).vol.(3), Issue 1, Mar 2013, (2013),171-178.
- 7. Salama.A.A. "Neutrosophic crisp points & Neutrosophic crisp ideals". Neutrosophic sets & systems. Vol.1, no.1, (2013), 50-54.
- 8. Salama.A.A & Albowi.S.A, "Neutrosophic set & Neutrosophic topological spaces" ISORJ, Mathematics, vol.(3), Issue), (2012), 31-35.
- 9. Salama.A.A & Albowi.S.A, "Generalized Neutrosophic set and generalized neutrosophic topological spaces" Journal of computer sci.Engineering. vol.(2), No (7), (2012), 51-60.
- 10. Salama.A.A & Albowi.S.A, "Intutionistic Fuzzy Ideals Topological Spaces". Advances in Fuzzy Mathematics, vol.1, No.1,(2013), 50-54.
- Salama.A.A.& Elagamy.H, "Neutrosophic Filters". International Journal of Computer science Engineering and information Technology Research (IJCSEITR), Vol.3, Issue (1), March (2013),307-312.
- 12. Smarandache.F, "An introduction to the Neutrosophic probability applied in Quantum physics". International Conference on introduction Neutro-physics, Neutrosophic logic, set, Probability & Statistics, University of New Mexico. Gallup. NM 87301, USA 2-4, December (2011).
- 13. Samarandache. "A unifying field in logics, Neutrosophic logic, Neutrosophy, Neutrosophic set". Neutrosophic probability. American research press, Rehoboth, NM, (1999).
- 14. Samarandache. F, "Neutrosophy & Neutrosophic Logic ". First international conference on Neutrosophy, Neutrosophic logic, set, probability and statistics, USA (2002).
- 15. Salama.A.A & Samarandache. F, "Neutrosophic crisp set theory" Educational publisher, Columbus, USA, (2015).
- 16. Salama.A.A., Samarandache. F & Kroumov.V. "Neutrosophic crisp sets & neutrosophic crisp topological spaces". Neutrosophic sets & systems, 2013,1(1),34-38.
- 17. Zadeh.L.A, "Fuzzy sets". Inform. Control, vol8, (1965), 338-353.