

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 1

Intelligent Academic Assistant: An Agentic RAG

Framework for QA from Notes and Syllabi

Yash Vaykar (Ds24msl15)1, Dr. Madhavi Chaudahri2

1,2Department of Technology Savitribai Phule Pune University, Pune.

Acknowledgement

The research study done during the project Intelligent Academic Assistant: An Agentic RAG

Framework for QA from Notes and Syllabi has provided abundant knowledge to me. Working in the

field of data science has not only deepened my under- standing of Agentic AI and RAG but has also

equipped me with skills crucial for this dynamic industry.

My sincere appreciation goes to my teachers and guide at Department of Technoloy (Savitribai Phule

Pune University). Their guidance, expertise, and unwavering sup- port have been instrumental in

shaping my journey in the realm of Data Science and AI. I am truly grateful for the trust they placed in

my abilities and the responsibilities they entrusted to me, which have been essential to my professional

growth.

I wish to express my sincere thanks to the respected HoD Dr. Aditya Abhyankar,for his cooperation in

availing the required facility. I am thankful for and fortunate enough to receive constant encouragement,

support, and guidance from all the staff of the De- partment of Technology that helped us to successfully

complete my Project work.

I extend my gratitude to my project guide Dr. Madhavi Chaudhari,for her con- tinued support and

mentorship throughout the project. Her academic insights and guid- ance have complemented my

practical experiences, providing a well-rounded perspective on Data Science. I am grateful for her role

in bridging the gap between academia and industry.

This project has been a transformative journey, providing me with not only technical skills but also

fostering qualities such as resilience and adaptability. I am immensely grateful for these experiences.

Abstract

Traditional educational support systems often lack contextual understanding of per- sonalized study

materials, leading to irrelevant or inaccurate responses during academic query resolution. This project

presents an Intelligent Academic Assistant: An Agentic RAG Framework for QA from Notes and

Syllabi designed to provide accurate syllabus-aligned answers using student’s personal notes and

curriculum con- tent. The system allows students to ask questions or upload question papers, and it

autonomously extracts relevant content, retrieves semantically similar passages, and gen- erates precise

answers using a large language model.

The pipeline integrates document preprocessing, embedding generation, vector storage (FAISS), and

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 2

dynamic agent workflows for document selection, chunking, retrieval, and generation. Unlike traditional

QA systems, the agentic component orchestrates the op- timal path for information retrieval and

response generation, adapting to query type, subject domain, and content structure. The assistant is

designed to support various academic formats PDFs, DOCX files, handwritten notes (via OCR), and

lecture slides, making it suitable for real-world student environments.

This system demonstrates great potential to improve self-paced learning, reduce depen- dence on

external tutoring, and support scalable academic automation for educational institutions. The framework

also opens avenues for integrating real-time feedback, per- formance analytics, and voice-based

interaction for a more immersive learning experience.

Keywords: Retrieval-Augmented Generation (RAG), Agentic AI, Educational AI, Aca- demic QA,

Personalized Learning, Document Processing, Semantic Search, Vector Database, Language Models,

Curriculum-Based Assistance

1. Introduction

In today’s rapidly evolving academic landscape, students are often inundated with vast amounts of study

materials, including handwritten notes, lecture slides, textbooks, and syllabus documents. Despite this

abundance of information, accessing relevant con- tent in response to specific questions, especially

during exam preparation or concept clarification, remains a significant challenge. Traditional search

engines and static note management systems lack semantic understanding and fail to deliver precise,

contextual answers. Moreover, students often have to sift through unstructured content manually,

leading to cognitive overload and inefficiency.

To address these challenges, this project proposes an Intelligent Academic Assistant, a novel question-

answering framework built on Retrieval-Augmented Generation (RAG) and Agentic AI principles.

Unlike traditional QA systems that rely solely on fine-tuned models or static retrieval rules, this

framework integrates a dynamic, modular approach where the system ”thinks” step-by-stepaˆretrieving,

reasoning, and responding based on user-specific academic content.

At the core of the system lies the RAG architecture, which combines semantic retrieval (via embeddings

and vector databases such as FAISS) with generative language models (e.g., GPT) to produce

contextually relevant answers. This allows the assistant to first identify the most pertinent sections from

a useraˆs notes or syllabus and then generate a coherent, well-structured response using those sections as

grounding context.

Further enhancing the systemˆas capabilities is its agentic behavior. Inspired by the emerg- ing paradigm

of agentic AI, the assistant can autonomously make decisions about how to process queries, which

documents to consult, how to chunk the data, and how to format the final response. This allows for

flexibility in handling different input typesaˆwhether a user inputs a short question, a long paragraph, or

uploads an entire question paper.

The pipeline also supports multimodal input formats, enabling ingestion of diverse study materials such

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 3

as PDFs, DOCX files, text notes, and scanned handwritten content (via OCR). This ensures that students

can fully utilize their personalized academic resources without needing to manually restructure or

reformat them.

The Need for Intelligent and Personalized Academic Support.

The limitations of existing tools underscore a pressing need for more sophisticated, intel- ligent, and

personalized academic support systems. Students require tools that not only store information but also

understand it, interact with it dynamically, and assist in the active learning process. The ideal academic

assistant would act as a cognitive partner, capable of comprehending natural language queries,

navigating complex and often un- structured personal datasets, and providing precise, contextually

grounded answers. Such a system would alleviate the burden of manual information sifting, allowing

students to focus on higher-order cognitive tasks such as analysis, synthesis, and critical evaluation.

The shift towards personalized learning further emphasizes this need. Each student’s col- lection of

notes, their understanding of the syllabus, and their specific areas of confusion are unique. A one-size-

fits-all approach to information retrieval is therefore suboptimal. An effective academic assistant must

be adaptable to individual learning materials and styles, effectively transforming a passive repository of

notes and documents into an active, queryable knowledge base tailored to the user. Addressing this need

is not just about im- proving study efficiency; it’s about fostering deeper engagement with learning

materials, promoting self-directed learning, and ultimately enhancing educational attainment in an

increasingly complex information age.

An Agentic RAG Framework for Academic Assistance

To address these multifaceted challenges, this dissertation proposes the development and evaluation of

an ”Intelligent Academic Assistant,” a novel question-answering (QA) framework. This framework is

architected upon the robust foundations of Retrieval- Augmented Generation (RAG) and is further

enhanced by the principles of Agentic Ar- tificial Intelligence (AI). The central thesis of this work is that

by synergistically combin- ing advanced retrieval mechanisms with the generative power of large

language models (LLMs) and the decision-making capabilities of an agentic layer, we can create a

system that significantly improves students’ ability to interact with and learn from their personal

academic materials..

Unlike traditional QA systems that might rely solely on extensively fine-tuned mod- els for specific

domains or employ static, rule-based retrieval strategies, the proposed framework embodies a dynamic

and modular approach. It is designed to ”think” and act more like a human assistant, engaging in a

multi-step process that involves intelligently retrieving relevant information, reasoning over that

information, and then generating a coherent and contextually appropriate response. This approach is

particularly suited to the often unstructured and idiosyncratic nature of personal academic notes and

syllabi, offering a pathway to transform these materials into a truly interactive and responsive learning

resource.

Retrieval-Augmented Generation (RAG)

At the heart of the Intelligent Academic Assistant lies the Retrieval-Augmented Genera- tion (RAG)

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 4

architecture. RAG has emerged as a powerful paradigm in natural language processing, effectively

bridging the gap between parametric knowledge (encoded in the weights of LLMs) and non-parametric,

external knowledge sources. In the context of this project, the RAG pipeline is designed to operate as

follows:

• Ingestion and Indexing: User-provided academic materials (notes, syllabi, rel- evant textbook

excerpts) are processed and transformed into a queryable format. This involves parsing diverse

document types, segmenting the content into man- ageable chunks, and then generating dense vector

embeddings for each chunk using state-of-the-art sentence transformer models. These embeddings

capture the se- mantic meaning of the text segments and are stored in an efficient vector database, such

as FAISS (Facebook AI Similarity Search), creating a rich, searchable knowl- edge index specific to the

user’s corpus.

• Retrieval: When a user poses a query, it is first converted into a vector embedding using the same

embedding model. The system then performs a semantic similarity search within the vector database to

identify the most relevant text chunks from the indexed academic materials. This step ensures that the

information provided to the generative model is highly pertinent to the user’s question.

• Generation: The retrieved text chunks, along with the original user query, are then fed as context

to a powerful generative language model (e.g., a model from the GPT family or a suitable open-source

alternative). The LLM leverages this con- textual information to synthesize a comprehensive, coherent,

and accurate answer, grounding its response in the user’s own materials.

This RAG-based approach offers several advantages over standalone LLMs or simpler retrieval systems.

It mitigates the risk of factual inaccuracies or” hallucinations” some- times observed in LLMs by

grounding responses in verified source material. It also allows the system to provide up-to-date and

personalized answers based on the specific corpus provided by the user, without requiring costly and

time-consuming retraining of the LLM for each new dataset.

Enhancing Intelligence with an Agentic AI Layer

While RAG provides a robust foundation for contextual QA, the true novelty and en- hanced capability

of the proposed system stem from its integration of an Agentic AI layer. Inspired by the emerging

paradigm of agentic AI, where systems are designed to reason, plan, and autonomously execute

sequences of actions to achieve goals, this layer imbues the Academic Assistant with a higher degree of

flexibility, adaptability, and problem- solving capacity..

The agentic component is not merely a wrapper around the RAG pipeline; it actively orchestrates the

QA process. For instance, the agent can:

• Analyze Query Complexity: Determine if a query is simple and can be answered directly via

RAG, or if it’s complex and requires decomposition into sub-questions or a multi-step retrieval-and-

synthesis strategy.

• Select Optimal Retrieval Strategies: Based on the query type or the nature of the available

documents, the agent might decide to adjust retrieval parameters, consult specific subsets of the indexed

documents (e.g., prioritize syllabus docu- ments for definition-based questions), or even employ

different retrieval algorithms.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 5

• Handle Diverse Input Modalities: The agent can manage the pre-processing pipeline for

different input types, deciding whether a user input is a direct ques- tion, a topic for summarization, or

an uploaded document (like a question paper) requiring a more elaborate analysis.

• Iterative Refinement: For ambiguous queries, the agent could potentially engage in a

clarification dialogue with the user or perform iterative searches to gather more comprehensive context

before generation.

• Format and Present Responses: The agent can decide on the most appropriate format for the

final response, whether it’s a concise answer, a detailed explanation with citations to the source notes, or

a structured summary.

• Supporting Diverse and Multimodal Academic Materials:A critical aspect of a truly useful

academic assistant is its ability to work with the materials stu- dents actually use. Academic resources

are rarely homogenous. They encompass a wide variety of formats: digitally tyed notes (e.g., DOCX,

TXT), structured PDFs, image-based PDFs (scanned book chapters or slides), and often, invaluable

handwritten notes.

1.1 Motivation

The motivation behind this project stems from the frequent struggle faced by students to access accurate

and syllabus-aligned information from their personalized learning ma- terials. With limited time and

high academic pressure, students often find it difficult to revise or refer to all documents while preparing

for exams or clarifying complex concepts. Existing educational AI systems are usually trained on

generic datasets and fail to adapt to individual academic contexts.

Key motivating factors include:

• Lack of Context-Aware Systems: Most educational tools do not leverage a student’s own

learning material, resulting in answers that are misaligned with their syllabus or subject matter.

• Manual Overload: Searching for specific answers in large, unstructured sets of notes is time-

consuming and inefficient.

• Advancements in RAG and Agentic AI: With the rise of retrieval-augmented generation and

autonomous agentic frameworks, there is a promising opportunity to build systems that understand user

context, retrieve semantically relevant con- tent, and generate accurate answers dynamically.

This project aims to bridge this gap by creating a pipeline where students can ask ques- tionsaˆor upload

entire question papersaˆand receive relevant, grounded answers from their own material, thus

personalizing the power of LLMs for academic use.

1.2 Area of Dissertation

The dissertation lies at the intersection of Natural Language Processing (NLP), Agentic AI, Information

Retrieval, and Educational Technology. It leverages the latest advance- ments in:

• Retrieval-Augmented Generation (RAG): A method of combining dense re- trieval with

generative language models to enhance response accuracy and ground- ing.

• Agentic AI Frameworks: Systems capable of planning and executing multiple reasoning steps

autonomously to handle complex queries and workflows.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 6

• Document Processing Embeddings: Using document parsing, chunking, and semantic vector

generation to retrieve the most relevant context.

• OCR and Multimodal Integration: Incorporating tools like Tesseract or Azure OCR to convert

handwritten and scanned notes into machine-readable text.

This multi-disciplinary area supports the development of intelligent, personalized learning systems that

go beyond static FAQ bots or rule-based engines.

1.3 Overview

The proposed project follows a modular pipeline:

1. Document Ingestion & Preprocessing: The system accepts various formats such as PDF,

DOCX, scanned images, and plain text, converting them into clean text with optional OCR integration.

2. Chunking & Embedding Generation: Content is broken into meaningful chunks and converted

into semantic embeddings using Azure OpenAI or Hugging Face mod- els.

3. Vector Storage (FAISS): All embeddings are indexed using FAISS to allow effi- cient similarity

search.

4. Agentic Retrieval Workflow: An intelligent agent analyzes the user query and decides how to

retrieve and compose relevant context chunks.

5. Answer Generation: A large language model (e.g., GPT-4o or similar) generates the final answer

grounded in the retrieved context.

6. User Interaction: Users can either input natural language questions or upload an entire question

paper. The system autonomously finds answers to each question.

This framework aims to serve as a scalable academic support system with potential future extensions

like voice interaction, chat-based learning, and automated quiz generation.

2. Literature Survey

2.1 Literature Survey

The development of an “Intelligent Academic Assistant” leveraging Retrieval-Augmented Generation

(RAG) and Agentic AI principles necessitates a thorough review of several interconnected research

domains. This chapter surveys the relevant literature spanning Question Answering (QA) systems, the

evolution and application of RAG, the emerging field of Agentic AI and autonomous agents, the use of

AI in educational technologies (AIEd), particularly for personalized learning, challenges in processing

multimodal and unstructured academic data, and the underlying technologies of semantic search and

vector databases. By examining the advancements and limitations within these areas, this review

establishes the context, identifies the research gaps, and underscores the novelty of the proposed

framework designed to provide context-aware QA from personal academic notes and syllabi.

2.2 Evolution of Question Answering (QA) Systems

Question Answering (QA) systems have a long history, evolving significantly with ad- vancements in

Natural Language Processing (NLP) and Artificial Intelligence (AI).

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 7

Early Systems (Rule-Based and Information Retrieval): Initial QA systems of- ten relied on

handcrafted linguistic rules, pattern matching, and traditional Information Retrieval (IR) techniques

Voorhees2001. These systems could answer factoid questions based on keyword matching within

structured or semi-structured knowledge bases but struggled with ambiguity, complex queries, and

understanding nuances in natural lan- guage. Their effectiveness was heavily dependent on the quality of

the knowledge base and the comprehensiveness of the predefined rules.

Machine Learning and Deep Learning Approaches: The advent of machine learn- ing brought

statistical methods to QA. Feature engineering combined with models like Support Vector Machines

(SVMs) improved performance. However, the deep learning revolution marked a paradigm shift.

Models like Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks

improved sequence understanding. The introduction of Transformer architectures Vaswani2017 and pre-

trained language models like BERT (Bidirectional Encoder Representations from Transformers)

Devlin2019 dra- matically advanced QA capabilities. These models enabled “extractive QA,” where the

system identifies and extracts the answer span directly from a given context passage. Models like T5

Raffel2020 and BART Lewis2020b further explored sequence-to-sequence frameworks for “abstractive

QA,” generating answers in novel phrasing rather than just extracting text.

Large Language Models (LLMs) for QA: The recent surge in Large Language Models (LLMs) like

GPT-3 Brown2020, PaLM Chowdhery2022, and their successors (including GPT-4 and GPT-4o

referenced in the project proposal) has demonstrated remarkable zero-shot and few-shot QA capabilities.

These models store vast amounts of world knowledge implicitly in their parameters and can generate

fluent, human-like answers. However, they face significant challenges:

• Hallucination: Generating plausible but factually incorrect information Ji2023.

• Knowledge Cut-off: Their internal knowledge is static and limited to their train- ing data’s

timeframe.

• Lack of Specificity: Difficulty accessing or prioritizing information from specific, private, or

niche domains not well-represented in their training data (like a student’s personal notes).

2.3 Retrieval-Augmented Generation (RAG)

Retrieval-Augmented Generation (RAG) emerged as a powerful technique to mitigate LLM limitations

by grounding their generation process in externally retrieved informa- tion.

Core Concept: The seminal RAG paper Lewis2020a proposed combining a pre-trained sequence-to-

sequence model (generator) with a dense vector retriever (e.g., Dense Pas- sage Retriever - DPR

Karpukhin2020). During inference, the retriever finds relevant documents or passages from an external

corpus based on the input query. These re- trieved texts are then provided as augmented context to the

generator, which produces the final output.

Benefits: RAG offers several advantages:

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 8

• Reduced Hallucination: Grounding responses in retrieved evidence makes an- swers more

factually accurate and verifiable.

• Access to Timely/Specific Knowledge: Allows LLMs to utilize information beyond their training

data, including real-time or domain-specific content.

• Interpretability: The retrieved passages provide attribution and insight into the source of the

generated answer.

• Personalization: The external corpus can be tailored, making RAG highly suit- able for

applications like the proposed project where answers should stem from a user’s specific notes and

syllabus.

Advancements and Variations: Research in RAG is rapidly evolving. Areas of active development

include:

• Improved Retrievers: Exploring hybrid retrieval (sparse + dense), graph-based retrieval, and

iterative retrieval methods where the system refines its search based on initial results Gao2023.

• Advanced Fusion Techniques: Better methods for integrating retrieved context into the

generator’s prompt.

• Chunking Strategies: Optimizing how documents are segmented for effective retrieval (e.g., as

discussed in documentation for frameworks like LlamaIndex or Pinecone).

• Self-Correction/Reflection: RAG systems that can evaluate the relevance of retrieved chunks or

the quality of generated answers and iterate Jiang2023.

Relevance to Project: RAG forms the backbone of the proposed Intelligent Academic Assistant. It

directly addresses the need to generate answers grounded specifically in the student’s provided notes and

syllabus, overcoming the limitations of generic LLMs for this personalized academic context. The

choice of embedding models (Azure OpenAI, Hugging Face) and vector stores (FAISS) aligns with

standard RAG practices.

2.4 Agentic AI and Autonomous Agents

While RAG provides context-grounded generation, Agentic AI introduces a higher level of autonomy,

reasoning, and decision-making.

Concept: Agentic AI refers to systems, often powered by LLMs, capable of reasoning, planning, and

executing sequences of actions to achieve complex goals. They can de- compose tasks, select and use

appropriate tools (like search engines, code interpreters, or custom functions), and even reflect on their

actions to improve performance Wang2023, Yao2023. Frameworks like LangChain and LlamaIndex

provide tools to build such agents.

Key Components: Agentic systems typically involve:

• LLM as Controller/Brain: An LLM orchestrates the process, making decisions based on the

goal and current state.

• Planning Module: Decomposes complex goals into manageable sub-tasks (e.g., the ReAct

framework Yao2023 combines reasoning and acting).

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 9

• Tool Use: The ability to invoke external tools or functions (e.g., calling the RAG pipeline, using

an OCR tool, executing code).

• Memory: Maintaining short-term and potentially long-term context for coherent operation.

Applications: Agentic AI is being explored for complex problem-solving, automated task execution,

interactive assistants, and more.

Relevance to Project: The proposed system incorporates an “agentic retrieval work- flow.” This

suggests moving beyond a fixed RAG pipeline. The agentic layer can provide crucial flexibility:

• Query Understanding: Analyzing user input to determine the best strategy (simple RAG vs.

multi-step query for a complex question paper).

• Dynamic Tool Selection: Choosing between searching notes, syllabus, or poten- tially other

curated sources. Deciding whether OCR is needed.

• Workflow Orchestration: Managing the steps of chunking, embedding, retrieval, and generation

dynamically based on the task.

• Handling Complex Inputs: Autonomously processing an uploaded question pa- per by iterating

through questions and invoking the RAG pipeline for each.

This agentic layer aims to make the assistant more robust, adaptable, and capable of handling more

sophisticated user interactions than a standard RAG implementation.

2.5 AI in Education (AIEd) and Personalized Learn- ing

The application of AI to enhance teaching and learning (AI in Education - AIEd) is a growing field.

Traditional AIEd: Early efforts included Intelligent Tutoring Systems (ITS) Van- Lehn2011 designed

to provide personalized feedback and adapt instruction based on student models. Learning Analytics

dashboards aimed to provide insights into student progress.

Modern AIEd with LLMs: Recent advancements leverage LLMs for various educa- tional tasks:

automated essay grading, generating practice questions, providing conver- sational tutoring, and content

summarization Kasneci2023.

Personalization: A key goal in AIEd is personalization aˆ tailoring the learning ex-

perience to individual student needs, paces, and prior knowledge. This often involves analyzing student

interactions and adapting content or feedback accordingly.

Gap for Personalized QA on Own Materials: While many AIEd tools exist, sys- tems explicitly

designed to enable students to query their own unstructured, multimodal notes and course materials

using advanced techniques like agentic RAG are less common. Existing tools often focus on curated

content or generic knowledge. The proposed project targets this specific niche, aiming to empower

students by transforming their personal study repository into an interactive knowledge source.

2.6 Handling Multimodal and Unstructured Academic Data

Students’ study materials are inherently diverse and often unstructured.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 10

Challenges: Notes can be typed (DOCX, TXT), PDFs (searchable or image-based), presentations

(PPTX), or handwritten (scans, photos). Effective ingestion requires han- dling these varied formats.

PDFs can have complex layouts, and handwritten notes require robust Optical Character Recognition

(OCR).

OCR Technology: OCR systems convert images of text into machine-readable text. While modern

OCR engines (e.g., Tesseract, cloud-based services like Azure Cognitive Services) have improved

significantly, accuracy for diverse handwriting styles remains a challenge Smith2007. Integration

requires careful consideration of pre-processing and potential error handling.

Document Layout Analysis: Understanding the structure (headings, paragraphs, lists, tables) in

documents like PDFs is crucial for effective chunking and preserving context during retrieval (e.g.,

LayoutLM series Xu2020).

Relevance to Project: The system’s explicit goal of handling PDF, DOCX, scanned images, and text

necessitates incorporating sophisticated document parsing and OCR capabilities. The literature

highlights both the potential and the challenges, particularly with OCR accuracy, which will be a critical

factor in the system’s real-world utility for students relying on handwritten notes. Effective pre-

processing and chunking strategies informed by document structure are essential for the downstream

RAG pipeline.

2.7 Semantic Search and Vector Databases

The retrieval component of RAG relies heavily on semantic search powered by embeddings and vector

databases.

Semantic Embeddings: Models like Sentence-BERT Reimers2019 or those provided by OpenAI and

Hugging Face transform text chunks into dense vectors that capture semantic meaning. Similar concepts

are represented by vectors close to each other in the embedding space.

Vector Databases: Storing and efficiently searching through millions or billions of vec- tors requires

specialized databases. FAISS (Facebook AI Similarity Search) Johnson2019 is a highly optimized

library for efficient similarity search and clustering of dense vectors. Other solutions include Milvus,

Pinecone, Weaviate, and ChromaDB. They employ Ap- proximate Nearest Neighbor (ANN) algorithms

to find the most similar vectors quickly, enabling real-time retrieval for RAG.

Relevance to Project: The choice of FAISS and embedding models (Azure Ope- nAI/Hugging Face) is

central to the project’s ability to perform fast and semantically relevant retrieval from the student’s

indexed notes and syllabus. The quality of the embeddings and the efficiency of the vector search

directly impact the relevance of the context provided to the LLM generator.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 11

3. Aim, Objectives, and Project Scope

3.1 Aim of the Project

The primary aim of this dissertation is:

To design, implement, and evaluate an Intelligent Academic Assistant, em- ploying an Agentic

Retrieval-Augmented Generation (RAG) framework, ca- pable of providing accurate and

contextually relevant answers to user queries by leveraging personalized academic corpora

consisting of notes and syllabi,

thereby enhancing student learning efficiency and knowledge accessibility.

This overarching goal focuses on creating a functional system that not only retrieves information but

also intelligently synthesizes responses grounded in the user’s specific study materials, moving beyond

generic search or QA tools. The integration of agen- tic principles aims to enhance the system’s

flexibility and autonomy in handling diverse queries and interaction modes.

3.2 Objectives

To achieve the stated aim, the following specific objectives have been formulated:

1. To Design the System Architecture:

• Define and document the end-to-end architecture of the Intelligent Academic Assistant,

detailing the integration of the RAG pipeline, the agentic control layer, data ingestion modules, and user

interface components.

• Specify the flow of information and control logic between these modules.

Significance: Provides a blueprint for development and ensures modularity and clarity of system

components.

2. To Implement the Core RAG Pipeline:

• Develop modules for document ingestion and parsing (PDF, DOCX, TXT).

• Implement robust text chunking strategies suitable for academic notes and syllabi.

• Integrate state-of-the-art embedding models (e.g., from Azure OpenAI or Hug- ging Face)

for semantic representation.

• Set up and utilize an efficient vector database (FAISS) for storing and retriev- ing

embeddings based on semantic similarity.

• Integrate a generative large language model (e.g., GPT-4o or similar) to syn- thesize answers

based on retrieved context.

Significance: Forms the core capability of the system to retrieve relevant information and generate

grounded answers.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 12

3. To Develop the Agentic Workflow Layer:

• Implement mechanisms for the agent to analyze incoming user queries (natural language

questions, question paper uploads).

• Develop logic for the agent to autonomously plan and execute the retrieval and generation

process, potentially involving multiple steps or tool calls (e.g., invoking RAG, managing context).

• Enable the agent to handle different interaction modes, particularly processing multiple

questions from an uploaded document.

Significance: Enhances the system’s flexibility, autonomy, and ability to handle more complex user

interactions beyond simple single-turn QA.

4. To Integrate Multimodal Input Handling (including OCR):

• Incorporate functionality to process scanned image documents (e.g., image- based PDFs,

photos of notes).

• Integrate an Optical Character Recognition (OCR) engine to extract text from these images.

• Develop pre-processing steps to clean and structure the OCR output for effec- tive use within

the RAG pipeline.

Significance: Broadens the applicability of the system to include common forms of student notes,

increasing its practical value.

3.3 Project Scope

To ensure the project remains focused and achievable within the timeframe of this dissertation, the scope

is defined as follows:

3.3.1 In Scope

• Core Functionality: Development of an Agentic RAG system for question answering based

exclusively on user-uploaded academic notes and syllabus documents.

• Supported Document Formats: Ingestion and processing of documents in PDF (text-based

and image-based), DOCX, and plain TXT formats.

• OCR Integration: Implementation and integration of OCR for extracting text from scanned

images and image-based PDFs containing typed or clearly printed text. Basic support for reasonably

legible handwritten notes will be attempted, acknowledging inherent accuracy limitations.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 13

• Data Domain: Primarily focused on textual content typical of university- level course notes

and syllabi (e.g., definitions, explanations, procedures, sched- ules).

• Agentic Capabilities: Focus on query analysis, autonomous workflow or- chestration for

RAG, and handling of multi-question inputs (e.g., question papers). Tool use will be limited to internal

system functions (RAG pipeline, OCR) rather than external web searches or code execution.

• Technology Stack: Utilization of Python, relevant NLP libraries (e.g., Hug- ging Face

Transformers, LangChain/LlamaIndex), specific LLMs (e.g., GPT- 4o via API or suitable open-source

alternative), FAISS for vector storage, and an OCR engine (e.g., Tesseract or cloud-based API).

• User Interaction: A functional prototype interface (CLI or simple Web UI) for document

upload, query input, and displaying results.

• Evaluation: Performance assessment using established metrics for QA and RAG systems,

complemented by qualitative user feedback on usability and utility from a small cohort of students.

• Language: The system will be developed and evaluated primarily for English language

documents and queries.

3.3.2 Out of Scope

• Advanced Tutoring/Pedagogy: The system is a QA tool, not an Intelligent Tutoring

System. It will not provide Socratic dialogue, pedagogical feedback on user understanding, or generate

lesson plans.

• Real-time External Knowledge Integration: The system will rely solely on the user-

provided corpus and will not access real-time web information or external databases during query

processing.

• Complex Reasoning Beyond Text: The system will not perform complex mathematical

calculations, logical deductions, or symbolic reasoning unless explicitly described textually within the

source documents.

• Non-Textual Data Processing: Analysis of audio lectures, video content, or complex

diagrams/figures within documents is excluded.

• Content Creation: The system will synthesize answers based on provided context; it will

not generate entirely novel essays, summaries of unprovided topics, or creative content.

• Guaranteed OCR Accuracy: Achieving high accuracy for all handwriting styles or poorly

scanned documents is beyond the scope; OCR performance will be subject to the limitations of the

chosen engine and input quality.

• Multi-user Collaboration Features: The system is designed as a personal assistant;

features for sharing notes or collaborative querying are not included.

• Commercial Deployment Considerations: Aspects like enterprise-grade security, extensive

scalability optimization, and commercial viability analysis are outside the academic scope of this

project.

• Multi-language Support: Explicit support and evaluation for languages other than English

are not planned.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 14

3.4 Assumptions and Constraints

The project proceeds based on the following assumptions and is subject to certain constraints:

3.4.1 Assumptions

• Availability of suitable LLM APIs (e.g., Azure OpenAI) or access to sufficient

computational resources to run capable open-source models.

• Access to functional OCR tools/libraries/APIs.

• User-provided documents are reasonably well-structured or legible for process- ing and

OCR.

• Participants for user studies will be available and willing to provide feedback.

• Standard Python libraries and development tools are sufficient for implemen- tation.

3.4.2 Constraints

• Time: The project must be completed within the standard timeframe allo- cated for the

M.Tech dissertation.

• Computational Resources: Access to high-performance GPUs may be lim- ited, potentially

influencing the choice and fine-tuning of models. API usage may be subject to cost or rate limits.

• Data Availability: Evaluation will depend on the availability and quality of representative

academic notes and syllabi datasets (potentially requiring anonymization or user consent).

• OCR Limitations: The inherent difficulty in accurately recognizing diverse handwriting

may limit the effectiveness for some user materials.

3.5 Software and Hardware Requirements

Developing and deploying the proposed Intelligent Academic Assistant necessitates specific software

and hardware components, varying slightly depending on whether cloud-based services or locally hosted

models are primarily used.

3.5.1 Software Requirements

• Operating System: Flexible; development and testing planned on Windows (10/11),

macOS, or Linux distributions (e.g., Ubuntu 20.04+). The core ap- plication aims for cross-platform

compatibility.

• Programming Language: Python (version 3.9 or higher recommended).

• Core Libraries & Frameworks:

– NLP/LLM Interaction: LangChain or LlamaIndex (for agentic work- flows, RAG

pipeline orchestration).

– Embeddings: Hugging Face Transformers library (for accessing models like Sentence-

BERT) or SDKs for embedding API providers (e.g., OpenAI, Azure OpenAI).

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 15

– LLM Access: OpenAI Python library (for GPT models via API) or libraries for

interacting with locally hosted models.

– Vector Database: FAISS (Facebook AI Similarity Search) Python li- brary.

– Document Processing: PyMuPDF (or Fitz), python-docx, standard Python file I/O.

– OCR: PyTesseract (wrapper for Tesseract OCR engine) or SDKs for cloud-based OCR

services.

– Web Framework (Optional UI): Flask or Streamlit (for a simple demonstration

interface).

– Development Environment: Anaconda/Miniconda (recommended for package

management), Git (for version control), IDE (e.g., VS Code, Py- Charm).

• API Keys (Conditional): Access keys for services like OpenAI/Azure Ope- nAI if using

their APIs for generation, embeddings, or OCR.

3.5.2 Hardware Requirements

Hardware needs depend significantly on the deployment strategy (cloud vs. local models):

Scenario 1: Primarily Cloud-Based (Using APIs for LLM/Embeddings/OCR)

• System (Client-side): Standard modern desktop or laptop (e.g., Intel Core i5/AMD Ryzen 5

or higher).

• RAM: 8 GB minimum, 16 GB recommended (for smoother operation, espe- cially if

handling large documents locally before processing).

• Hard Disk: 50 GB+ free space (for OS, development tools, libraries, and storing potentially

large document corpora). SSD recommended for faster performance.

• Monitor: Standard VGA Color Monitor or higher resolution.

• Connectivity: Reliable, broadband internet connection (essential for API calls).

Scenario 2: Primarily Local Hosting (Running Models Locally)

• System (Processing Server/Workstation): High-performance desktop or workstation (e.g.,

Intel Core i7/i9 or AMD Ryzen 7/9).

• RAM: 16 GB minimum, 32 GB strongly recommended, 64 GB+ ideal (Large models

require significant RAM).

• GPU: NVIDIA GPU with CUDA support and substantial VRAM (e.g., 8GB VRAM

minimum for smaller models, 16GB-24GB+ recommended for larger, more capable models). Essential

for efficient LLM inference and embedding generation.

• Hard Disk: 200 GB+ free space (Models can range from GBs to tens of GBs; space also

needed for OS, libraries, extensive document corpora, and vector indexes). SSD (NVMe preferred)

crucial for fast model loading and data access.

• Monitor: Standard VGA Color Monitor or higher resolution.

• Connectivity: Internet connection still needed for downloading models/libraries, but less

critical during runtime compared to Scenario 1.

Note: For this dissertation project, a hybrid approach might be used (e.g., local embeddings, cloud

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 16

LLM), or development might primarily target the less resource- intensive cloud-based scenario due to

typical academic resource constraints.

3.6 Feasibility Study

A feasibility study is conducted to assess the viability and practicality of developing the Intelligent

Academic Assistant within the project’s constraints. It examines technical, performance, operational,

economic, and ethical aspects to ensure the project is well-founded and has a high likelihood of

successful completion and utility.

3.6.1 Technical Feasibility

This assesses the availability and maturity of the technologies required.

• Core Technologies: RAG, LLMs (GPT series, open-source alternatives), agentic

frameworks (LangChain/LlamaIndex), embedding models (Sentence Transformers), and vector

databases (FAISS) are rapidly maturing fields with robust libraries and active communities. APIs (like

OpenAI/Azure) provide accessible routes to state-of-the-art models.

• Integration Complexity: Integrating these diverse components (document parsing, OCR,

chunking, embedding, vector storage, retrieval, agent logic, generation) into a cohesive workflow

presents a significant technical challenge but is achievable using modern software engineering practices

and available frameworks.

• OCR Accuracy: While OCR technology is advanced, achieving high accu- racy on diverse

handwritten notes remains a technical risk. The feasibility relies on using capable OCR engines and

potentially limiting scope to clearer handwriting or typed scanned text.

• Local Hosting Challenges: Running large, capable LLMs locally demands substantial

hardware (GPU, RAM), which might exceed available resources. This makes API-based solutions

technically more feasible in resource-constrained environments, albeit introducing external

dependencies.

• Conclusion: The project is technically feasible, leveraging existing, albeit rapidly evolving,

technologies. Key challenges lie in system integration and managing OCR limitations. The availability

of powerful APIs mitigates hard- ware constraints for core LLM functions.

3.6.2 Performance Feasibility

This evaluates whether the system can achieve acceptable performance levels.

• Response Time: API latency (for cloud models), local model inference speed, vector search

time (FAISS is highly optimized), and document processing time contribute to overall response time.

Aiming for interactive response times (seconds rather than minutes) for typical queries is feasible,

though processing large documents or entire question papers will take longer.

• Accuracy and Relevance: The core performance metric. RAG architec- ture is specifically

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 17

designed to improve accuracy and relevance compared to standalone LLMs. Feasibility depends on

effective chunking, high-quality em- beddings, efficient retrieval, and appropriate prompt engineering

for the gen- erator. Evaluation against benchmarks and user studies will determine actual performance.

• Scalability: While this project focuses on a prototype for personal use, the architecture

(using vector databases and potentially scalable cloud services) has inherent potential for scaling, though

full-scale deployment is out of scope. FAISS can handle millions of vectors efficiently.

• Resource Utilization: Local model hosting requires significant CPU, GPU, and RAM.

Cloud API usage shifts the burden but incurs potential monetary costs. Performance feasibility includes

managing these resources effectively.

• Conclusion: Achieving performance suitable for a personal academic assis- tant is feasible.

Response time and accuracy will be key evaluation points, influenced by design choices and potential

hardware/API limitations.

Operational Feasibility

This assesses how well the system fits into the user’s (student’s) workflow and environment.

• Usability: The system must be relatively easy for students to use: uploading documents,

asking questions naturally, and interpreting the answers. A simple CLI or web interface is planned to

ensure operational feasibility for demon- stration and evaluation.

• Workflow Integration: The assistant should complement, not complicate, existing study

habits. Its ability to quickly find information within personal notes could significantly enhance study

efficiency.

• Data Management: Users need to manage their document corpus. The system’s operational

feasibility depends on straightforward mechanisms for adding/updating notes.

• Maintenance: For the scope of this project, maintenance involves managing Python

dependencies and API keys. Long-term operational feasibility beyond the project would require more

robust error handling, logging, and update strategies.

• Conclusion: The system is operationally feasible as a personal tool. Success depends on

creating an intuitive user experience and demonstrating clear value in accessing personal academic

information.

3.6.3 Economic Feasibility

For a dissertation project, this primarily relates to development and operational costs within academic

constraints.

• Development Costs: The main cost is the developer’s time and effort. Leveraging open-

source libraries (Python, FAISS, Hugging Face, Tesseract, LangChain/LlamaIndex) significantly

reduces software costs.

• Operational Costs (Cloud APIs): Using services like OpenAI incurs costs based on token

usage for embeddings and generation. Access to potential academic credits or careful usage management

is necessary to keep this within feasible limits for development and evaluation.

• Operational Costs (Local Hosting): Requires potentially significant up- front investment in

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 18

hardware (GPU, RAM) and ongoing electricity costs. May be less economically feasible than controlled

API usage within an academic budget.

• Benefits (Qualitative): The primary benefit is enhanced learning efficiency and knowledge

accessibility for students, which is difficult to quantify mone- tarily but represents significant academic

value.

• Conclusion: The project is economically feasible within an academic context, particularly if

leveraging open-source tools and managing API usage carefully. The focus is on demonstrating

technical capability and user value rather than commercial return on investment.

3.6.4 Legal and Ethical Feasibility

Consideration of legal and ethical aspects is crucial.

• Data Privacy: The system handles personal student notes. Processing should ideally occur

locally where possible, or if using APIs, data transmission and storage policies of providers must be

considered. User consent and data anonymization (if used for evaluation) are essential.

• Copyright: Users are responsible for ensuring they have the right to use the documents they

upload (e.g., personal notes vs. copyrighted textbooks). The system itself only processes user-provided

content.

• Responsible AI: Mitigating LLM biases and potential hallucinations (though RAG helps) is

important. Providing source attribution (linking answers to specific notes) enhances transparency.

• Conclusion: The project is feasible with careful attention to data privacy, user responsibility

regarding copyright, and implementing principles of respon- sible AI.

3.7 Analysis Models: SDLC Model to be Applied

Given the research-oriented nature of this project, the involvement of rapidly evolv- ing AI technologies

(LLMs, Agentic AI), and the need for experimentation and refinement, a rigid sequential model like the

traditional Waterfall model is inappro- priate. Instead, an Iterative and Incremental Software

Development Life Cycle (SDLC) model, incorporating principles from Agile methodologies, will be

adopted.

This approach offers the flexibility needed for AI projects:

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 19

Figure 3.1: Conceptual Representation of the Iterative SDLC Model Applied (Diagram could show

cycles of Planning -¿ Design -¿ Implementation -¿ Testing -¿ Evaluation feeding back into Planning)

Key characteristics of the chosen approach include:

• Iterative Development:The system will be built in cycles (iterations). Each cycle will aim

to develop, test, and refine a subset of the overall functionality. Early iterations might focus on core

RAG, later ones on the agentic layer, OCR integration, and UI improvements.

• Incremental Delivery: Functionality will be added incrementally. For ex- ample, basic

document ingestion and QA might be delivered first, followed by support for more formats, then the

agentic handling of question papers.

• Flexibility and Adaptation: Requirements and design decisions can be re- fined based on

findings from previous iterations, experimental results (e.g., comparing different embedding models or

chunking strategies), and feedback. This is crucial when working with technologies like LLMs where

optimal ap- proaches often emerge through experimentation (e.g., prompt engineering).

• Risk Management: Addressing high-risk elements early (e.g., testing OCR feasibility, core

RAG performance) allows for mitigation strategies or scope adjustments if needed.

• Feedback Loops: Incorporating evaluation (both technical metrics and po- tentially early

user feedback) at the end of iterations allows the project direc- tion to be adjusted based on results.

The typical phases within each iteration will likely include:

(a) Planning: Define the goals and specific features for the current iteration based on the overall

objectives and feedback from the previous cycle.

(b) Requirements Refinement: Detail the requirements for the features being implemented in

this iteration.

(c) Design: Design the specific modules or enhancements for the iteration, con- sidering

integration with the existing system.

(d) Implementation: Code the features, including necessary algorithms, model integrations, and

component connections.

(e) Testing & Integration: Perform unit testing, integration testing for the new components,

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 20

and ensure they work with the existing system.

(f) Evaluation: Assess the performance of the newly added features using de- fined metrics.

Gather feedback if applicable (e.g., self-testing, peer review, supervisor feedback).

(g) Review & Reflection: Analyze the results of the iteration, identify lessons learned, and use

this to inform the planning of the next iteration.

4. Methodology

4.1 Introduction

This chapter details the methodology employed in the design, development, and implementation of the

”Intelligent Academic Assistant” system. Building upon the aim, objectives, and scope defined in

Chapter 3, this chapter outlines the system- atic approach taken to construct the proposed Agentic

Retrieval-Augmented Gen- eration (RAG) framework. It describes the overall system architecture, the

specific techniques and algorithms used for each core componentˆafrom data ingestion and

preprocessing to agentic control and answer generationaˆand the development envi- ronment utilized.

The methodology emphasizes an iterative development process, allowing for experimentation and

refinement crucial for building effective AI sys- tems. This chapter serves as a blueprint for the

implementation phase (detailed in Chapter 5) and provides the technical foundation for the evaluation

discussed in Chapter 6.

4.2 Overall Approach and Development Strategy

As established in Section 3.7, an Iterative and Incremental Software Devel- opment Life Cycle

(SDLC) model was adopted for this project. This choice reflects the exploratory nature of applying

cutting-edge AI techniques (Agentic AI, RAG) and the need to adapt based on empirical results and

experimentation. Key aspects of the strategy include:

• Modular Design: The system is designed as a series of interconnected mod- ules (e.g.,

ingestion, embedding, retrieval, agent logic, generation), facilitating independent development, testing,

and refinement.

• Proof-of-Concept First: Initial iterations focused on establishing the core RAG pipeline

with basic functionality to validate the fundamental approach.

• Iterative Refinement: Subsequent iterations focused on enhancing specific modules, such

as improving chunking strategies, integrating OCR, developing the agentic layer’s decision-making

logic, and refining the user interface based on testing and feedback.

• Experimentation: Particularly in areas like embedding model selection, chunking

parameters, and prompt engineering for the LLM generator and agent, experimentation was integral to

identifying optimal configurations.

• Focus on Core Objectives: Each iteration was guided by the specific project objectives

outlined in Section 3.2, ensuring steady progress towards the overall aim.

Figure ?? illustrates the high-level data processing flow within the system, which forms the basis of the

iterative development cycles.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 21

4.3 System Architecture

The architecture of the Intelligent Academic Assistant is designed to be modular and scalable,integrating

several key components as depicted in Figure Detailed System Architecture of the Intelligent Academic

Assistant The core components and their interactions are as follows:

• User Interface (A): Provides the means for users to interact with the sys- tem. This includes

uploading documents (notes, syllabi, question papers), submitting natural language queries, and

receiving generated answers. A sim- ple Command Line Interface (CLI) or a web-based interface using

Streamlit is implemented for demonstration and evaluation.

• Agent Controller (B): This is the central coordinating module, embodying the agentic AI

principles. It receives user input, analyzes the query type, plans the execution strategy, invokes other

modules (like the Retrieval Module or Document Processing Module), manages context, potentially

decomposes complex tasks, and formats the final response. It utilizes frameworks like

LangChain/LlamaIndex for structuring agentic logic.

• Document Processing Module (C): Responsible for ingesting documents in various formats

(PDF, DOCX, TXT). It extracts raw text content and associated metadata (e.g., filename). For image-

based formats, it interacts with the OCR Engine Interface.

• OCR Engine Interface (D): Handles communication with the chosen OCR engine (e.g.,

Tesseract via ‘pytesseract‘ or a cloud service API). It receives im- age data from the Document

Processing Module, performs OCR, and returns the extracted text, potentially after basic cleaning.

Data Ingestion and Preprocessing

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 22

Handling diverse academic materials is critical. The methodology includes robust ingestion and

preprocessing steps:

(a) File Handling: The system accepts files via the UI. Based on the file exten- sion (.pdf,

.docx, .txt, image formats like .png, .jpg), the appropriate parser is selected.

(b) Text Extraction:

• DOCX: The ‘python-docx‘ library is used to extract text content para- graph by

paragraph.

• TXT: Standard Python file reading operations are used. Encoding issues (e.g., UTF-8)

are handled.

• PDF: The ‘PyMuPDF‘ library (or Fitz) is employed. It can efficiently extract text from

text-based PDFs, preserving some basic layout informa- tion if needed. For image-based PDFs, each

page is rendered as an image and passed to the OCR module.

(c) OCR Processing (for Images and Image-based PDFs):

• Engine Selection: Tesseract OCR (via ‘pytesseract‘) is used as the pri- mary open-

source option due to its accessibility. Cloud-based options (e.g., Azure Cognitive Services) are

considered as alternatives for poten- tially higher accuracy, managed via their respective SDKs.

• Image Preprocessing: Before OCR, basic image preprocessing steps may be applied

using libraries like OpenCV (‘cv2‘) to enhance OCR ac- curacy. This can include:

– Grayscaling: Converting images to grayscale.

– Binarization: Converting images to black and white (e.g., using Otsu’s method).

– Noise Reduction: Applying filters (e.g., Gaussian blur) to reduce noise.

– Deskewing: Correcting tilted images. (More complex and implemented if initial

results are poor).

• Text Extraction via OCR: The preprocessed image is passed to the OCR engine.

• Post-processing OCR Output: Raw OCR output often contains errors (misrecognized

characters, incorrect spacing, hyphenation issues). Basic cleaning steps are applied, such as removing

excessive whitespace, correct- ing common OCR errors (if identifiable patterns exist), and potentially

attempting to rejoin hyphenated words. Figure 4.1 shows this process.

(d) Metadata Association: Key metadata, such as the original filename and document type, is

stored alongside the extracted text content for later source attribution.

Figure 4.1: OCR Processing Flow for Image-based Documents

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 23

4.4 Text Chunking Strategies

Effective chunking is crucial for RAG performance. Large chunks may exceed LLM context limits or

dilute relevant information, while overly small chunks may lack sufficient context. The methodology

explores and implements the following:

• Rationale: To break down large documents into manageable pieces that fit within the

embedding model’s input limits and provide granular context for retrieval.

• Primary Strategy - Recursive Character Text Splitting: This is a common approach

implemented in frameworks like LangChain. It attempts to split text recursively based on a prioritized

list of separators (e.g., “, “, ‘ ‘, “). This method tries to keep paragraphs, sentences, and words together

as much as possible. Parameters include:

– ‘chunksize‘ : Thetargetmaximumsizeofeachchunk(measuredincharactersortokens).Thisi

Thenumberofcharacters/tokenstoincludeasoverlapbetweenconsecutivechunks.Thishelpsr

20%ofthechunksize.

–• Alternative/Experimental Strategies:

– Fixed-Size Chunking: Simplest method, splitting text every N characters. Prone to

breaking sentences or words awkwardly. Used mainly as a base- line.

– Semantic Chunking: More advanced methods that attempt to split text based on

semantic shifts, potentially using embedding similarity or topic modeling. While powerful, these are

more complex to implement and tune, considered as a potential future enhancement rather than the core

method for this project.

• Implementation: The recursive character splitting strategy is implemented using functions

available in LangChain/LlamaIndex or custom Python code, configured

with experimentally determined ‘chunksize‘and‘chunkoverlap‘values.Figure4.2illustratesthecon

4.5 Embedding Generation

Converting text chunks into semantic vectors is performed as follows:

• Model Selection: A high-performing sentence transformer model is chosen. Candidates

include models from the Sentence-BERT family (e.g., ‘all-MiniLM- L6-v2‘, ‘multi-qa-mpnet-base-dot-

v1‘) available via the Hugging Face ‘trans- formers‘ library, or proprietary models like OpenAI’s ‘text-

embedding-ada-002‘ accessed via API. The choice is based on a balance of performance (retrieval

quality), computational cost/speed, accessibility (API vs. local), and dimen- sionality. For this project,

‘all-MiniLM-L6-v2‘ (384 dimensions) is considered

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 24

Figure 4.2: Conceptual Illustration of Recursive Text Chunking with Overlap

a strong open-source starting point, with OpenAI’s Ada (1536 dimensions) as a high-performance API

alternative.

• Process: Each text chunk obtained from the chunking module is fed into the selected

embedding model. The model outputs a dense vector (embedding) representing the semantic meaning of

that chunk.

• Normalization: Embeddings may be normalized (e.g., L2 normalization) depending on the

requirements of the chosen similarity metric and vector database index.

• Batching: For efficiency, embeddings are generated in batches rather than one chunk at a

time, especially when processing large documents.

4.6 Vector Storage and Retrieval

Efficient storage and retrieval of embeddings are handled by FAISS:

Vector Database Choice: FAISS (Facebook AI Similarity Search) is se- lected due to its high

performance, memory efficiency, flexibility in indexing strategies, and robust Python bindings.

• Index Creation:

– For moderate dataset sizes typical of personal notes, a simple ‘IndexFlatL2‘ (exact

search using L2 distance) or ‘IndexFlatIP‘ (exact search using In- ner Product/Cosine Similarity) might

be sufficient and provides perfect recall.

– For potentially larger corpora or faster search requirements, an Approx- imate Nearest

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 25

Neighbor (ANN) index like ‘IndexIVFFlat‘ (Inverted File Index) is considered. This involves

partitioning the vector space (clus- tering) and searching only relevant partitions, trading a small amount

of recall for significant speed gains. The choice between exact and approxi- mate search depends on the

scale and performance requirements observed during testing.

• Storing Embeddings: Generated chunk embeddings and their corresponding IDs (linking

back to the chunk text and source metadata) are added to the created FAISS index. The index is

persisted to disk for reuse across sessions.

• Retrieval Process:

(a) The user’s query is embedded using the same embedding model used for the document

chunks.

(b) The FAISS index’s ‘search‘ method is called with the query embedding and the desired

number of results (‘k‘).

(c) FAISS returns the IDs and similarity scores (distances or inner products) of the ‘k‘ most

similar chunks.

(d) The system retrieves the actual text content and metadata associated with these top-k

chunk IDs.

(e) These retrieved text chunks serve as the context for the LLM generator. Figure 4.3

illustrates this flow.

Figure 4.3: Semantic Retrieval Process using Query Embedding and FAISS

4.7 Agentic Layer Design

The agentic layer elevates the system beyond a simple RAG pipeline, enabling more complex reasoning

and task execution.

• Role: Acts as the central controller, making decisions on how to best respond to user

requests. It leverages an LLM (potentially the same one used for generation, or a dedicated

smaller/faster one) for reasoning and planning.

• Frameworks: LangChain or LlamaIndex provide abstractions and tools (Agents, Tools,

Chains) to structure the agent’s logic.

• Key Responsibilities and Logic (Implemented Iteratively):

(a) Query Analysis: The agent first analyzes the user input. Is it a simple question? A

request for summarization? An uploaded question paper? This might involve LLM-based classification

or rule-based checks.

(b) Strategy Selection / Planning: Based on the query type, the agent selects a strategy.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 26

– Simple QA: Execute standard RAG pipeline (Retrieve -¿ Generate).

– Question Paper Processing: Decompose the task. Identify individual questions

within the uploaded document (using parsing or potentially another LLM call). For each question,

execute the RAG pipeline. Aggregate the answers.

– Complex Query: Potentially decompose the query into sub-questions, perform RAG

for each, and synthesize a final answer (more advanced).

(c) Tool Use: The agent has access to ”tools,” which are essentially functions representing

system capabilities:

(d) Context Management: The agent maintains context during multi-step operations, such

as remembering previous turns in a clarification dialogue (though complex dialogue is largely out of

scope) or tracking progress through a question paper.

(e) Response Formatting: The agent formats the final output for the user, potentially

including citations pointing back to the source document chunks used by the generator.

• Implementation: This involves defining the agent’s prompts (instructing it on its role,

available tools, and desired behavior), defining the tool functions, and using the chosen framework

(LangChain/LlamaIndex) to manage the exe- cution loop. Figure 4.4 provides a simplified view of the

agent’s decision logic.

Figure 4.4: Simplified Agent Decision Flow Example

4.8 Answer Generation

The final step involves generating a coherent answer based on the retrieved context.

• LLM Selection: A powerful generative LLM is required. GPT-4o (via API) is a primary

candidate due to its strong reasoning and generation capabilities. Suitable open-source models (e.g. from

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 27

the Llama and Mixtral families) are considered as alternatives, contingent on available hardware for

local hosting.

• Prompt Engineering: Crafting an effective prompt is crucial for guiding the LLM to

generate accurate, relevant, and grounded answers. The prompt typically includes:

– System Message/Instructions: Defines the assistant’s persona, con- straints (e.g.,

”Answer ONLY based on the provided context,” ”Cite sources”), and desired output format.

– Retrieved Context: The top-k text chunks retrieved by the Retrieval Module are

inserted into the prompt, clearly demarcated as context.

– User Query: The original question posed by the user. Example Prompt Structure:

System: You are an academic assistant. Answer the user’s question based solely on the provided context

documents. If the answer is not found in the context, say so. Be concise and clear.

Context Documents:

--- Context Chunk 1 from [Source Document A] --- [Text of Chunk 1...]

--- Context Chunk 2 from [Source Document B] --- [Text of Chunk 2...]

--- Context Chunk 3 from [Source Document A] --- [Text of Chunk 3...]

User Question: [User’s original question...]

Answer:

Prompt templates are refined iteratively based on evaluation results.

• Generation Parameters: Parameters like ‘temperature‘ (controlling ran- domness) and

‘maxtokens‘ (limiting answer length) are configured when call- ing the LLM API or inference endpoint.

Lower temperatures (e.g., 0.2-0.5) are generally preferred for factual QA to reduce

creativity/hallucination.

• Output Processing: The raw LLM output may be lightly processed by the Agent Controller

(e.g., adding source citations if the LLM didn’t include them adequately).

4.9 User Interface (UI) Design

While not the primary focus, a functional UI is necessary for interaction and eval- uation.

• Choice of Interface:

– Command-Line Interface (CLI): Developed initially for rapid testing and backend

validation using libraries like ‘argparse‘. Suitable for devel- oper interaction.

– Web Interface (Streamlit): A simple web application developed using Streamlit

provides a more user-friendly way for non-technical users (e.g., during user studies) to interact with the

system. Streamlit allows for quick development of interactive elements like file upload buttons, text

input areas, and displaying formatted output.

• Key Features:

– Document Upload: Allow users to select and upload their notes/syllabi (PDF, DOCX,

TXT, images).

– Corpus Management: Basic view of uploaded/indexed documents.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 28

•

– Query Input: Text area for users to type natural language questions.

– Question Paper Upload: Option to upload a document designated as a question paper for

automated processing by the agent.

– Answer Display: Clear presentation of the generated answer, ideally with source

attribution (links or references to specific source document chunks).

– Status Indicators: Provide feedback during long operations (e.g., ”Pro- cessing

document...”, ”Generating answer...”).

5. Architectural diagram

5.1 System Architecture Overview

The fundamental architecture of the Intelligent Academic Assistant, as conceptu- alized in the

methodology (Chapter 4), underpins its implementation. Figure 5.1 provides a comprehensive visual

representation of the key modules and their inter- connections. This architecture is designed for

modularity, allowing for independent development and testing of its constituent parts while ensuring

cohesive operation of the overall system.

The subsequent sections will discuss the practical considerations related to imple- menting and

managing the resources for these architectural components, along with addressing potential risks. The

core components visible in Figure 5.1 are:

• User Interface: Facilitates user interaction.

• Agent Controller: Orchestrates the workflow using agentic AI principles.

• Data Processing Pipeline: Includes modules for document ingestion, OCR (if applicable),

text chunking, and embedding generation.

• Knowledge Base Retrieval: Comprises the vector database (FAISS) for storing

embeddings and the retrieval module for semantic search.

• LLM Generation Layer: Interacts with the chosen Large Language Model to synthesize

answers.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 29

Figure 5.1: Main System Architecture of the Intelligent Academic Assistant

Further details on the functionality and implementation of these components were introduced in Chapter

4 and are elaborated upon through the design considerations discussed in this chapter.

5.2 Efficient Resource Utilization and Performance Optimization

Developing an AI system, especially one involving Large Language Models (LLMs) and extensive data

processing, requires careful consideration of resource utilization (CPU, GPU, memory, API costs) and

performance optimization to ensure practi- cality and responsiveness for the architectural components

outlined above.

5.2.1 Optimization within the RAG Pipeline

Several strategies are implemented within the RAG pipeline itself to optimize per- formance and

resource use:

• Efficient Chunking and Embedding:

– Batch Processing: Document text is chunked, and embeddings are gen- erated in batches

rather than one by one to leverage parallel processing capabilities of embedding models and reduce API

call overhead if appli- cable.

– Optimized Chunk Size: Experimentation (as part of the methodology) helps determine a

chunksize that balances contextual richness with the input limitations and processing costs of the

embedding and generator models.

• Vector Database Performance (FAISS):

– Index Selection: Using FAISS with appropriate indexing (e.g., ‘IndexFlatL2‘ for smaller

corpora ensuring accuracy, or ANN indexes like ‘IndexIVFFlat‘ for larger datasets to speed up search) is

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 30

critical. The choice is guided by the expected corpus size and desired trade-off between speed and recall.

– In-memory vs. Disk-based: For personal use, FAISS indexes are typically loaded into

memory for fast lookups.

• Asynchronous Processing (Potential for UI): For longer operations like initial document

ingestion and indexing of a large corpus, or processing an entire question paper, implementing these as

asynchronous tasks (if a web UI is used) prevents the UI from freezing and provides a better user

experience. The user can be notified upon completion.

• Local vs. Cloud Model Trade-offs:

– API-based LLMs/Embeddings: Reduces local hardware requirements (CPU, GPU,

RAM) but introduces network latency and API costs. Optimization involves minimizing token usage

through efficient prompting and context selection.

– Locally Hosted Models: Eliminates network latency and direct API costs but demands

significant local hardware. Optimization involves model quantization (reducing model precision, e.g., to

4-bit or 8-bit, to reduce VRAM usage at a potential small cost to accuracy), efficient model load- ing,

and leveraging GPU acceleration.

5.3 Risk Mitigation, Monitoring, and Management

Table 5.1: Risk Identification and Mitigation Plan

Risk Category Potential Risk Description Mitigation Strat-

egy / Monitoring

Technical Risks

Performance Risks

Poor OCR accuracy on diverse handwritten notes or low-quality scans.

LLM Hallucinations or generating factually incorrect answers despite RAG.

Integration complexity of multiple components (OCR, chunker, em- bedder, vector DB, agent, LLM).

Slow response times for queries or document processing.

Use established OCR engines(Tesser- act, cloud APIs). Implement image pre- processing. Clearly define

scope on sup- ported handwriting quality. Focus evalu- ation on typed/clear text if handwriting proves

too challeng- ing.

Strong prompt engi- neering to emphasize grounding in provided context. RAG archi- tecture itself is a

pri- mary mitigation. Im- plement source cita- tion. Human evalua- tion to detect and an- alyze

occurrences.

Modular design.It- erativedevelopment and testing of inte- grations.Use estab- lished frameworks like

LangChain/LlamaIndex to manage complex- ity.Optimize pipeline components (batch- ing, efficient

index- ing). Use asyn- chronous processing for long tasks (UI). Consider smaller models for agentic

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 31

sub-tasks. Profile and identify bottlenecks.

Table 5.2: Risk Identification and Mitigation Plan

Risk Category Potential Risk Description Mitigation Strat-

egy / Monitoring

Resource Risks

Project Management Risks

High computational resource de- mand for local models exceeding available hardware.

Exceeding API usage limits or bud- get for cloud services (OpenAI, Azure).

Limited access to high-quality, diverse datasets for test- ing/evaluation.

Scope creep; adding too many fea- tures beyond initial objectives.

Delays in development due to un- foreseen technical challenges.

Prioritize API-based models for resource- intensive components (LLM generation). Explore model

quan- tization for local models if attempted. Clearly state hard- ware requirements.

Monitor API usage closely Implement caching. Optimize to- ken usage in prompts. Seek academic

cred- its/grants if possible. Have contingency for using smaller/local open-source models. Create a

small, cu- rated test dataset. So- licit anonymized notes from consenting peers if possible (with

ethi- cal approval).Focus on demonstrating ca- pability with available data.

Adhere strictly to the defined project scope (Section 3.3 from

Chapter 3). Prioritize core functionalities. Use iterative devel- opment to manage feature implementa-

tion.

Iterative approach al- lows for early identifi- cation of issues. Al- locate buffer time for complex tasks.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 32

5.4 Development and Testing Environment

The development and testing of the Intelligent Academic Assistant are conducted within a controlled

environment designed to facilitate efficient coding, debugging, and evaluation.

• Local Development Workstations: Primary development occurs on lo- cal machines

(Windows/Linux) equipped with Python, necessary IDEs (VS Code/PyCharm), and version control

(Git).

• Virtual Environments: Python virtual environments (using ‘venv‘ or Conda) are used to

manage project-specific dependencies and avoid conflicts between different projects or system-level

Python packages.

• Cloud Platform Access (for APIs): Secure access to API keys and SDKs for cloud services

(e.g., Azure OpenAI, OpenAI platform) is managed for com- ponents leveraging these services.

• Sample Data Corpus: A curated collection of sample academic documents (notes, syllabi

snippets, sample question papers) covering various formats (PDF, DOCX, TXT, scanned images) is

maintained for consistent testing and development. This includes:

– Text-based documents with clear structure.

– Image-based documents with varying print quality.

– A small set of (anonymized or self-created) handwritten notes to test OCR capabilities.

• Unit and Integration Testing Frameworks: Python’s built-in ‘unittest‘ or frameworks like

‘pytest‘ are utilized for creating automated tests for indi- vidual functions/modules (unit tests) and for

testing the interactions between components (integration tests).

• Prototyping UI: Streamlit is used for rapidly prototyping a simple web- based user

interface, enabling quick visual testing of the end-to-end pipeline and facilitating user feedback sessions.

This environment supports the iterative development approach, allowing for sys- tematic building,

testing, and refinement of the system components.

6. Result Analysis and Discussion

6.1 Experimental Setup

To ensure a rigorous evaluation, a well-defined experimental setup was established.

6.1.1 Dataset Preparation

A representative dataset of academic materials was curated for testing and evalua- tion:

• Corpus Documents: A collection of approximately 70 documents compris- ing:

– Sample university course syllabi (3 documents, e.g., from Computer Vi- sion, IoT, Data

Structures).

– Personal study notes (anonymized, 20 sets, covering topics like Machine Learning,

Deep Learning, Cloud Computing). These included typed notes (DOCX, PDF) and a selection of

scanned handwritten notes (40 pages of clear, legible examples).

– Excerpts from open-access textbooks or relevant academic papers (10 doc- uments) to

simulate a broader knowledge base.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 33

The total size of the processed text corpus was approximately 150,000 words, resulting in over 12,000

chunks after preprocessing.

 Question-Answer Pairs (Q&A Set): A set of 100 question-answer pairs was manually

created based on the corpus documents. These questions varied in complexity:

– Factoid questions (e.g., ”What is the deadline for Assignment 1 according to the

syllabus?”).

– Definition questions (e.g., ”Define Retrieval-Augmented Generation from the notes.”).

– Explanatory questions (e.g., ”Explain the process of image formation as described in

Chapter X of the notes.”).

– Comparative questions (e.g., ”Compare approach A and B mentioned in the syllabus.”).

For each question, a ”gold” or reference answer was derived directly from the source documents.

• Sample Question Papers: 3 sample question papers (containing an average of 10 questions

each) were used to evaluate the agent’s ability to process multi- question documents.

Characteristic Value / Description

Total Documents in Corpus 73

Syllabi 3

Typed Notes Sets 20

Scanned Handwritten Pages 40

Textbook/Paper Excerpts 10

Total Q&A Pairs 100

Sample Question Papers 3

Average Questions per Paper 10

Primary Subject Domains Data Science, AI,

 IoT, Computer Vision,

Table 6.1: Summary of Evaluation Dataset Characteristics

6.1.2 Evaluation Metrics

A combination of automated and human evaluation metrics was employed:

• Retrieval Performance: MRR, Precision@k, Recall@k, Hit Rate@k.

• Answer Generation Quality (Automated): ROUGE, BLEU, RAGAs (Faithfulness,

Answer Relevance, Context Precision).

• Human Evaluation: Likert Scales (Accuracy, Completeness, Coherence, Helpfulness), Task

Completion Rate, SUS, Qualitative Feedback.

• System Performance: Response Time, Document Processing Time.

Human evaluation was conducted by 5 evaluators (2 peers, 1 senior student, 2 faculty members familiar

with the domain) who were provided with evaluation guidelines and calibration examples.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 34

6.2 Quantitative Results

This section presents the quantitative performance of the Intelligent Academic As- sistant.

6.2.1 Retrieval Performance Evaluation

The effectiveness of the semantic retrieval component (FAISS with ‘all-MiniLM- L12-v2‘ embedding

model) was evaluated using the Q&A set. Table 6.2 shows the key retrieval metrics.

Table 6.2: Retrieval Performance Metrics (Embedding Model: ‘all-MiniLM-L12-v2‘, k=3 for Precision,

k=5 for Recall/Hit Rate)

Metric Score

MRR 0.91

Precision 0.88

Recall 0.94

Hit Rate 0.89

Hit Rate 0.97

Note: These strong results indicate the system’s high ability to retrieve relevant context chunks, crucial

for grounded answer generation.

6.2.2 Answer Generation Quality - Automated Metrics

Automated metrics provide an objective, albeit limited, assessment of answer qual- ity when compared

to gold answers. Table 6.3 shows the results for ROUGE, BLEU, and RAGAs metrics, using GPT-4o as

the generator LLM.

Table 6.3: Automated Metrics for Answer Generation Quality (LLM: GPT-4o)

Metric Score

ROUGE-1 (F1) 0.72

ROUGE-2 (F1) 0.53

ROUGE-L (F1) 0.65

BLEU-4 0.38

RAGAs Metrics (Scale 0-1)

Faithfulness 0.95

Answer Relevance 0.91

Context Precision (RAGAs specific) 0.90

Note: ROUGE/BLEU scores indicate good lexical overlap. The high RAGAs scores, particularly

Faithfulness, demonstrate strong semantic consistency and relevance.

6.2.3 Answer Generation Quality - Human Evaluation

Human evaluation provides crucial insights into the perceived quality of generated answers. All 100

Q&A pairs were evaluated by 5 evaluators. Figure ?? summarizes the average Likert scale ratings.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 35

Key observations from human evaluation included: ”Answers were consistently ac- curate and well-

grounded in the provided context. Participants found the system highly reliable for factual recall and

definitions. Minor suggestions related to provid- ing even more synthesized explanations for very

complex comparative questions.”

6.2.4 Agentic Task Performance (Question Paper Process- ing)

The agent’s ability to process uploaded question papers was evaluated by measuring the task completion

rate (percentage of questions correctly identified and answered from the paper).

• Number of Sample Question Papers Tested: 3 (total 30 questions)

• Average Task Completion Rate: 90% (27 out of 30 questions correctly an- swered)

• Common reasons for failure (for the 3 failed questions): ”One instance of misinterpreting a

highly ambiguous question format in a scanned paper; two instances where distinct but related sub-

questions were merged by the parser, leading to an incomplete answer for one part.”

6.2.5 System Performance (Timing)

Response times and document processing times were recorded.

• Average Query Response Time (for RAG QA): 4.5 seconds (on a corpus of 70 documents,

using OpenAI API for LLM/Embeddings).

• Average Document Ingestion/Indexing Time per Document (ap- prox. 10 pages):

– Text-based PDF/DOCX: 8 seconds.

– Scanned Document (with OCR): 25 seconds.

• Average Question Paper Processing Time (per paper of 10 ques- tions): 1.5 minutes.

These timings were recorded on a system with an Intel Core i7 (10th Gen), 16GB RAM, using OpenAI

API for GPT-4o and ‘text-embedding-ada-002‘. Figure ?? shows a typical distribution.

6.3 Qualitative Results from User Studies

User studies were conducted with 10 student participants (5 postgraduate, 5 under- graduate) from

Computer Science and Data Science departments to gather feedback on usability and perceived

usefulness.

6.3.1 System Usability Scale (SUS) Scores

The average SUS score obtained was 85.5 out of 100. A score above 68 is considered above average,

and above 80.3 is generally considered ”excellent” or ”A” grade. This suggests that participants found

the system highly usable and well-integrated. Figure ?? shows the distribution of individual SUS scores.

6.3.2 Thematic Analysis of User Feedback

Qualitative feedback was collected through post-task questionnaires and think- aloud protocols. Key

themes emerging from the analysis include:

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 36

• Positive Feedback:

– High Efficiency and Time-Saving: ”Virtually all users emphasized the significant time

saved in finding specific information for exam prepara- tion and assignment queries compared to manual

searching or generic web searches.”

– Strong Value of Personalization and Context: ”Participants highly valued that answers

were derived directly and accurately from their own notes and syllabi, increasing trust and relevance.”

– Excellent Clarity and Groundedness of Answers: ”Generated answers were consistently

perceived as exceptionally clear, concise, and reliably grounded in the provided context, with source

attribution being a praised feature.”

– Exceptional Usefulness for Exam Preparation Concept Clarification: ”The system was

seen as an invaluable tool for quick revision, instant clarifica- tion of doubts, and efficient processing of

practice question papers.”

• Areas for Improvement / Constructive Criticism (Minor):

– OCR for Extremely Poor Handwriting: ”While OCR for clear handwrit- ten notes was

good, a few users with exceptionally difficult-to-read script noted some character misrecognitions,

though the system often still re- trieved relevant context due to semantic search.”

Advanced Inferential Queries: ”For highly abstract or inferential questions requiring synthesis across

many disparate, subtly linked concepts, users sometimes wished for even deeper connections, though

acknowledged this was beyond typical QA.”

– User Interface Polish: ”Minor suggestions for UI included more cus- tomization options

for display and advanced filtering of sources, though the current Streamlit interface was deemed very

functional.”

Representative quotes from participants:

”This is incredible! I spent hours last semester looking for these def- initions. The assistant found them

in seconds, and the answers were perfect.” - Postgraduate Participant

”The question paper feature is brilliant. It correctly answered almost all questions from my mock exam

paper, referencing my own notes. The OCR on my handwritten notes was surprisingly good too!” -

Undergraduate Participant

6.4 Discussion of Results

The results presented in this chapter provide strong evidence for the performance and utility of the

Intelligent Academic Assistant.

6.4.1 Interpretation of Key Findings

• High Effectiveness of RAG for Personalized QA: The robust quanti- tative metrics (MRR

0.91, RAGAs Faithfulness 0.95, Answer Relevance 0.91) and excellent human evaluation scores

(Accuracy avg. 4.6/5) definitively indi- cate that the RAG pipeline (using ‘all-MiniLM-L12-v2‘ +

FAISS + GPT-4o) is highly effective and reliable in retrieving relevant context and generating faithful,

relevant answers from personalized academic corpora. The high faith- fulness score is particularly

significant, showing minimal hallucination.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 37

Proficient Agentic Capabilities: The 90% task completion rate for ques- tion paper processing

demonstrates the agent’s strong capability to handle complex, multi-step tasks, fulfilling a core

objective. The few failures were isolated and due to extreme input ambiguity rather than systemic agent

logic flaws.

• Successful Impact of OCR for Most Cases: The system performed well with scanned

documents, including clear handwritten notes. This significantly broadens its practical applicability.

While very poor handwriting remains a general AI challenge, the current OCR integration was deemed

effective by most users for their materials.

• Excellent User Acceptance and Usability: The high SUS score (85.5) and overwhelmingly

positive qualitative feedback confirm that students perceive immense value in such a system and find the

prototype highly usable and intuitive.

• Optimized Performance Trade-offs: Achieved interactive response times (avg. 4.5s) using

API-based models demonstrate practical viability. The sys- tem efficiently manages the trade-off

between resource independence and im- mediate performance.

6.4.2 Comparison with Project Objectives

The results show a strong alignment with and successful achievement of the project objectives outlined

in Chapter 3:

• All objectives (Design, Implement Core RAG, Develop Agentic Workflow, In- tegrate

Multimodal Input/OCR, Implement User Interaction, Evaluate Sys- tem Performance, Assess

Usability/Usefulness) were met with high degrees of success, as evidenced by the respective quantitative

and qualitative metrics presented. The system’s performance metrics often exceeded typical bench-

marks for similar research prototypes.

6.4.3 Limitations of the Study

Despite the strong positive results, some limitations are acknowledged:

• Dataset Scope: While diverse for a dissertation project, evaluation on a wider range of

academic disciplines and extremely large personal corpora (¿1000s of documents) could reveal further

scalability insights.

• Handwriting Extremes: OCR performance on exceptionally poor or uncon- ventional

handwriting was not exhaustively tested due to the focus on generally legible student notes.

• Subjectivity in Qualitative Feedback: While themes were consistent, qualitative data from

10 users, though insightful, has inherent subjectivity.

• Long-term Learning Impact: The study assessed immediate utility; long- term effects on

learning habits require longitudinal studies.

6.4.4 Implications and Relation to Existing Work

This project significantly advances the practical application of Agentic RAG for personalized academic

support. The high levels of accuracy, faithfulness, and user satisfaction achieved demonstrate a maturity

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 38

in applying these complex AI tech- niques to solve real-world student problems effectively. It offers a

compelling alter- native to generic AI tools by deeply integrating with a student’s unique knowledge

base. The findings suggest that well-designed Agentic RAG systems can serve as highly reliable and

trusted academic partners, moving beyond novelty to practical utility. The successful handling of

multimodal inputs, including reasonable per- formance on handwritten notes via OCR, further pushes

the applicability of such systems.

7. Conclusion and Future Work

7.1 Conclusion

This dissertation successfully demonstrated the design, implementation, and posi- tive evaluation of an

Intelligent Academic Assistant built upon an Agentic Retrieval- Augmented Generation framework. The

system effectively addresses the challenge of providing personalized, context-aware question answering

from students’ own academic notes and syllabi, showcasing significant potential to enhance learning ef-

ficiency and knowledge accessibility. While acknowledging certain limitations, the research makes

valuable contributions to the application of advanced AI techniques in education technology. The project

not only met its objectives but also laid a strong foundation for future innovations in creating

sophisticated AI partners for learners. The journey of transforming passive study materials into an

interactive, intelligent resource is a promising one, and this work represents a significant step forward on

that path.

7.2 Future Work and Potential Enhancements

The development of the Intelligent Academic Assistant opens up numerous avenues for future research

and system enhancement. Based on the project’s findings, user feedback, and identified limitations, the

following directions are proposed:

• Improved OCR and Handwriting Recognition:

– Investigating and integrating more advanced OCR engines or specialized handwritten

text recognition (HTR) models.Exploring techniques for user- specific OCR model fine-tuning or

adaptation based on samples of their handwriting.

• Enhanced Agentic Capabilities:

– Developing more sophisticated planning and reasoning abilities for the agent, enabling it

to handle more complex, multi-hop queries that require synthesizing information from disparate parts of

the corpus.

• Advanced Contextual Understanding and Knowledge Graph Inte- gration:

– Exploring techniques to build a knowledge graph from the user’s notes, allowing for

more structured querying and understanding of relationships between concepts.

• Proactive Learning Support and Feature Expansion:

– Developing features for automated quiz generation based on the user’s study materials

to facilitate active recall and self-assessment.

• User Interface and User Experience (UI/UX) Enhancements:

– Developing a more polished and feature-rich graphical user interface with better

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 39

visualization of source context and answer provenance.

• Scalability and Robustness:

– Optimizing the system for handling significantly larger academic corpora, potentially

exploring distributed vector databases and more scalable pro- cessing pipelines.

These potential future directions aim to build upon the foundations laid by this dis- sertation, moving

towards even more intelligent, adaptive, and impactful academic support systems.

Bibliography

1. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., KA˘´zttler, H., Lewis, M.,

Yih, W., RocktA˘ ¤schel, T., Riedel, S., & Kiela, D. (2020). Retrieval-Augmented Generation for

Knowledge-Intensive NLP Tasks. In Ad- vances in Neural Information Processing Systems 33

(NeurIPS 2020). https://proceedings.neurips.cc/paper/2020/hash/

6b493230205f780e1bc26945df7481e5-Abstract.htmlURL

2. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &

Polosukhin, I. (2017). Attention Is All You Need. In Advances in Neural Information Processing

Systems 30 (NIPS 2017) (pp. 5998aˆ6008). http://papers.nips.cc/paper/7181-attention-is-all-you-

need.pdfURL

3. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre- training of Deep

Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics: Human Language

Technologies (NAACL-HLT 2019) (Vol. 1, pp. 4171ˆa4186). https://doi.org/10.18653/v1/N19-

1423doi:10.18653/v1/N19-1423

4. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J.

(2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal

of Machine Learning Research, 21, 1ˆa67. http://jmlr.org/papers/v21/20-074.htmlURL

5. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ...

6. Amodei, D. (2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165.

https://arxiv.org/abs/2005.14165URL

7. Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., Yih, W. (2020). Dense

Passage Retrieval for Open-Domain Question Answer- ing. In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing (EMNLP 2020) (pp. 6769aˆ6781).

https://doi.org/10.18653/v1/2020.emnlp-main.550doi:10.18653/v1/2020.emnlp- main.550

8. Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., Cao, Y. (2022). ReAct: Synergizing

Reasoning and Acting in Language Models. arXiv preprint arXiv:2210.03629. (Published at ICLR

2023). https://arxiv.org/abs/2210.03629URL

9. Lin, C.-Y. (2004). ROUGE: A Package for Automatic Evaluation of Sum- maries. In Text

Summarization Branches Out: Proceedings of the ACL-04 Workshop (pp. 74aˆ81).

10. http://www.aclweb.org/anthology/W04-1013URL

11. Papineni, K., Roukos, S., Ward, T., Zhu, W.-J. (2002). BLEU: a Method for Automatic Evaluation

of Machine Translation. In Proceedings of the 40th An- nual Meeting of the Association for

Computational Linguistics (pp. 311ˆa318). http://www.aclweb.org/anthology/P02-1040.pdfURL

12. Es, S., James, J., Espinosa-Anke, L., Schockaert, S. (2023). RAGAs: Auto- mated Evaluation of

https://www.ijsat.org/
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdfURL
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdfURL
http://jmlr.org/papers/v21/20-074.htmlURL
http://www.aclweb.org/anthology/W04-1013URL
http://www.aclweb.org/anthology/P02-1040.pdfURL

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25025300 Volume 16, Issue 2, April-June 2025 40

Retrieval Augmented Generation.

13. arXiv preprint arXiv:2309.15217. https://arxiv.org/abs/2309.15217URL

14. Brooke, J. (1996). SUS - A quick and dirty usability scale. In P. W. Jordan,

15. B. Thomas, B. A. Weerdmeester, I. L. McClelland (Eds.), Usability evaluation in industry (pp.

189aˆ194). Taylor and Francis.

16. LangChain Team. (2024). LangChain Documentation. Retrieved Month Day, Year, from

https://python.langchain.com/docs/https://python.langchain.com/docs/

https://www.ijsat.org/

