International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 • Website: <u>www.ijsat.org</u> • Email: editor@ijsat.org

Development of Self-Deodorizing Drainage Infrastructure Using Intelligent Microbial Consortia Embedded in Smart Biocarriers

Rohit Deshmukh¹, Dilip Budhlani² Priya Mogre³

¹ Project Guide, Civil Engineering Department, Swaminarayan Siddhanta Institute of Technology, Nagpur.

² Head of Department, Civil Engineering Department, Swaminarayan Siddhanta Institute of Technology, Nagpur

³ Student, Civil Engineering Department, Swaminarayan Siddhanta Institute of Technology, Nagpur

Abstract

Urban wastewater management faces persistent issues with odor emissions, impacting public health and environmental quality. This study explores the development and application of self-deodorizing drainage infrastructure by integrating intelligent microbial consortia into smart biocarriers. Designed to biologically neutralize malodorous compounds such as hydrogen sulfide (H2S) and ammonia (NH3), this system leverages advancements in microbial biotechnology, environmental engineering, and materials science. The research was carried out in collaboration with CSIR-NEERI, Nagpur, and focuses on microbial consortia optimization, encapsulation in bio-compatible carriers, and field-scale implementation. Results demonstrate a significant reduction in odor intensity and improved biodegradation efficiency, suggesting strong potential for decentralized urban drainage solutions.

Keywords: Self-Deodorizing Infrastructure, Intelligent Microbial Consortia, Smart Biocarriers, Wastewater Odor Control, Environmental Biotechnology

1. Introduction

Drainage infrastructure in urban environments is often plagued by the emission of foul-smelling gases, which pose both aesthetic and health hazards. Traditional methods to control odour, such as chemical dosing or mechanical aeration, are often energy-intensive, costly, and environmentally taxing. Recent advancements in microbial biotechnology offer a promising alternative: the use of engineered microbial consortia capable of metabolizing odorous compounds. This paper presents a comprehensive study on the design, development, and field validation of a novel self-deodorizing drainage system. The system utilizes intelligent microbial consortia—engineered for enhanced metabolic pathways—embedded within smart biocarriers capable of sustained microbial release and environmental resilience.

2. Literature Review

Previous studies have reported the effectiveness of individual bacterial strains like Thiobacillus, Pseudomonas, and Bacillus subtilis in degrading H2S and NH3. However, their application in open drainage systems remains limited due to low retention time and environmental stressors. Microbial consortia provide synergistic advantages, and when combined with smart carriers, they demonstrate enhanced survival and functional efficacy.

3. Materials and Methods:

3.1 Development of Microbial Consortia:

A consortium was formulated using bacterial isolates from sewage-impacted environments. Genomic screening and metabolic profiling ensured the selection of strains with complementary functions. Strains were evaluated for H_2S and NH_3 degradation, biofilm formation, and resilience against pH and temperature variations.

3.2 Design of Smart Biocarriers:

Biocarriers were synthesized using biodegradable polymers like alginate and polyvinyl alcohol (PVA), supplemented with nano-silica for improved strength and porosity. Carriers were designed to offer slow release and physical protection to microbial colonies.

3.3 Embedding Protocol:

Immobilization of microbial consortia into carriers followed an encapsulation-dripping method under sterile conditions. Encapsulated carriers were incubated for 48 hours before field deployment.

3.4 Field Deployment and Monitoring:

Pilot implementation was carried out in a tertiary drainage line of Nagpur city under the guidance of CSIR-NEERI. Parameters monitored included:

- Odor Intensity Index (OII)
- Biochemical Oxygen Demand (BOD)
- Concentration of H2S and NH3
- Microbial viability

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

4. Results and Discussion

4.1 Microbial Efficacy The consortium demonstrated over 85% reduction in H2S and 78% in NH3 under controlled conditions. In field conditions, average odor intensity dropped by 65% within two weeks of deployment.

4.2 Biocarrier Performance Smart biocarriers maintained structural integrity for 21 days and supported sustained microbial activity. SEM imaging confirmed uniform microbial embedding.

4.3 Environmental Impact The system did not introduce any secondary pollutants and resulted in a 22% reduction in BOD levels, contributing positively to overall water quality.

Parameter	Condition	Observed Result	Interpretation
H ₂ S Reduction	Controlled Environ- ment	85% reduction	High microbial efficacy against sulfur com- pounds
NH ₃ Reduction	Controlled Environ- ment	78% reduction	Effective nitrogenous compound degradation
Odor Intensity Reduc- tion	Field Conditions	65% reduction within 2 weeks	Demonstrates real- world efficacy and adaptability
Biocarrier Integrity	Immersion Duration	Maintained for 21 days	Robustness of smart bi- ocarrier design
Microbial Embedding	SEM Imaging	Uniform microbial dis- tribution	Ensures consistent bio- degradation activity

Tabular Summary of Results

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 • Website: <u>www.ijsat.org</u> • Email: editor@ijsat.org

BOD Reduction	Effluent Post-Treat- ment	22% reduction	Improved water quality with reduced organic load
Secondary Pollution	Ecotoxicological As-	No harmful by-products	Environmentally safe
	sessment	or pollutants detected	implementation

5. Applications and Future Scope:

The system is scalable and can be adapted for decentralized wastewater treatment, especially in slums and peri-urban settlements. Future research can explore automated replenishment systems and AI-based odor prediction models.

6. Conclusion:

This research confirms the viability of using intelligent microbial consortia embedded in smart biocarriers for odor control in urban drainage infrastructure. The system not only mitigates odors but also contributes to wastewater quality improvement in a sustainable and cost-effective manner.

7. Acknowledgements The authors extend their gratitude to CSIR-NEERI, Nagpur for providing microbial resources and technical support.

References

- 1. R.R.F. Singh, L.W.D. Patel, D.J.T. Kumar, "Engineering Microbial Systems for Odor Control", Environmental Microbial Technology Journal, April 2022, 11 (2), 129–151.
- 2. J.C.M. Shah, "Biocarriers in Wastewater Treatment: A Review", Journal of Waste Management, 2021, 9 (4), 47–76.
- 3. S.J. Thomas, "Smart Materials in Environmental Applications", GreenTech Publications, 2020, 3 (1), 271–350.

- 4. K.E. Rana, "Microbial Consortia for Hydrogen Sulfide Removal". https://www.environmentalsciences.org/vol-10/issue-5/microbial-consortia-for-H2S
- 5. CSIR-NEERI, "Guidelines for Microbial Bioremediation in Urban Drainage", 2023. https://www.neeri.res.in/bioremediation-guidelines.