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Abstract 

 

In this paper, we look into quantum information measures in ion traps using the harmonic oscillator 

model to describe trapped potentials and ion dynamics. Our findings show that, in the steady-state 

situation, mutual information and synchronisation measures behave similarly. In addition, we investigate 

how these metrics vary in the quench model and how they are affected by coupling and external noise, 

such as an external magnetic field. Moreover, for a proposed target ground state, we determine the 

circuit depth and analyze the effects of the external magnetic field and coupling constant, highlighting 

their dynamic evolution over time. We also discuss the coherent state of a single ion in a trap, noting an 

inverse relationship between complexity and fidelity-where increased fidelity corresponds to decreased 

system complexity, indicating a more ordered state with improved control and optimization. However, at 

higher system frequencies, complexity increases due to intricate interactions and rapid state changes, 

necessitating advanced control mechanisms. 
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1. Introduction. 

 

The developing quantum algorithms that outperform traditional approaches, such as big integer 

factorisation, has made quantum computing a primary emphasis in current physics. Among the several 

techniques to physically manufacturing quantum computers, the ion trap method presented by Cirac and 

Zoller [1] appears to be particularly promising. Extensive tests have confirmed the usefulness of ion 

traps as a tool for realistic quantum computing. An ion trap is a device that employs electric and/or 

magnetic fields to confine charged particles (ions) in a defined area of space. This confinement allows 

for ion manipulation and analysis; in fact, the capacity to precisely manipulate individual ions enables 

accurate quantum processes, while trapped ions' lengthy coherence durations assure stability throughout 

complicated computations [2]. The scalability of ion trap systems allows for the building of bigger 

quantum systems, which are supported by high-fidelity quantum gates that reduce operational faults. 

Furthermore, ion traps aid in the creation of entangled states, which are required for quantum 

communication and distributed computing. In this context, the potential in ion traps is frequently 

approximated by a harmonic oscillator, giving a well-established framework for analysing the motion 

and interactions. The interactions between ions within a trap, including those in optical or 

electromagnetic resonators, can be modeled as coupled harmonic oscillators, which are vital for 
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controlling quantum states and performing quantum operations such as entanglement. These interactions 

can enter various coupling regimes—weak, strong, and ultra-strong—each of which plays a critical role 

in enhancing the performance and scalability of quantum computers [4,5]. In the realm of quantum 

computing, particularly within the framework of Hamiltonian dynamics of trapped ion systems, a 

nuanced understanding of various quantum metrics is essential. For example, entanglement entropy 

measures the quantum correlations between subsystems, indicating how much information is shared. 

This is important for quantum algorithms and protocols, such as error correction and cryptography. An 

other metric is the computational complexity which assesses the resources needed for quantum 

computations, including the number of qubits and the depth of the quantum circuit. This reflects the 

difficulty of quantum operations and the efficiency of algorithms. High entanglement entropy often leads 

to increased computational complexity because maintaining entanglement requires more complex and 

deeper circuits. On the other hand, by arranging quantum gates in sequences, efficient quantum 

algorithms are formed, enabling quantum computers to solve problems beyond the capabilities of 

classical computers1. The study of interaction between quantum gates and the wave function is 

important; transforming a reference state |ψR⟩ into a target state |ψT⟩ involves applying a unitary 

transformation U, achieved through sequences of universal gates. Optimizing these gate sequences is 

crucial due to the infinite possible paths to the same target state. The purpose of this research is to 

further the understanding of quantum metrics, especially fidelity, synchronisation, and mutual 

information, in the context of ion traps using the harmonic oscillator approximation. Particular emphasis 

is placed on the impact of coupling and external fields on these metrics. We validate previous findings 

that mutual information and synchronisation measures operate similarly in the steady state. External 

noise (such as an external magnetic field) has an influence on these measurements in two specific 

models: one involving two linked Vander Pol oscillators and the other using two qubits in optical 

cavities with driving forces attached. External noise might disrupt the system and change its behaviour. 

By researching these factors, we want to understand how synchronisation and mutual information 

measures evolve and adapt to various. The goal of this study is to improve our knowledge of quantum 

metrics, including fidelity, synchronisation, and mutual information, in the setting of ion traps using the 

harmonic oscillator approximation. These measurements are heavily influenced by coupling and external 

fields. We corroborate prior findings that mutual information and synchronisation measures behave 

similarly in the steady state. External noise influences these observations in two models: one with two 

connected Vander Pol oscillators and another with two qubits in optical cavities with driving forces 

attached. External noise may interrupt the system and alter its functioning. By examining these 

characteristics, we want to understand how synchronisation and mutual information measures evolve 

and adapt to varied 

Mathematical Foundations by Harmonic Oscillator Model: 

 A device with a powerful radio-frequency electric field restricts an ion's mobility in the y and z 

directions, confining it to the x direction. In the x direction, the ion is poorly restricted by an electrostatic 

field that is approaching its minimum.  A harmonic oscillator can approximate the axial potential of the 

system. Ion transport involves adjusting the electrostatic field intensity to shift the potential well. With 

careful tuning, the harmonic well strength remains constant throughout the operation. The system is 

modelled as a trapped ion vibrating in a harmonic well along the axial x-direction at frequency ω [21-

23]. The Hamiltonian describes the dynamics of a system using the equation Hˆ0 = aˆ and ˆa † are 
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raising and lowering operator. By moving the harmonic potential well along the trap axis while 

maintaining a constant curvature, the Hamiltonian that describes the system becomes time-dependent 

and is expressed as 

Hˆ (t) = pˆ 2 2m + 1 2 mω2 [ˆx − d(t)]2 

If we assume the initial state of ion is the motional ground state of the harmonic oscillator centered at x 

= 0, i.e. |Ψ(0)⟩ = |0⟩, the motional state of the ion remains in coherent state throughout the process, i.e. 

|Ψ(t)⟩ = |α(t)⟩, with the amplitude α(t) given by the formula [24] 

α(t) ≡ r mω 2ℏ d(t) − e −iωt Z t 0 ˙d(t1)e iωt1 dt1 where, the coherent state amplitude follows from 

Equation are given by 

                                            α1(t) = r mω 2ℏ d0(1 − e −iωt), 

 α2(t) = r mω 2ℏ L sin2  πt 2T  − πL πe−itω + iT ω sin πt T  − π cos πt T  2 (π 2 − T 2ω2 ). Although the 

potential well stops its movement at time t = T, the ion remains in oscillation For two coupled ions, the 

dynamics and behavior of the system become more complex. In principle, the primary interaction 

between the ions is supposed to be the Coulomb force which couples the motion of the ions. The ions are 

confined within the same trapping potential, which means changes in the potential affect both ions. By 

varying the frequencies of the trapping potential, one can control the oscillatory motion of each ion. This 

can be achieved through adjustments in the RF or DC fields. As the trap frequencies change, the ions’ 

oscillation frequencies and coupling dynamics also change and this can lead to interesting phenomena 

such as mode splitting and energy transfer between the ions. Let us consider the following Hamiltonian 

H = ω1aˆ † aˆ + ω2 ˆb †ˆb + g ′ (ˆa + ˆa † )(ˆb + ˆb † ) 

 

where this form of Hamiltonian is frequently used in the study of quantum interactions in ion traps and 

cavity QED, where different modes (either motional or electromagnetic) are coupled.2 The interaction 

term g ′ (ˆa + ˆa † )(ˆb + ˆb † ) allows for energy exchange between the two modes, enabling processes 

like quantum state transfer, entanglement generation, or quantum gates in ion trap systems [2]. One may 

examine a system characterized by Hamiltonian (2.10) with a pair of harmonic oscillators engage in an 

interaction of significant intensity, denoted as the “position-position” coupling. By imposing an external 

magnetic field with the symmetric gauge A⃗ = B2 (x2 − x1), therefor, the Hamiltonian can be written as 

We investigate how to use the above results to discuss different measures related to the quantification of 

information, this may help to understand the effect of magnetic field on the dynamics of system. It 

should be mentioned that the wave function is the general Gaussian form and scaling and entangling 

operators preserve this form of the wave function where we begin and end with a Gaussian wave 

function. 

 

Quench and Steady-State Approximation. 

 

The quench model involves suddenly changing a system parameters, like interaction strength, to study 

non-equilibrium dynamics which is crucial for understanding quantum phase transitions and 

entanglement growth, providing insights into complex quantum behaviors that are difficult to simulate 
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classically [30]. Here, we employ a realistic quenched model, where at t = 0, the frequencies ω1, ω2, and 

the coupling parameter g are suddenly quenched from constant initial values to new constant final 

values: 

 

ωj (t) = ( ωij t = 0 ωf j t > 0 , g(t) = ( 0 t = 0 g t > 0 (2.21) 

                                                    where j = 1, 2. The solutions of the Ermakov equations now take the 

forms h 2 1 (t) = Ω 2 f1 − Ω 2 i1 2Ω2 f1 cos (2Ωf1 t) + Ω 2 f1 + Ω2 i1 2Ω2 f1 h 2 2 (t) = Ω 2 f2 − Ω 2 

i2 2Ω2 f2 cos (2Ωf2 t) + Ω 2 f2 + Ω2 i2 2Ω2 f2. 

The problem is simplified to the ground state of two coupled harmonic oscillators. Before ending this 

section, let us mention the steady-state approximation that will be employed in the subsequent section. 

Under this approximation, the wave function is given by (2.17) in which one gets. 

 

The quantum measurements for Hamiltonian behavior. 

Consider a system that begins in a specified initial state and evolves over time under a specific 

Hamiltonian, such as (2.11), while measuring various time-dependent quantities to study metrics such as 

circuit depth and synchronicity. As mentioned, the depth of a quantum circuit, defined as the number of 

sequential layers of quantum gates, directly influences execution time and error susceptibility. Thus, 

optimizing circuit depth is essential for efficient quantum computations. Meanwhile, synchronicity in 

quantum circuits ensures that gate operations are well-aligned and coordinated, thereby minimizing 

errors and maximizing coherence by mitigating timing-related issues and decoherence. In principle, to 

transform a reference state |ψR⟩ into a target state |ψT ⟩, a unitary transformation U is applied as follows: 

this transformation is achieved through a sequence of universal gates. Finding the optimal sequence of 

gates, known as optimizing the trajectories, is essential due to the infinite possible sequences that can 

produce the same target state. The depth of a quantum circuit, which refers to the number of sequential 

gate layers, is closely tied to its computational complexity, in a way that a deeper circuit can perform 

more complex computations by introducing more entanglement and intricate manipulations of quantum 

states. However, this also increases susceptibility to errors and decoherence, affecting the computation’s 

fidelity. In this context, the depth of circuit might be a metric in the context of quantum information. The 

aim of this section is to examine a quantum system model to measure the quantum circuit depth required 

to generate the output state from the system’s ground state. The reference state is a factorized Gaussian 

state as. These gates/operators are pivotal in constructing the circuit, with Gaussian wave functions 

serving as target states. By applying scaling and entangling gates appropriately, the reference frequency 

ωR is adjusted to the target frequency. In the quenched model for a target state given by (2.17), we find 

the depth of circuit as 
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Fig.no.2 where A’s are given by (2.20) in which we used (2.22). Making use of the steady-state 

approximation with equation (2.23), the formula (3.2) matches the results of a toy model from [31]. In 

Figure 1, we have depicted the circuit depth for various values of the external magnetic field and 

coupling constant. As illustrated, an increase in the coupling constant results in a corresponding increase 

in the circuit depth. Additionally, during the initial period following the quench, the circuit depth is 

observed to increase with rising magnetic field strength. As shown in the right panel of Figure 1, this 

pattern remains consistent over time. In Figure 2, we have illustrated the circuit depth for various 

external magnetic field strengths. At the early time after quench we observe the linear growth of circuit 

depth in a way that the external magnetic field ceases to have a uniformly increasing effect on circuit 

depth. 

Synchronization is a fascinating phenomenon where two or more systems coordinate their behavior over 

time. This concept appears in various forms, from classical mechanics to quantum mechanics, and it 

plays an important role in understanding complex systems [32]. Classical synchronization happens when 

systems like coupled pendulums or fireflies flashing together align their behaviors over time. This means 

that their actions become coordinated and follow similar patterns as time goes on. However, in quantum 

mechanics, synchronization takes on a different way, in fact, quantum synchronization examines how 

quantum systems, such as ions in traps or coupled oscillators, synchronize their states or observables 

over time. This involves studying quantum correlation measures like fidelity, mutual information, and 

other entanglement-related metrics. One interesting thing about quantum synchronization is its 

dependence on non-classical effects and interactions. 
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The synchronization and Reciprocal Data. 

 

Synchronisation is a fascinating process in which two or more systems coordinate their behaviour across 

time. This idea, present in both classical and quantum physics, is crucial for comprehending complicated 

systems [32].  Classical synchronisation occurs when systems, such as connected pendulums or fireflies, 

align their behaviour across time. Over time, their acts grow more coordinated and predictable. In 

quantum mechanics, synchronisation refers to how quantum systems, such trapped ions or linked 

oscillators, synchronise their states or observables throughout time. This includes investigating quantum 

correlation measurements such as fidelity, mutual information, and other entanglement-related metrics. 

One interesting thing about quantum synchronization is its dependence on non-classical effects and 

interactions. For example, the presence of coupling between quantum systems or external. 

 

 

 
 

Figure 2: Schematic diagram of depth of circuit as a function of ωRt for early time after quench (left 

panel) where we set t = 10−3 and for different values of magnetic field. In the right panel we consider 

long time after the quench. In both we set g = 1 and ωf2 ≈ ωf1 = 2. fields can significantly influence 

synchronization behavior. Studies in this field examine how these interactions influence the stability and 

behavior of quantum systems. Classical synchronization is related to the Pearson correlation coefficient 

which is used as a measure for quantifying the temporal correlation between two classical trajectories. 

For two variables say as A and B, it is defined by (see Ref. [33] and Ref.s therein) 
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                                                     CA,B = AB − A B / A2 − A 2 (B2 − B 2 )1/2, 

                                                                      where overline stands for the average value. Pearson 

measure is usually used to quantify the linear dependence between two variables, ranging from +1 (total 

positive correlation) to -1 (total negative correlation), with 0 indicating no correlation. This coefficient 

can also be used in quantum synchronization by analyzing the time-dependent expectation values of 

quantum operators, helping to capture synchronization in quantum systems, like coupled harmonic 

oscillators. On the other hand, Ref. [34] introduced the following measure to quantify the level of 

synchronization of coupled continuous variable quantum systems. this can be used as a measure to 

quantify the degree of synchronization between two coupled harmonic oscillators by evaluating the 

deviations in their positions (x1, x2) and momenta (p1, p2). A higher value indicates stronger 

synchronization, implying closer alignment of the oscillators’ motions and a low synchronization can be 

due to large mean values or variances of x1 − x2 and p1 − p2. In quantum systems, besides 

synchronization, mutual information is also important. It measures the total shared information between 

subsystems and shows their correlation and entan9 glement. Mutual information helps us understand 

how information flows and how subsystems are connected and it is defined by 

I = S(ρA) + S(ρB) − S(ρAB).. 

where S(ρ) = −Tr(ρ log ρ) is the Von Neumann entropy. In Ref. [20], the authors demonstrated that for 

two models, namely, two coupled Van der Pol oscillators and two qubits inside driven optical cavities, 

the mutual information and synchronization measure exhibited similar behavior in the steady-state case. 

As a result, they concluded that mutual information could be used as a synchronization measure. In 

Figures 3 and 4, synchronization and mutual information are plotted with respect to the difference in 

natural frequencies of the two coupled harmonic oscillators: ω2 − ω1. These plots are generated using 

the ground state wave function with parameters specified in (2.23). We observed that in this case, their 

behaviors were consistent with the findings reported in Ref. [20]. Additionally, we found that a higher 

external field value reduced both synchronization and mutual information. We also observed that 

increasing the coupling constant led to higher mutual information and lower synchronization. Thus, 

while a higher coupling constant results in higher mutual information, it does not necessarily lead to 

more coordinated behavior. This phenomenon suggests that stronger connections may lead to more 

shared information, but also to less synchronized actions. 

One Ion in a Harmonic Potential Well. 

The behaviour of a particle vibrating in a harmonic well may be investigated using quantum information 

metrics such as fidelity and complexity. These metrics assess the accuracy of measuring particle states 

and the complexity of characterising their behaviour. In state evolution, fidelity quantifies the distance 

between close states, whereas state complexity relates to the difficulty of expressing or controlling the 

state.The fidelity at time t is defined as [35]  

                                                               F(α(t)) = exp −|α(t) − α(0)| 2 

Time evolution of synchronization for the quench model under various conditions. For the top plots, the 

coupling constant is fixed at g = 1 and the frequency ωc is varied between 1 (blue) and 3 (red). The 

bottom plots maintain a fixed frequency ωc = 1, while the coupling constant is set to g = 0.5 (blue) and g 
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= 1.5 (red). The right plots in both rows also highlight the average synchronization values over time. 

Mutual information evolution for the quench model with different parameters. Top row: Coupling 

constant set at g = 1, with frequencies ωc = 1 (blue) and ωc = 3 (red). Bottom row: Frequency fixed at 

ωc = 1, with coupling constants g = 0.5 (blue) and g = 1.5 (red). Additionally, the right plots in both 

rows illustrate the average mutual information values over time for all scenarios, This inverse 

relationship can be understood by considering that higher fidelity often entails more precise control or 

optimization of the system. When we have better control over a system, it becomes easier to manage and 

avoids unexpected changes. This makes the system smoother and more efficient, reducing its 

complexity. So, higher precision leads to a more orderly and less complicated system. On the other hand 

in Fig. 8, we observe that at higher frequencies, the system exhibits increased complexity. As frequency 

increases, the system becomes more complex because its parts must interact more quickly and precisely. 

This leads to greater interdependence and coordination among the components. Higher frequencies 

require the system to adapt to faster changes and more frequent adjustments, making it more 

complicated overall. This aligns with theoretical expectations, as high-frequency operations need more 

advanced control and coordination. To summarise, complexity may be calculated using many theoretical 

approaches, including the Nielsen geometric method, Margolus Levitin, and Lloyd methods [41-43]. 

Previous research have studied how an electric field affects the pace of complexity. References [39, 44, 

45] investigated the complexity rate in harmonic oscillator systems with an electric field. These 

investigations show that frequency is a key factor in determining the complexity rate. Additionally, the 

presence of an external electric field lowers the upper limit of the complexity rate, emphasising the 

importance of both frequency and external fields in influencing complexity dynamics. 

2. Conclusion 

This work explores synchronisation and mutual information in coupled harmonic oscillators under 

external magnetic fields and different coupling constants. First, we evaluated both in steady-state with 

the difference in natural frequencies of the two connected harmonic oscillators: ω2 − ω1. Our findings 

show that increasing the external magnetic field reduces synchronisation and mutual information. A 

greater coupling constant increases mutual information but decreases synchronisation. Stronger 

connections between oscillators may not necessarily result in better coordinated behaviour, despite more 

information sharing. Instead, greater contacts might result in less synchronised behaviours, indicating a 

complicated relationship between these two characteristics. Next, we investigated synchronisation and 

mutual information in a quench model. Stronger magnetic fields lead to less synchronisation, indicating 

less coordination among oscillators. Increased magnetic fields may affect oscillator synchronisation. 

However, reciprocal information behaves differently. The association begins at zero and gradually 

increases over time. The average value increases with both magnetic field intensity and coupling 

constant, suggesting that greater interactions result in more exchanged information. However, increased 

mutual information does not always imply improved synchronisation. These findings emphasise the 

requirement for synchronisation. Overall, our findings highlight the various ways in which 

synchronisation and mutual information adapt to changes in external factors. The observed behaviours 

provide vital insights into how synchronisation and information exchange work in linked systems. It was 

noticed. This study explored how circuit depth in two linked harmonic oscillators changes with coupling 

constants, external magnetic fields, and reference frequency (ωR). Initially, larger coupling constants 

and stronger magnetic fields improve circuit depth.  
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As coupling constants grow, high magnetic fields reduce circuit depth, causing the pattern to shift over 

time. Initially, larger ωR lowers circuit depth. 

   We analysed the faithfulness and complexity of a single ion in a harmonic potential well. The study 

found that increased fidelity reduces system complexity and improves control, leading to smoother and 

more efficient performance. Higher frequencies require faster and more accurate interactions between 

system components, resulting in increasing complexity. These findings emphasise the delicate balance 

between fidelity and frequency in defining the system's complexity. 
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