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Abstract: 

Real-time cognitive load estimation has wide applications in education, human-computer interaction, and 

healthcare, but remains limited by the high cost and intrusiveness of physiological sensors [1,2]. In this 

study, we present a feasibility analysis of a lightweight cognitive load classification system based on 

webcam-accessible behavioral proxies, and benchmark its performance against neurovascular gold 

standards—namely, electroencephalography (EEG) and functional Near-Infrared Spectroscopy (fNIRS). 

Using a publicly available multimodal dataset collected during a driving task overlaid with an n-back 

working memory paradigm (0-, 1-, 2-back) , we simulate webcam-based inputs using features such as 

blink rate, pupil dilation, fixation duration, and saccade metrics [3]. 

Supervised learning models were trained to classify cognitive load levels across both multiclass and binary 

setups. While all models, including those using EEG and fNIRS, performed near chance in the three-class 

task, a binary classification of high vs. low/moderate load achieved above-chance accuracy using only 

behavioral features. These results suggest that webcam-derived signals, although coarse, can support 

lightweight cognitive state monitoring under simplified load distinctions. This study provides a cross-

modal validation of scalable, low-cost cognitive load assessment approaches and highlights important 

trade-offs between accessibility, resolution, and physiological fidelity. 

Index Terms—Cognitive load, EEG, fNIRS, webcam estimation 

1. Introduction 

Understanding and measuring cognitive load—the mental effort exerted by an individual during task 

performance—is critical across domains such as education, healthcare, human-computer interaction, and 

neuroergonomics [4, 5, 6]. Elevated cognitive load can impair decision-making, reduce task efficiency, 

and even pose safety risks in high-stakes environments such as driving or surgery [7], [8]. As such, 

accurately detecting changes in cognitive load in real time has become a major interdisciplinary research 

objective [3]. 

Neurophysiological methods such as functional Near-Infrared Spectroscopy (fNIRS) and 

electroencephalography (EEG) are considered gold standards for monitoring cognitive load. These 
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methods provide direct biological signals related to cerebral oxygenation (fNIRS) and neural oscillatory 

activity (EEG), enabling researchers to quantify cognitive states with high temporal precision [9]. 

However, their widespread use is constrained by cost, physical setup requirements, and limited 

portability—factors that make them impractical for use in everyday settings like classrooms, driver-assist 

systems, or remote work platforms. 

Recent advances in computer vision and affective computing have opened new possibilities for 

lightweight, camera-based cognitive monitoring. Standard webcams can unobtrusively capture facial and 

ocular signals—such as blink rate, pupil dilation, and fixation duration—that reflect internal cognitive 

states [10]. These behavioral signals are inexpensive to capture and highly scalable, but they remain 

indirect proxies of mental workload and often lack rigorous physiological grounding. 

In this study, we perform a systematic feasibility analysis of webcam-accessible cognitive load features 

by benchmarking them against gold-standard neurovascular measurements using a publicly available 

multimodal dataset collected during a simulated driving task that incorporates an n-back working memory 

paradigm [3]. While no actual webcam footage or real-time system was used, we isolate and evaluate a 

set of behavioral features that could be realistically extracted via standard webcams. Our goal is to assess 

whether these features, when processed using modern machine learning techniques, can approximate the 

discriminative power of high-fidelity physiological modalities. 

Our contributions are threefold: 

 We isolate and analyze behavioral proxies for webcam-derived signals (e.g., blink rate, pupil dilation, 

fixation duration), and benchmark their ability to classify cognitive load in comparison with fNIRS and 

EEG features. 

We implement a machine learning pipeline to evaluate performance across both multiclass (0-/1-/2-back) 

and binary (high vs. low load) classification tasks. 

 We conduct ablation and diagnostic analyses to examine the tradeoffs between accuracy, interpretability, 

and hardware accessibility across feature modalities. 

By grounding webcam-accessible features in validated neurophysiological benchmarks, our study offers 

a preliminary yet important step toward scalable, low-cost cognitive monitoring systems. This work aims 

to bridge the gap between high-fidelity neuroscience and deployable human-centered technologies—with 

potential applications in adaptive learning, cognitive ergonomics, and mental health support. 

2. Related Work 

2.1 Physiological Methods for Cognitive Load Estimation 

Cognitive load has traditionally been measured using neurophysiological signals that reflect mental effort 

during task performance. Among these, functional Near-Infrared Spectroscopy (fNIRS) and 

electroencephalography (EEG) are among the most widely used non-invasive modalities [11]. fNIRS 

measures changes in oxygenated (HbO) and deoxygenated (HbR) hemoglobin concentrations in the 
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prefrontal cortex, offering spatially localized indices of cortical activation. Numerous studies have 

demonstrated a consistent increase in HbO levels with higher working memory demand during paradigms 

such as the n-back task [12]. EEG, by contrast, offers high temporal resolution by capturing neural 

oscillations (e.g., theta and alpha band power), which have also been linked to cognitive workload intensity 

[13]. 

Together, fNIRS and EEG capture complementary aspects of neurovascular coupling—fNIRS through 

hemodynamic activity and EEG through electrical signals—making them effective for cognitive workload 

classification in laboratory contexts. However, both techniques typically require controlled environments, 

sensor calibration, and subject immobility, limiting their scalability in everyday settings. 

2.2 Webcam-Based Cognitive Load Estimation 

Recent advances in computer vision have enabled researchers to investigate lightweight, camera-based 

alternatives for inferring cognitive load. Standard webcams can capture facial and ocular cues—such as 

blink rate, pupil dilation, gaze entropy, and facial muscle tension—that serve as behavioral proxies of 

internal mental effort. For example, blink rate has been observed to decrease during high cognitive load 

due to increased attentional focus, while gaze entropy, a measure of spatial scanpath variability, tends to 

reduce as visual attention narrows [14]. 

Toolkits such as OpenFace and MediaPipe facilitate real-time extraction of these features, supporting 

deployment in domains ranging from e-learning to driver monitoring. However, unlike physiological 

signals, webcam-derived features are inherently indirect and may be affected by lighting conditions, 

emotional states, fatigue, and user variability. As a result, there is an ongoing need to validate these 

behavioral signals against neurophysiological baselines, to establish their reliability and robustness. 

Although several studies have reported correlations between webcam-derived metrics and task difficulty 

or performance scores, few have directly benchmarked these features against concurrent fNIRS or EEG 

data [15]. This lack of cross-modal validation limits the interpretability and generalizability of purely 

behavioral systems for cognitive load assessment. 

2.3 Multimodal and Cross-Validated Approaches 

To improve the robustness of cognitive state recognition, researchers have increasingly adopted 

multimodal fusion strategies that combine behavioral and physiological inputs. For instance, hybrid EEG-

fNIRS models have demonstrated improved classification accuracy over unimodal approaches, especially 

in dynamic or noisy task environments [16]. In parallel, affective computing frameworks have explored 

integrating facial expressions, speech features, and biosignals for comprehensive user state modeling. 

Yet, in the specific domain of cognitive load monitoring, few studies employ synchronized datasets that 

contain both behavioral and neurophysiological signals collected during a controlled cognitive paradigm 

like the n-back task. Most existing datasets either focus exclusively on physiology or simulate behavioral 

data without corresponding neural benchmarks. 
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Our study contributes to this growing field by leveraging a publicly available multimodal dataset that 

includes eye-tracking-derived behavioral features (e.g., blink rate, fixation duration, pupil size) alongside 

fNIRS and EEG recordings, all captured during a cognitive task. By systematically comparing 

classification performance across these modalities, we offer one of the first cross-validated analyses of 

webcam-accessible features against dual neurophysiological standards. This approach lays the 

groundwork for future systems that aim to balance accessibility, accuracy, and real-world applicability. 

3. Methodology 

3.1 Dataset Description 

This study utilizes the Multimodal Cognitive Load Classification Dataset, a large-scale open dataset 

comprising 86,435 samples, each corresponding to a 1-second time window of synchronized multimodal 

data collected during a simulated driving task [3]. Participants were exposed to varying levels of working 

memory demands using an n-back paradigm with three load conditions: 0-back (low load), 1-back 

(moderate load), and 2-back (high load). Each sample is labeled accordingly using the cognitive_load 

target variable. 

The dataset integrates several data streams, including 384 electroencephalography (EEG) features derived 

from power spectral density (PSD) metrics across 24 channels, 20 functional near-infrared spectroscopy 

(fNIRS) features capturing oxygenated (HbO) and deoxygenated (HbR) hemoglobin concentration 

changes, and behavioral features such as pupil dilation, blink rate, fixation duration, and saccade duration, 

which serve as proxies for webcam-derived inputs [47]. Additionally, driving telemetry including vehicle 

speed, angular velocities along three axes, steering angle, and braking response is provided to 

contextualize cognitive load within the task environment. 

3.2 Webcam Feature Simulation and Mapping 

While the dataset does not include raw video footage, several features were identified that serve as viable 

stand-ins for those obtainable via a standard webcam. Specifically, blink rate and pupil dilation were used 

as indicators of ocular fatigue and cognitive processing, both of which are accessible using real-time gaze 

estimation frameworks such as MediaPipe or OpenFace. Fixation and saccade durations were mapped to 

attention distribution patterns and visual scanning behavior. 

This simulation allowed us to approximate a realistic lightweight cognitive load monitoring setup that 

does not rely on specialized sensors like EEG or fNIRS, making it feasible for real-time deployment in 

educational or HCI environments. 

3.3 Preprocessing Workflow 

Prior to modeling, a systematic preprocessing pipeline was applied to ensure feature consistency and 

reduce noise across modalities. First, missing values were handled using forward fill imputation, 

leveraging the temporal continuity of the data. All numeric features were then standardized to zero mean 
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and unit variance using standardScaler, enabling robust convergence for models sensitive to feature scale, 

such as SVM and neural networks. 

Given the high dimensionality of EEG data (384 features), we performed dimensionality reduction via 

Principal Component Analysis (PCA), retaining the top 40 components. This dimensionality was chosen 

to preserve over 95% of the original variance while mitigating the curse of dimensionality. No 

dimensionality reduction was applied to fNIRS or behavioral features due to their relatively low feature 

count and inherent interpretability. 

For classification purposes, two labeling schemes were created:  

1) The original three-class label indicating 0-back, 1-back, and 2-back conditions 

2) A binary label where 2-back was treated as a high cognitive load condition and the other two classes 

were collapsed into a low/moderate load group.  

This binary simplification enabled us to probe whether webcam-derived features are more effective at 

distinguishing coarse changes in load rather than fine-grained distinctions. 

3.4 Feature Group Design and Rationale 

To assess the effectiveness of webcam-simulated features in comparison to neurophysiological gold 

standards, we defined multiple feature groups, each corresponding to a practical deployment 

configuration. 

The Webcam-only feature set included four behavioral signals: pupil dilation, blink rate, fixation duration, 

and saccade duration. The Behavior-only group included telemetry data: vehicle speed, angular velocities 

(X, Y, Z), and excluded steering angle and braking response due to their near-zero variance across samples. 

The fNIRS-only group included all 20 hemoglobin-based features, while the EEG-only group consisted 

of the 40 PCA-reduced components. The Gold Standard group was defined as the union of fNIRS and 

EEG features, representing sensor-based neurovascular signals. Lastly, the Hybrid group combined 

Webcam, EEG-PCA, and fNIRS features to assess whether fusion improves classification performance. 

Initial feature diagnostics included both raw variance analysis and Pearson correlation with the cognitive 

load label. Features such as steering_angle and braking_response were removed due to negligible variance 

(< 0.05), and all behavioral features were found to have correlation coefficients |r| < 0.01, suggesting weak 

linear association with cognitive load. Nevertheless, they were retained for testing non-linear model 

capabilities. 

3.5 Classifier Design and Training Procedure 

We evaluated four machine learning classifiers: XGBoost, Random Forest, Support Vector Machine 

(SVM with RBF kernel), and a Multi-Layer Perceptron (MLP). XGBoost was used as the primary model 

due to its robustness to noisy features and superior performance on structured datasets. The Random Forest 

model served as a baseline for tree-based methods, while the SVM model was chosen for its ability to 
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handle high-dimensional nonlinear boundaries. The MLP was included to assess the performance of a 

basic neural network architecture with one hidden layer and a maximum of 500 iterations. 

Model training employed 5-fold stratified cross-validation to ensure proportional class representation in 

all training and test splits. No additional hyperparameter tuning was performed in this phase to preserve 

comparability across models and focus on the impact of feature modalities. 

3.6 Evaluation Metrics 

Classification performance was evaluated using accuracy, weighted F1-score, and macro F1-score. These 

metrics were chosen to balance overall predictive accuracy with class-level fairness, especially important 

for multiclass problems. Additionally, confusion matrices were generated for visualizing misclassification 

patterns, and Receiver Operating Characteristic (ROC) curves were plotted for the binary classification 

setup. Feature importance in the XGBoost models was interpreted using gain-based feature weights, with 

future work incorporating SHAP values for more interpretable models. 

3.7 Diagnostic Tests and Ablation Studies 

To assess the informativeness of each modality, we conducted a series of ablation studies. Each model 

was trained independently on feature subsets (e.g., webcam-only, EEG-only) and combinations thereof. 

This allowed us to benchmark the marginal and joint contributions of lightweight and gold-standard 

signals. 

Additionally, variance and correlation diagnostics were computed on raw features. Behavioral features 

were found to have low raw variance and extremely weak correlation to the target label. To further 

investigate their utility, we trained models in a binary setting, evaluating whether coarse load distinctions 

(e.g., 2-back vs 0/1-back) could be more easily predicted using webcam features. 

3.8 Experimental Conditions 

To comprehensively evaluate the performance of various modality combinations, we conducted 

experiments under two distinct classification schemes: a multiclass setting and a binary setting. 

In the multiclass classification task, the objective was to discriminate between three levels of cognitive 

load corresponding to the 0-back (low), 1-back (moderate), and 2-back (high) task conditions. This 

formulation provides a fine-grained analysis of mental workload transitions and serves as the benchmark 

setup in cognitive neuroscience literature. However, the multiclass formulation also poses greater 

challenges due to class imbalances, overlapping feature distributions between adjacent load levels (e.g., 

0-back vs 1-back), and inherent variability in physiological responses. 

The binary classification task, in contrast, collapses the 0-back and 1-back labels into a single “low-to-

moderate load” class, and treats 2-back as the “high load” condition. This dichotomous formulation 

reflects practical use cases, such as real-time alert systems that must detect cognitive overload with limited 

input features [71]. The simplified task reduces label ambiguity and is particularly relevant for evaluating 
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the discriminative power of low-dimensional or proxy-based features such as those simulated from 

webcam data. 

By examining both conditions in parallel, we are able to explore the trade-offs between classification 

granularity and practical deployability. This dual-task setup enables us to assess the extent to which 

webcam-accessible features can approximate the performance of neurophysiological modalities in both 

nuanced and threshold-based mental state classification scenarios. 

4. Results 

4.1 Multiclass Classification: 0-back vs 1-back vs 2-back 

We first evaluated the performance of all defined feature sets in a multiclass classification task, targeting 

the three cognitive load levels (0-back, 1-back, 2-back). Models were trained using stratified 5-fold cross-

validation, and average accuracy and weighted F1-scores were used as evaluation metrics. 

Across all configurations, classification performance remained close to the theoretical baseline of 33.3%, 

with minimal differences between feature groups. The Webcam-only model, comprising blink rate, pupil 

dilation, fixation duration, and saccade duration, achieved an average accuracy of 33.27% and a weighted 

F1-score of 33.25%. These results indicate that while these features may reflect behavioral states, they do 

not exhibit sufficient separability to resolve fine-grained cognitive distinctions in this task. 

Surprisingly, the Gold Standard model, which utilized both EEG (via PCA components) and fNIRS 

features, also failed to outperform chance, yielding an average accuracy of 33.38% and F1-score of 

33.37%. The Hybrid model, which combined webcam, EEG, and fNIRS data, performed slightly worse at 

33.23% accuracy. These results suggest a systemic limitation within the dataset: either the physiological 

responses to the different n-back levels are not robustly expressed, or high inter-subject variability masks 

discriminative patterns at the group level. 

4.2 Binary Classification: High Load vs Low/Moderate Load 

To address the limitations observed in the multiclass task, we reframed the problem as a binary 

classification challenge. Here, only 2-back trials were labeled as "high load," while 0-back and 1-back 

trials were collapsed into a "low-to-moderate load" category. This simplification reflects real-world 

monitoring scenarios where detecting overload is more important than resolving intermediate mental 

states. 

Using only behavioral proxies including webcam-accessible features (e.g., blink rate, pupil dilation) and 

task-related telemetry (e.g., angular velocity, speed) (excluding EEG and fNIRS), the binary XGBoost 

model achieved a cross-validated average accuracy of 65.42% and a weighted F1-score of 54.58%. This 

performance is well above the statistical baseline of 50%, indicating that non-linear classifiers can extract 

cognitively relevant signals from even weakly correlated or noisy behavioral features. 

Notably, features such as blink rate and pupil dilation exhibited high raw variance, but very low linear 

correlation with the cognitive load labels (|r| < 0.01). This suggests that their predictive value emerges 
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only when modeled via non-linear interactions or higher-order combinations. The learned decision 

boundary successfully identified patterns associated with elevated mental workload, even though the 

original features appeared statistically weak in isolation. 

A one-sample t-test comparing fold-wise accuracy scores to a chance-level baseline of 50% yielded p < 

0.01, confirming that the observed above-chance performance was statistically significant 

4.3 Confusion Matrix Analysis and Class-Level Observations 

To further examine model behavior, confusion matrices were plotted for both the multiclass and binary 

classification settings. In the multiclass case, the matrices were nearly uniform along the diagonal, with 

misclassifications evenly distributed and a tendency to predict the dominant class. This indicates that the 

model failed to detect any structured difference between load levels, consistent with the near-random 

performance. 

In contrast, the binary classifier produced more asymmetrical matrices. The model correctly classified 

approximately two-thirds of the high-load (2-back) samples, revealing a moderate capacity to detect 

elevated cognitive effort. However, recall for the high-load class was notably higher than precision, 

indicating a tendency to over-predict 2-back conditions, likely as a compensatory bias under class 

imbalance or noise. 

These results highlight that while webcam-based behavioral features may lack the resolution for fine-

grained classification, they hold promise for coarse, threshold-based cognitive state detection — a critical 

feature for low-intrusion, real-time monitoring systems in applied settings such as education or adaptive 

interfaces. 

4.4 Summary of Observations 

The combined results of both experimental settings highlight two critical findings: 

1. Webcam-accessible features, though individually weak and linearly uninformative, can 

collectively support above-chance classification when used for coarse binary distinctions. This 

makes them promising candidates for threshold-based cognitive state monitoring systems. 

 

2. EEG and fNIRS features, while traditionally considered gold standards for cognitive workload 

assessment, did not yield meaningful classification performance in the current dataset when 

applied globally across participants. This may reflect individual differences in neurovascular 

responses or the need for personalized modeling. 

These observations reinforce the importance of modality selection based on task granularity: webcam-

based systems may be viable for basic high-vs-low load differentiation, while fine-grained classification 

likely requires more sophisticated sensing or individualized baselines. 
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5. Discussion 

This study set out to explore whether lightweight, webcam-accessible features could serve as viable 

indicators of cognitive load in a non-invasive setup suitable for eventual real-time deployment. Using a 

rich multimodal dataset comprising EEG, fNIRS, simulated webcam proxies, and driving behavior, we 

benchmarked the performance of various feature subsets in classifying cognitive load across multiple 

levels. Our findings offer several key insights regarding the capabilities and constraints of webcam-based 

cognitive load estimation. 

First, our results reveal a consistent inability of all feature sets—including EEG and fNIRS—to reliably 

differentiate between the three cognitive load conditions (0-back, 1-back, and 2-back). Despite the 

physiological richness of EEG spectral features and the neurovascular specificity of fNIRS measurements, 

all models performed at or near random chance in the multiclass setting. This suggests that the cognitive 

load signal in this dataset, while theoretically present, may be either too subtle, too individualized, or too 

temporally diffuse to be captured by 1-second feature snapshots. Alternatively, the cognitive state induced 

by the 1-back condition may not be sufficiently distinct from 0-back or 2-back to support categorical 

separation—a hypothesis supported by prior research showing overlapping neural signatures in adjacent 

working memory loads. 

The binary classification task, by contrast, produced more promising results. When reframed to distinguish 

2-back trials from 0/1-back conditions, the XGBoost model trained exclusively on webcam-accessible 

behavioral and telemetry features achieved a mean accuracy of 65.4% and a weighted F1-score of 54.6%. 

A one-sample t-test across 5-fold accuracies confirmed that this result was statistically significant relative 

to the 50% chance baseline (p < 0.01). Although modest, this performance suggests that even weakly 

informative features—when processed through non-linear models—can capture the overall shift in 

attentional demand and mental workload associated with more cognitively demanding tasks. 

It is noteworthy that this performance emerged despite the near-zero Pearson correlation between any 

individual feature and the target label. This underscores the importance of considering complex, 

multivariate relationships in cognitive modeling and validates the use of non-linear classifiers such as 

XGBoost in scenarios where linear separability is not achievable. These findings also support the view 

that webcam-derived indicators, while limited in granularity, can still serve as useful surrogates for 

detecting coarse cognitive state transitions. 

Several limitations must be acknowledged. First, the webcam-accessible features used in this study were 

not collected from actual webcam input but instead derived from specialized eye-tracking hardware. While 

pupil dilation, fixation, and blink rate are commonly available via modern computer vision frameworks 

such as MediaPipe and OpenFace, their fidelity and noise characteristics may differ substantially in 

webcam-based systems. Therefore, our results represent an upper bound on what might be achievable in 

real-world webcam-based settings. 

Second, the lack of participant-level personalization may have further constrained performance. Cognitive 

load responses are known to vary across individuals, and person-specific baselines can dramatically 

improve the signal-to-noise ratio in physiological monitoring. Our models operated in a participant-
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agnostic setting, which, while generalizable, may have obscured subtler load-related effects. Future work 

should explore per-subject fine-tuning or hybrid systems that combine global and individualized models. 

Finally, the models trained on EEG and fNIRS did not outperform webcam-only models, contrary to 

expectations based on their status as gold standards. This could be attributed to high intra-individual noise, 

inadequate signal preprocessing (e.g., lack of artifact rejection or ICA denoising for EEG), or insufficient 

temporal context in the feature design. Real-time cognitive load unfolds over seconds, not milliseconds, 

and future work should consider sequence modeling techniques (e.g., LSTM, GRU, or Transformer 

architectures) to capture these dynamics more effectively. Incorporating temporal context could also help 

disambiguate transitions between ambiguous cognitive states such as 1-back and 2-back. 

6. Conclusion and Future Work 

This study investigated the feasibility of using lightweight, webcam-accessible features to estimate 

cognitive load in real-time, and benchmarked their performance against neurophysiological gold standards 

such as EEG and fNIRS. Using a publicly available multimodal dataset collected during a simulated 

driving task, we evaluated both multiclass and binary classification paradigms to assess the discriminative 

power of behavioral, ocular, and physiological features. 

Our findings demonstrate a clear distinction in the utility of different feature groups depending on task 

complexity. In the multiclass setting (0-back vs 1-back vs 2-back), all models—including those leveraging 

EEG and fNIRS—failed to surpass random-chance performance. This suggests that fine-grained 

distinctions in cognitive load may not be detectable using 1-second feature snapshots or may require 

participant-specific baselines and temporal modeling approaches. In contrast, when the task was reframed 

as a binary classification problem, behavioral and webcam-proxy features were able to distinguish high-

load (2-back) trials from lower-load (0/1-back) trials with above-chance accuracy. These results indicate 

that webcam-derived signals, while limited in granularity, can serve as useful indicators for threshold-

based cognitive state monitoring. 

This has practical implications for the design of non-invasive, real-time cognitive monitoring systems in 

educational, automotive, and HCI settings[17]. A webcam-based system capable of flagging moments of 

elevated cognitive demand—without requiring EEG caps or fNIRS headgear—could support adaptive 

learning interfaces, mental fatigue detection, and operator workload monitoring in a scalable manner. 

Future work should focus on four major directions. First, transitioning from simulated webcam features 

to real webcam data is essential. This involves using computer vision libraries such as MediaPipe or 

OpenFace to extract blink rate, gaze direction, head pose, and facial microexpressions directly from video 

streams, enabling end-to-end real-time deployment. Second, to improve classification fidelity, especially 

in the multiclass setting, future systems should incorporate temporal modeling using recurrent or attention-

based architectures (e.g., LSTM, GRU, Transformer) that account for cognitive dynamics over time rather 

than single-frame summaries. 

Third, building personalized models using a small calibration phase per user could dramatically enhance 

model sensitivity by capturing baseline variations in blink rate, gaze behavior, and neurophysiological 
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response. Finally, validating the webcam-based system in a real-world task environment, such as live 

classroom settings or multitasking simulations, will provide more ecologically valid benchmarks and 

highlight system robustness under noisy, uncontrolled conditions. 

Overall, this study contributes a critical step toward democratizing cognitive load measurement by 

demonstrating that even coarse behavioral signals—when modeled appropriately—can offer meaningful 

insight into internal mental states. The proposed system bridges a critical gap between accessibility and 

fidelity, laying the groundwork for scalable, real-time cognitive sensing with minimal hardware 

requirements. 
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