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Abstract 

In the age of mobile communication, the Internet of Things (IoT), and blockchain technologies, secure 

and efficient data encryption is important. This study presents an experimental comparison between two 

cryptographic methods: ElGamal (1024-bit) and a hybrid encryption model combining Elliptic Curve 

Cryptography (ECC, 256-bit) with Advanced Encryption Standard (AES). The aim is to evaluate and 

compare their performance regarding key generation time, encryption and decryption speed, and 

ciphertext size to determine their suitability for real-world applications. 

The experimental results show that ECC + AES significantly outperforms ElGamal in all tested metrics. 

ElGamal recorded a key generation time of 0.258 seconds, encryption time of 0.0093 seconds, and 

decryption time of 0.0049 seconds, producing a ciphertext size of around 256 bytes. In contrast, ECC + 

AES achieved key generation times of 0.0008 seconds (sender) and 0.0001 seconds (receiver), with 

encryption and decryption times of 0.0008 seconds and 0.00005 seconds, respectively. It also produced a 

much smaller ciphertext of around 32 bytes while supporting actual text messages like "CARLOS," 

compared to ElGamal's number-only input. 

These findings demonstrate that while both encryption methods provide strong security, ECC combined 

with AES is much more efficient and practical for environments requiring fast processing, smaller data 

sizes, and real-time communication, such as secure messaging, IoT networks, and low-power devices. 

This study provides concrete data supporting adopting ECC-based hybrid systems over traditional 

methods like ElGamal for modern cryptographic applications. 

KEYWORDS: ElGamal, Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), 

hybrid cryptosystem, key generation time, encryption speed, ciphertext size, secure communication, DLP, 

ECDLP, real-time encryption, IoT security. 
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1. INTRODUCTION 

In today's digital landscape, the demand for secure, fast, and efficient encryption systems is greater 

than ever, especially with the explosive growth of mobile communication, Internet of Things (IoT) 

devices, and blockchain applications [5], [7]. This study compares two cryptographic approaches, 

ElGamal and ECC combined with AES, to determine which method is more suitable for secure, real-time 

applications that need low computational resources and fast processing. 

Previous researchers have extensively explored the development of hybrid cryptosystems that 

combine symmetric and asymmetric encryption techniques to strengthen security. For instance, Burgos et 

al. [2] proposed integrating RSA, ElGamal, and chaos-based algorithms with Schnorr authentication to 

enhance security in digital transactions. Arboleda et al. [1] examined a hybrid model combining RSA, 

DSA, ElGamal, and AES to improve the robustness of encryption systems. These studies demonstrate that 

merging different cryptographic methods can significantly increase protection against data breaches [1], 

[2], [6]. 

However, most of these works concentrate on algorithm design and theoretical security. There is 

a noticeable lack of experimental studies that compare the real-world performance of such algorithms, 

particularly in terms of speed, resource efficiency, and ciphertext size [4], [7]. Aiming presents a gap in 

the literature that this study seeks to address. 

The significance of this research lies in its practical application. By evaluating how ElGamal and 

ECC-AES perform under real conditions, this study provides valuable insights for developers and security 

professionals. The findings will help guide the selection of encryption systems that are not only secure but 

also efficient for modern applications that demand speed, compact data size, and low power usage. 

 

2. REVIEW OF RELATED LITERATURE 

 

Numerous studies have focused on developing hybrid cryptographic systems in response to the 

growing demand for secure and efficient encryption systems in the digital age. These systems combine 

symmetric encryption, known for its speed, with asymmetric encryption, which is valued for secure key 

exchange. Arboleda, Dellosa, and colleagues (2019) proposed a hybrid model integrating RSA, DSA, 

ElGamal, and AES to enhance the robustness of encryption, while Burgos, Dimapilis, Arboleda, and others 

(2024) introduced a system that incorporates RSA, ElGamal, and chaos-based cryptography alongside 

Schnorr signatures to strengthen message authentication and entropy. These studies emphasize the 

theoretical benefits of combining multiple algorithms to increase security. Similarly, Garcia and Arboleda 

(2017) developed a chaos-based hybrid system using AES, RSA, and ElGamal, and Castro, Arboleda, and 

Corpuz (2019) combined AES with the Merkle-Hellman Knapsack algorithm to further enhance 

cryptographic strength. However, these works focus on algorithm design and lack empirical evaluation in 

real-time contexts. Chowdhary, Patel, Kathrotia, Attique, Perumal, and Ijaz (2020) examined hybrid 

models involving ECC, Hill Cipher, and AES, primarily for image encryption, analyzing encryption time 

and entropy metrics. Yet, their findings do not extend to practical text-based or real-time communications. 

Elliptic Curve Cryptography (ECC) has emerged as a modern solution due to its ability to offer strong 

security with smaller key sizes and faster performance, making it ideal for mobile and low-resource 

environments (Silva-García, Flores-Carapia, & Cardona-López 2024). Despite these advancements, El-

Dalahmeh, El-Dalahmeh, Razzaque, and Li (2024) highlight a gap in the literature—a lack of direct 
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experimental comparisons between traditional algorithms like ElGamal and modern ECC-based systems. 

This study seeks to address that gap by evaluating the real-world performance of both systems using key 

generation time, encryption/decryption speed, and ciphertext size as comparative benchmarks. 

 

3. METHOD 

 

Figure 1 illustrates the general research flow, presenting the methodology as a model diagram. This figure 

outlines the sequential steps in conducting the study and constructing the cryptographic model. 

 

Experimental  Approach 

 
 

Figure 1. General Approach 

 

        This chapter outlines the methodology, tools, and procedures implemented in the development of the 

system. It provides comprehensive explanations, visual aids, and the experimental setup important for 

evaluating and comparing the performance of the encryption models. 

ElGamal 

ElGamal is a classic encryption method that tests how well it performs compared to modern 

systems like ECC combined with AES. It uses a large prime number and complex math to turn a number-

based message into two encrypted values. While secure, it only supports numbers, runs slower, and 

produces larger encrypted data. The study measures how long it takes to generate keys, encrypt, and 

decrypt messages, along with how big the encrypted output is. ElGamal is the traditional benchmark for 

determining if newer encryption methods offer better speed and efficiency. 

 

Key Generation  Generate a large prime number p 

 Generator g 

 Select a private key x 

 Calculate public key:  

         𝑦 = gx mod 𝑝 
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Encryption Process  Input plaintext message m, where m < 𝑝 

 Random number k 

 Compute: 

    c1 = gk mod 𝑝 

          c2 = m yk mod 𝑝 

 

Decryption Process  

Table 1. Elgamal Encryption and Decryption Techniques 

 

ECC (Elliptic Curve Cryptography) 

 

In this study, ECC combined with AES is used as a modern and practical way to secure messages. 

ECC (Elliptic Curve Cryptography) is responsible for safely sharing a secret key between two users using 

small, fast, and secure key pairs. Once the shared key is created, AES (Advanced Encryption Standard) 

encrypts real text messages quickly. The process starts with generating keys for each user, exchanging 

them securely using ECC's ECDH method, and then turning the shared secret into a 256-bit AES key using 

SHA-256. This method is fast, supports actual messages, and keeps files small—perfect for phones, apps, 

and smart devices. 

 

After two users securely exchange a shared secret using ECC (Elliptic Curve Cryptography) and 

the ECDH key exchange method, that shared secret must be turned into a usable AES key. To do this, the 

system uses a cryptographic hash function called SHA-256. 

SHA-256 transforms the shared secret into a fixed-length, 256-bit (32-byte) output. This output is 

then used as the AES key for encrypting and decrypting messages. 

 

In simple terms: 

Shared Secret → SHA-256 → AES Key (256-bit) 

 

This step ensures the AES key is secure, consistent in size, and suitable for strong encryption. 

 

Elliptic Curve Diffie–Hellman (ECDH) key exchange and AES encryption 

 

Generate Key Pair P = d ⋅ G 

 d =  private scalar 

G = base point 

P =  public point on the elliptic curve 
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Serialize and Exchange Send public keys between users 

Generate Shared Key via ECDH Kshared = dA .PB = dB.PA      

 

Derive AES Key Using SHA-256 Hash the shared secret to create a 256-bit AES key 

     Kshared = SHA256(Kshared)     

 

Encryption  Ci. = EK .(Pi ⊕  Ci−1 .) 

 

 C0. = IV (Initialization Vector) 

 

 

 

Decryption  Pi. = DK .(Ci ) ⊕  Ci−1 .) 

 

Table 2. Elgamal Encryption and Decryption Techniques 

 

Performance Metrics 

 

Metric Description Formula Example 

Key Generation Time Time to compute 

public/private keys 

The time between start_time and key 

generation end 

Encryption/ 

Decryption Time 

Time to secure/recover the 

message 

    encryption_time =      end_time - 

start_time 

Ciphertext Size Size of encrypted data  

len(ciphertext) 
 

ElGamal Ciphertext  Ciphertext Size≈2×size(p) 

ECC + AES Ciphertext  Size=IV (16 bytes)+Padded message size 

Table 3. Performance Metrics 

 

Key Generation Time 

 

Key generation time is the initial delay before encryption can begin. ElGamal involves selecting a 

large prime p, a generator g, and computing 𝑦 = gx mod 𝑝. For ECC, it generates a private scalar and a 

public key point on the elliptic curve. Faster key generation is important in systems where sessions are 

frequently created, such as chat apps, VPNs, or IoT devices, allowing secure communications to start with 

minimal delay. 
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Encryption/Decryption Time 

Encryption and decryption determine how quickly data can be secured and accessed. In real-time 

systems like secure messaging, delays in encryption or decryption can influence user experience. ElGamal 

uses modular exponentiation, which is computationally intensive, while ECC + AES benefits from fast 

symmetric AES encryption. Systems with lower encryption/decryption times are preferred in mobile apps, 

live data transfers, or streaming environments where performance is crucial. 

 

Ciphertext Size 

Ciphertext size influence how much data needs to be stored or transmitted after encryption. Larger 

ciphertext increases transmission time and storage costs. ElGamal typically generates large ciphertexts 

(two values per message), while ECC + AES produces compact ciphertext due to efficient symmetric 

encryption. The smaller ciphertext is crucial for performance in bandwidth-limited environments like IoT, 

mobile networks, and cloud storage. Optimizing ciphertext size improves efficiency without 

compromising security.  

 

4. RESULTS AND DISCUSSIONS 

 

          In this section, the results of the study and the findings will be discussed. Tables and figures will be 

presented to support the discussions stated 

 

Model Accuracy Test 

 

 
Image 1. Elgamal Encryption Result 

 

The user entered the number 31 as the message they wanted to encrypt. Using the ElGamal encryption 

method, the system converted that number into a pair of encrypted values (3151126938, 3302030286). 

These two numbers make up the ciphertext or the hidden version of the message. The first number is based 

on a random key and the system's public setup, while the second combines that with the actual message. 

To turn the ciphertext back into 31, the system would need the matching private key to decrypt it. 

 

 
Image 2. ECC + AES Encryption Result 

 

The user typed "CARLOS" as the secret message they wanted to send to Zoren. Behind the scenes, the 

system used a secure method that combines two technologies: ECC to safely create a shared key between 

the sender and receiver and AES (256-bit) to encrypt the message using that key. 

 

The encrypted message looks like a long, scrambled text: 
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XnFQIg2+SJvCfIL2gzwMBIDJ09yyapOTFcjPxNkQGM= 

The locked version of "CARLOS" was made unreadable using strong encryption and then converted into 

a text-friendly format (Base64) to be easily sent. Only Zoren, with the correct key, can unlock and read 

the message. 

 

A. Experimental Evaluation 

ElGamal 

Enter a plaintext message (integer): 31 

 

ElGamal Results: 

Encrypted: 

(931218338186316151265899965916188472134090687333196167525734690245459790875525010

5815167598978069710103037916191534105180579001007577700671678694293835750306725165

7526545854303632010873277502811533140041745213907748948150822553655626197367003149

204877239961943356148929570812734701173220507772677608937218295, 

7316665710619928285577692585933836033069857973661793523233851178687832151429792276

1714584761680828950198948528971411873807959812908760485796632923451313792411583174

8902307325775378386972678800254983095255768281034010696257958510464965798490812329

7824172681257522435845549173851498552606077636447893024685851) 

 

Decrypted: 31 

Keygen Time: 0.258849 seconds 

Encryption Time: 0.009306 seconds 

Decryption Time: 0.004974 seconds 

Ciphertext Size: 2 bytes 

 

Table 4. ElGamal Performance Results 

 

 

ECC + AES (256-bit) 

Enter a secret message to send to Zoren: CARLOS 

ECC + AES (256-bit) Secure Communication 

  

Results: 

Encrypted (base64): 

XnFQIg2+SJGvCfiL2gzrWBIDjD0yyapOTFcjPxNkqGM= 

 

Decrypted: CARLOS 

Keygen Time: 0.000797 sec (ian), 0.000116 sec (zoren) 

Shared Secret Time: 0.000487 sec 

Encryption Time: 0.000779 sec 

Decryption Time: 0.000048 sec 
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Ciphertext Size: 32 bytes 

Table 5. ElGamal Performance Results 

B. Analysis and Report 

 

Compare the performance of ElGamal encryption and ECC-based key exchange + symmetric encryption 

in terms of key generation time, encryption/decryption time, and ciphertext size. (You can present your 

data in a tabular format to support your discussion) 

 

 ElGamal (1024-bit) ECC + AES (256-bit) 

Key Generation 0.26 seconds (slow) 0.0008 sec (Ian) 

0.0001 sec (Zoren) (very fast 

Encryption Time 0.0093 seconds 0.0008 seconds (much faster) 

Decryption Time 0.0050 seconds 0.00005 seconds (super fast) 

Ciphertext Size Around 256 bytes Around 32 bytes 

Decrypted Result 31 (integer) CARLOS (string) 

Table 6. Analysis Comparison 

 

 

Key Generation: ECC creates keys much faster than ElGamal. ElGamal takes 0.26 seconds, while 

ECC takes just a fraction of a millisecond. This is important for quickly generating keys (e.g., chatting 

apps). 

 

Encryption/Decryption Speed: ECC (with AES) is much faster than ElGamal when encrypting and 

decrypting messages. Enables ECC to be more suitable for real-time use, such as messaging or online 

transactions. 

 

Ciphertext Size: The encrypted output (ciphertext) from ElGamal is large (256 bytes), while ECC 

with AES gives a small, encrypted message (32 bytes). Smaller ciphertext is better for saving storage and 

sending data over the internet. 

 

Message Support: ElGamal only works on numbers, ex., 31, while ECC + AES can handle actual 

text messages like "CARLOS." 

 

ECC + AES is faster, uses less space, and can handle real messages. 

ElGamal is slower, creates a bigger ciphertext, and is limited to encrypting numbers. 

ECC is more modern and practical for secure communication. 

 

C. Mathematical Core Comparison 

Feature ElGamal Encryption ECC (Elliptic Curve 

Cryptography 
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Underlying Math Modular arithmetic using large 

prime numbers 

Point multiplication on elliptic 

curves 

Security Principle Discrete Logarithm Problem 

(DLP) 

Elliptic Curve Discrete Logarithm 

Problem (ECDLP) 

Key Formula Example 𝑦 = gx mod 𝑝 P = d ⋅ G 

 

Direction of Operation Multiply: easy 

Reverse (log): very hard 

Multiply points: easy 

Reverse (discrete log): very hard 

Input Format Works only with numeric 

plaintext 

Used for key exchange (text 

encrypted later via symmetric cipher 

like AES) 

Output (Ciphertext) Size Typically large, due to numeric 

pair output 

Small, thanks to compact key 

exchange and AES's efficient block 

encryption 

Processing Speed Slower due to large key sizes and 

modular exponentiation 

Faster with more minor keys and 

lower computational cost 

Use Case Primarily for encrypting small 

numbers in theoretical or 

educational settings 

Common in real-world secure 

systems: messaging, IoT, 

cryptocurrencies, TLS 

Encryption Role Encrypts message directly Establishes secure key; message is 

encrypted using AES (symmetric 

encryption) 

Table 7. Mathematical Core Comparison 

 

ElGamal encryption relies on modular arithmetic, which uses big prime numbers and a principle known 

as the discrete logarithm problem. Multiplying numbers together is simple but extremely difficult to back 

up and determine the original numbers. To illustrate, ElGamal employs a mathematical formula such as 

gx mod p, where even if you know the output, it's nearly impossible to determine the value of x without 

the secret key. Pertains to ensuring the message is protected. But ElGamal can work only with numbers, 

typically resulting in large, encrypted output. 

 

However, ECC (Elliptic Curve Cryptography) employs another type of math. Rather than manipulating 

powers and large numbers, ECC manipulates points on a specific curve. The principle is the same: it is 

simple to travel forward by multiplying a point repeatedly but extremely difficult to reverse and determine 

how many times it was multiplied. Commonly referred to as the elliptic curve discrete logarithm problem. 

ECC is strong as it offers the same security level as ElGamal but with more minor keys, quicker 

processing, and smaller encrypted data. ECC is usually applied to exchange keys securely; subsequently, 

a speedy algorithm such as AES is utilized to encrypt real messages such as text. 
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D. Comparison of Security Assumptions 

DLP (Discrete Logarithm Problem) and ECDLP (Elliptic Curve Discrete Logarithm Problem). 

 

 

Aspect DLP (Discrete Logarithm Problem) 

Computational Difficulty Hard to reverse gx mod p finding x is very difficult for large p 

Key Size for Equivalent Security Requires larger keys for strong security (e.g., 2048-bit) 

Resource Efficiency Slower encryption/decryption uses more CPU power, memory, and 

bandwidth 

Quantum Resistance Not quantum-safe – Shor’s algorithm can break it easily 

Example Algorithm ElGamal, DH, DSA 

Table 8. DLP Assumptions 

 

Aspect ECDLP (Elliptic Curve Discrete Logarithm Problem). 

Computational Difficulty Much harder than DLP for the same key size; reversing k × G = P is 

tough 

Key Size for Equivalent Security Provides the same security with much smaller keys (e.g., 256-bit 

ECC ≈ 3072-bit RSA/DLP) 

Resource Efficiency Faster, uses less CPU, memory, and energy — great for mobile and 

IoT devices 

Quantum Resistance Also, it is not quantum-safe, but it takes longer to break due to the 

smaller key size; it is still vulnerable. 

Example Algorithm ECC (ECDH, ECDSA), used in modern secure systems 

Table 9. ECDLP Assumptions 

 

DLP is like solving a puzzle using huge numbers. The bigger the number, the harder it gets. 

ECDLP is solving a puzzle with points on a curved graph. It's way more complicated than DLP, even with 

smaller numbers. 

So, ECC is more efficient just as secure, but with shorter keys and less resource usage. 

However, both are breakable by quantum computers using Shor's algorithm in the future, so neither is 

future-proof, though ECC might resist for a bit longer due to efficiency. 

 

5. CONCLUSION 

 

This study compared the performance of two cryptographic systems—ElGamal and ECC combined with 

AES, to determine which approach is better suited for secure communication in today's digital landscape. 

We measured both models' key generation time, encryption and decryption speed, and ciphertext size 

through experimental evaluation. 

 

The results showed that the ECC + AES hybrid cryptosystem significantly outperforms ElGamal in all 

tested areas. ECC offers the same level of security as traditional algorithms like ElGamal but with much 

smaller keys, which leads to faster processing, lower memory usage, and reduced power consumption. 
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When combined with AES, ECC becomes a powerful tool for encrypting real-world text messages 

efficiently and securely. 

 

ElGamal, while secure, is less practical for modern applications due to its slower key generation, larger 

ciphertext output, and limitation to numeric input. In contrast, ECC + AES is lightweight, supports text-

based communication, and delivers rapid encryption and decryption, making it an ideal choice for mobile 

devices, IoT systems, secure messaging, and blockchain environments. 

 

This study concludes that ECC + AES is a more efficient and scalable solution for secure communication 

in resource-constrained and real-time environments. Its performance advantages and growing adoption in 

modern technologies affirm its role as a preferred cryptographic system for today's fast and secure digital 

interactions. 

 

6. RECOMMENDATION 

Based on the findings of this study, it is recommended that developers, system architects, and security 

professionals adopt the ECC + AES hybrid cryptosystem for applications that require secure, fast, and 

efficient communication. Given its shorter key lengths, faster key generation, and smaller ciphertext size, 

ECC + AES is suitable for mobile devices, IoT environments, low-power systems, and real-time 

communication platforms such as messaging apps and secure emails. 

 

Organizations relying on traditional cryptographic methods like ElGamal or RSA should consider 

transitioning to ECC-based systems to improve performance and scalability without compromising 

security. Moreover, educational institutions and training programs should emphasize ECC and hybrid 

cryptography in their curriculum to prepare future professionals for real-world security demands. 

 

Further studies are also recommended to explore integrating post-quantum cryptographic techniques with 

ECC or AES to enhance resistance against potential future threats posed by quantum computing. Finally, 

performance evaluations of ECC + AES on various hardware platforms (e.g., smartphones, embedded 

systems, and microcontrollers) help understand its adaptability across different devices and environments. 
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