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Abstract 

Predictive maintenance (PdM) is quickly revolutionizing the industrial processes, which is moving from 

time-based reactive technology to data-driven proactive technology in a very short period. Bearings in 

electric motors are important components used in a wide variety of industrial operations. Such 

components are prone to premature failure, loss of revenue because of downtime, and repair. The 

Remaining Useful Life (RUL) estimation of the bearings in electric motor is important because such a 

prediction assists in reducing equipment downtime, extending equipment life, and minimizing 

maintenance cost. Conventional methods of PdM employ machine learning (ML) models which are 

trained from historical data and, being black boxes, lack the physical intelligibility and robustness for the 

prediction of RUL, under varying operating conditions. This limitation is because only data-driven 

models are used and it is hard to extract the physical mechanisms of bearing damage. In this work, a 

systematic study on hybrid predictive maintenance frameworks for electric motor bearings is presented, 

which incorporates both ML and physics-based models looking to address the mentioned challenges and 

improve the reliability of RUL predictions. A key aspect to improve the reliability and effectiveness of 

predictive maintenance strategies is the precise estimation of the Remaining Useful Life (RUL) for 

industrial bearings. (Jiang et al., 2022; Hu et al., 2023) mentioned the NASA bearing dataset they used in 

the study, and a number of advanced pre-processing techniques are used, such as the statistical features 

(Root-Mean-Square (RMS), Peak Frequency, Kurtosis, Crest Factor), and Archard wear model as a 

physics-guided degradation metric [1, 2]. A Bidirectional LSTM model is trained with optimal sequence 

lengths for learning long-term dependencies on sensor signals, and the model is evaluated using Mean 

Absolute Error (MAE), Mean Squared Error (MSE), and R-squared (R²) score. Comparisons between 

purely data-driven models and physics-guided counterpart demonstrate better accuracy and robustness. 

The results indicated that the inclusion of the wear-related degradation characteristics based on Archard 

improved remarkably the predictive model, and the R² values are greater than 0.67, the lowest MAE is 

3.96. (Wang et al., 2017; Xue et al., 2022) went on to add, trends-based features as well as correlation 

matrices were used to confirm that the selected inputs were reliable, strengthening the interpretability of 

the models and reducing those overfitting risks [3, 4]. This paper makes a novel contribution to the study 

of integrated applications of physics-based AI models in predictive maintenance systems in challenging 

environments such as industrial automation in Zimbabwe,(Liu and Zhang, 2020) proving that the 
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integration of physics and AI can yield scalable, explainable and high-performing predictive maintenance 

systems [5]. 

 

Keywords: BiLSTM, Deep Machine Learning, Feature Extraction, Hybrid Model, Physics-based 

Models, Remaining Useful Life (RUL)  

1 Introduction 
The increasing complexity of industrial systems has increased the demand for reliable and intelligent 

predictive maintenance techniques. Correct prediction of the Remaining Useful Life of mechanical 

systems such as rolling bearings, gears and pumps has become one of the main tasks for ensuring system 

reliability, maintainability optimization and reduce system unavailability. (Regis et al., 2023) mentioned 

that the traditional, interval-based preventive maintenance policies may not be suitable under stochastic 

deterioration processes and changing conditions [6]. Accordingly, the tendency has been to move toward 

hybrid data-driven and physics-based methods of prognostics and health management (PHM). Electric 

motors are widely used in today industries the motor performances depend on the healthy bearing 

conditions. (Ramakrishnan et al., 2023; Member, 2024) highlighted that they are the most susceptible to 

failure, representing 40% of motor failures [7, 8]. (Hanifi et al., 2024)Bearing failure can lead to 

downtime, catastrophic motor damage and safety hazards including fire danger for explosive 

environments that costs industry billions of dollars every year [9]. These problems are difficult for the 

conventional reactive maintenance. There are four inter-related mechanical causes of bearing failure 

which include performance loss due to wrong lubricant type and wrong relubrication interval, resulting in 

increased friction and temperatures. Mechanical overload shaft deflection, hertzian contact stresses and 

mechanical contact load from aggressive contaminants: long-life or energy-efficient motors can fail due 

to hairline cracks in the raceway between the rolling element and the race. Intrusion of contaminants, 

such as abrasive debris or water, leading to three-body wear with surface roughening. Rolling bearings 

are key parts of most rotary machines, they are the focus of many predictive studies. These components 

are susceptible to deterioration damage from induced stresses and thermal environmental conditions and 

aging effects. (Mao et al., 2018; Bharatheedasan et al., 2025) discussed the recent advances in machine 

learning, notably deep learning (DL) has greatly enhanced the ability to diagnose faults and estimate RUL 

from historical sensor data [10, 11]. Conventional machine learning methods, including support vector 

machines (SVM) and decision trees, are typically unable to capture the temporal and nonlinear features 

of degradation. In contrast, deep learning models especially models such as Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory (LSTM) networks are effective frameworks to find out 

meaningful features from unstructured data. Nonetheless, the lack of interpretability and the generalization 

ability of entirely data-driven methods is still a fundamental limitation, especially under situations feature 

not enough labeled data. To overcome these limitations, mixed methods integrating physics-based 

assumptions and data-driven models are used. This combination improves the generality of the model and 

maintains predictions. In this work, we aim at summarizing the advances of RUL prediction methods and 

emphasize the cooperation of data-driven model and physics-based model from the practical 

implementation of predictive maintenance. Physics based models using well established first principal 

knowledge (Archard wear). Data-driven models such as (LSTM, and CNN) can learn long term 

degradation evolution trends (e.g., the gradual wear of a bearing) to predict RUL in time series. 
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2 Related Work 
In this chapter, the design and issues related to hybrid PdM systems for estimating the RUL of roller 

bearings in electric machines will be discussed. Particular attention on integrating physics-based models 

(e.g., Archard wear law) with deep learning architectures such as LSTM networks. In a research by 

(Aravind and Shah, 2023; Huber and Palm, 2023) highlighted that physics-based models are in a position 

to offer causal interpretability by simulating degradation from first principles [12, 13], whereas deep 

learning models, more specifically LSTMs and BiLSTMs, can capture the complex and nonlinear features 

present in noisy sensor data at different times (Soomro et al., 2024) in the research [14]. This section 

presents a hybrid theoretical framework that combines mechanistic degradation with data-driven 

sequence learning. (Ferreira and de Sousa, 2020) explained Archard’s law, which associates wear to force 

and material hardness, is also addressed as an important health indicator [15], affording interpretable RUL 

predictions when combined with sensor characteristics. Deep learning Machine learning-based deep 

prediction models such as BiLSTM are tailored for handling long-range dependencies and they perform 

better in predicting degradation. A theoretical architecture is introduced, which describes how the high 

frequency sensor inputs are processed to provide amalgamated health indicators using feature extraction 

operations (e.g., FFT, RMS, kurtosis). (Dourado and Viana, 2024; Bharatheedasan et al., 2025) utilized 

the hybrid models such as MLP-LSTM and Physics-informed Neural Networks (PINNs), which lead to 

an increase in accuracy and interpretability [11, 17]. (Taşcı, Omar and Ayvaz, 2023, 2024) reviewed the 

last predictor layer combines prediction to actionable insights, including fault alarms and RUL estimates 

for maintenance decision-making [18, 19]. (Shin et al., 2015) discussed previous methods such as rule 

based and condition monitoring also in vibration or acoustic signals [20]. Classical models laid the ground 

knowledge, however based on constant thresholds that are not adaptable to variations in the environment. 

In contrast, complex deep learning methods are more general but are less interpretable. (Kasilingam et 

al., 2024) The trade-off is tackled by hybrid models that excel for fault classification and RUL estimation 

as well as for generalization to new conditions [21]. (Magadán, Granda and Suárez, 2024)For instance, 

the NASA IMS data images have been mentioned as a benchmark for time-series degradation modeling 

[22], enabling hybridized training and evaluation with run-to-failure data. However, the laboratory 

environment severely reduces variability, a proxy for external validity (Ferreira and de Sousa, 2020). 

 

3 Methodology 
This section describes the methodology used for the development of a hybrid predictive maintenance 

model toward the estimation of the Remaining Useful Life (RUL) of roller bearings in electric motors. 

The method systematically combines physics-based modeling, feature engineering, deep learning, and 

evaluation methodologies. The development was carried using VS Code development environment, 

python programming (TensorFlow/Keras), NumPy, Pandas and Sci-kit Learn. The section starts with 

providing a detailed description of the NASA IMS bearing project, including its configuration, acquisition 

process, and significance to actual degradation studies. The next step is the feature engineering process, 

in which multiple time-domain, frequency-domain, and physics-based (Archard’s wear law) features were 

computed to describe bearing health evolution. This was followed by a description of the data 

preprocessing pipeline. It was composed of data preprocessing and manipulation, such as clearing and 

organizing raw signal files, standardization by Z-score, sliding window segmentation, RUL labels 

definition, and configuration of the dataset for training and evaluation. These steps are necessary to get 
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the input data to the model to be both well-organized, normalized, and to make the data independent of 

time. The model derivation step concentrated on designing a BiLSTM-based deep learning network to 

model temporal relationship among sensor data instants. By embedding physics-generated wear 

characteristics into the input tensor, the model encodes a hybrid learning system, leading to high 

interpretability and efficiency. The Archard wear outputs in the hybrid model integration were combined 

with statistical and frequency-based features, and the multidimensional input was input into the LSTM-

BiLSTM network. This fusion leads the system to adapt with both theoretical degradation trends and data 

driven signal patterns, which is later investigated by recent literature in predictive maintenance. Lastly, 

we assessed the prediction accuracy with the help of the standard regression metrics (MAE, MSE, R²) 

and visual inspections used to evaluate the model. 

 

Figure 1: Algorithm Development Workflow 

 

3.1 Dataset Acquisition 
The NASA IMS bearing dataset is one of the most prevalent industry benchmarks used for assessing 

predictive maintenance performance. It was made available by the Center for Intelligent Maintenance 

Systems IMS at the University of Cincinnati for model diagnosis of bearing faults and RUL prediction. 

The experimental configuration included three identical test rigs that ran under constant speed and load. 

High-frequency vibration data obtained through accelerometers mounted on the drive end and fan end of 

the motors was referred to in. The experiment continued to failure until at least one bearing failed, and 

thus the assessment was made based on the entire time-series   data. Specifically, data was sampled at 

20kHz, with each file being recorded after ten minutes, creating more than 2000 time-series for each 

bearing. 
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Figure 2: Vibration signals NASA Dataset 

 

3.2 Data Processing and Feature Engineering 

Pre-processing on raw vibration signals is done first in order to obtain useful feature information and 

enhance the accuracy of machine learning. The pre-processing process in our work contains the signal 

segmentation, the normalization step, the rolling window slicing and the smoothing before feature 

labelling step. Z-score normalization was performed on all the extracted features for scale invariance as 

well as to facilitate the convergence during training. The formula used: 

𝑍 =   
𝑋−𝜇 

𝛿
                                                                                                   (1)                                                                                                 

X is the feature value, 

μ is the mean, 

σ is the standard deviation. 

Feature construction is a vital approach to the fault diagnosis and RUL predication of bearing in predictive 

maintenance. (Mao et al., 2018; Magadán, Granda and Suárez, 2024) supported that, it implies converting 

raw sensor signals obtained from, most frequently, vibration signals to a group of interpretable quantities 

capable of capturing fault-related information and slow pace in time [10, 22]. Feature extraction is 

generally divided into three kinds: time-domain, frequency-domain, and time–frequency domain. Root 

mean square (RMS), peak-to-peak value, kurtosis, skewness, and crest factor have been widely used as 

time-domain features, as they are simple to calculate and are effective for steady-state monitoring (Tran 

et al., 2023) mentioned that as well [23]. In this work, we generate a wear related feature that is combined 

with data driven features, in the hybrid model, using Archard’s model. Archard’s model defines wear 

volume V as:  
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𝑉 =  𝑘 ×
𝐹

𝐻
 × 𝑠                                                                                      (2) 

Where: 

V = wear volume (mm³ or m³). 

k = wear coefficient (dimensionless, typically ~10⁻⁸). 

F = applied normal load (N) 

H = hardness of the softer surface (Pa) 

s = sliding distance (m) 

 

𝐴𝑟𝑐ℎ𝑎𝑟𝑑′𝑠 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =  𝑘 ×
𝐹

𝐻
× 𝑅𝑀𝑆                                                 (3)                                            

Where: 

F = 500 N (estimated load). 

H = 1 x 109 Pa (steel hardness) 

k = 1x 10-8 

3.3 Feature Correlation Matrix 

The report presents the correlation matrix for the features used in the hybrid predictive maintenance 

model. The correlation matrix helps identify linear relationships among features, potential 

multicollinearity, and supports informed decisions for feature selection and model refinement. When it 

comes to features like RMS, Crest Factor, and FFTEnergy, many of them are actually quite weakly 

correlated with each other except for the one related to vibration signal amplitude that's still almost in 

the middle of positive and negative numbers. There are strong correlations between RMS_STD_5 and 

RMS_SLOPE_5 with the RMS value. This suggests trend-related extensions based on this basic feature. 

The matrix confirms that Archard Wear has low correlation with most statistical features, further 

supporting that it is a physics-based measure that adds complementary information. Components for 

kurtosis show weak or fluctuating correlations, reflecting differing statistical behaviours brought into the 

big data picture by this series of time sequences 
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Figure 3: Feature Correlation Heatmap 

 

 

3.4 Model Training and Evaluation 
This section summarizes the development, evaluation, and analysis of a BiLSTM-based deep learning 

model for predicting the Remaining Useful Life (RUL) of electric motor bearings. The model was tested 

individually on three separate bearing test runs (Test Run 1, 2, and 3) using time- and frequency-domain 

features derived from vibration signals. We apply a stacked LSTM graph architecture that contains three 

stacked LSTMs layers, a bidirectional LSTM (Bi-LSTM) and a unidirectional LSTM with dropout 

regularization and a dense layer in the end. The features are normalized, and the labels are scaled, both 

by MinMax scale. RUL estimates are calculated on 30 cycles of input sequence. The features that were 

chosen were RMS, Kurtosis, Crest Factor, Peak Frequency and FFT Energy. Test Run 1 performed the 

best since it has clean degrading trends in features. The descending trend in RUL was learned by the 

model. The last model architecture used for the RUL prediction was a deep temporal model with BiLSTM 

layers that were fed with physics-based features. The model was developed to handle a sequence of fixed 

length multivariate time series data where each sequence was composed of 44-time steps and multiple 

input features per step in the form of statistical, spectral, trend and physics-based indicators. Hybrid input 

tensor is as follows: 

 

𝑋𝐻𝑦𝑏𝑟𝑖𝑑  = 𝑋𝑡𝑖𝑚𝑒 , 𝑋𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑋𝑝ℎ𝑦𝑠𝑖𝑐𝑠                                                       (4) 
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For training the hybrid BiLSTM, we have used the segmented sequences and their corresponding RUL 

labels in a supervised learning way. The model was trained with the aim of minimizing the Mean Absolute 

Error (MAE) loss function, which offers a straightforward and interpretable quantification of the 

magnitude of the prediction deviation. MAE was chosen for training, as opposed to MSE, because it is 

resilient to outliers and is well-suited to the practical goal of minimizing average predictive error. This 

model was trained using the Adam optimizer, a modification of the stochastic gradient descent algorithm, 

which adjusts the learning rate of each parameter dynamically during learning and is well-suited for 

training complex, deep-recurrent networks. The initial learning rate of our optimizer was 0.001. The 

training process was taken batch by 32, with 100 epochs at most. The final configuration achieved the 

following benchmark results on Test Run 1: MAE: 3.96, MSE: 21.13 and R² Score: 0.6762 

 

3.5 Model Evaluation Metrics 
 

Mean Absolute Error (MAE): 

 

  MAE =  
1

𝑛
 ×  Σ|y_i −  ŷ_i|                                                     (5) 

 

Mean Squared Error (MSE): 

 

MSE =  
1

𝑛
 ×  Σ(y_i −  ŷ_i)²                                                      (6) 

 

R-squared (R²):  

 

R² =  1 −
Σ(y_i −  ŷ_i)²

Σ(y_i −  ȳ)² 
                                                                 (7)      

 

4 Results and Discussions 
The primary objective is to prove the effectiveness of combining physics-based indicators and data-driven 

methods. We will specifically look at this matter via BiLSTM deep learning structure. Evaluation is 

focused on Test Run 1 from the NASA bearing dataset, which can be taken as a fairly good representation 

of true bad conditions endured by bearings out in real life. We carry out a complete inspection with 

standard regression metrics such as Mean Absolute Error (MAE) and Mean Squared Error (MSE) as well 

as R squared which is the figure of model accuracy Reliability Evaluation focuses on Test Run 1 from the 

NASA bearing dataset, which serves as a representative benchmark for real-world degradation behavior. 

A comprehensive assessment is conducted using standard regression metrics Mean Absolute Error (MAE), 

Mean Squared Error (MSE), and the Coefficient of Determination (R²) to quantify model accuracy and 

reliability. To see the improvement brought by adding trend-based and physics-derived features, different 

compared experiments were further carried out also. The outcomes reveal the hybrid model’s potential in 

providing accurate Remaining Useful Life (RUL) predictions, surpassing traditional data-driven 

techniques. 
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Table 4-1: Data-driven Vs Physics guided Comparison 

Model MAE MSE R² Score 

BiLSTM (baseline) 50.12 2732.09 -31.05 

BiLSTM + Feature Eng. 55.12 3317.86 -37.92 

BiLSTM + Attention 53.26 3136.38 -35.79 

CNN-LSTM 58.41 3599.13 -41.22 

Physics-Guided 

BiLSTM 

19.66 408.72 -3.79 

Physics-Guided + 

Clipped 

13.80 232.46 -1.73 

Physics-Guided, seq=40 6.94 58.94 0.158 

Physics-Guided, seq=44 3.96 21.13 0.676 

 

Figure 4: BiLSTM + Feature Engineering 

 
The first model setup used only the statistical features, which were fed into a BiLSTM network. While 

this configuration provided stable predictions, the output passed behind the actual advancing of in for 

tracking degradation time. Figure 4. The predicted RUL curve ended up almost flat, over-predicting the 

remaining life of the component for the majority of test history. This behavior, which is a result of scoring, 

in itself shows low correlation with real development of failures. With no physical wear models, the model 

also had no concept of mechanical causality, and so would be less able to generalize to the real world. 
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Figure 5: BiLSTM + Physics Guided Clipped Output (Enhanced Features) 

 
 

 

Figure 6: Fine-tuned Hybrid Model 

 
The experimental results shows that the hybrid model (with Archard wear + BiLSTM + clipping) 

outperforms the purely data-driven model consistently. Physics-guided features increase interpretability 

and dynamical degradation correlation. Both of these things happen when you cap RUL at zero: stop 

making wrong predictions and give us better notes for human eyes to look at maintenance plans. 

 

5 Conclusion 
This section provides a critical discussion of the results derived from the hybrid predictive maintenance 

model proposed in this work, which combines data-driven and physics-guided methods for the prediction 

of the Remaining Useful Life (RUL) of electric motor bearings. The model was built using the NASA 

IMS bearing dataset and was developed using general statistical features (RMS, kurtosis and crest factor) 

and a physics-based features based on Archard’s wear model. The term "BiLSTM" is referred to the 

technique that the two-layer LSTM structure is stacked in bidirectional recurrent way. The goal was to 

see if fusion of physics-based degradation knowledge with temporal deep learning can outperform data-

driven ones. In contrast, Archard's wear calculation was integrated with time-domain and frequency-

domain characteristics into our improved hybrid model. Later, the model was trained using bi-directional 

Long Short-Term Memory networks and all negative results considered outliers removed. This showed a 

much better fit with real-word wearing down Figure 6. These figures reflect a significant gain in both 
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accuracy and meaning. The hybrid model adapted its predictions of future states as wear increased, 

providing opportune alarms from which little error could result in RUL estimations. 
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