
International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 1

EDA in DataScience

Dharani.M

Student

Lady Doak College

What is Exploratory Data Analysis?

Exploratory Data Analysis (EDA) is an important first step in data science projects. It involves looking at

and visualizing data to understand its main features, find patterns, and discover how different parts of the

data are connected.

EDA helps to spot any unusual data or outliers and is usually done before starting more detailed statistical

analysis or building models.

Why Exploratory Data Analysis is Important?

Exploratory Data Analysis (EDA) is important for several reasons, especially in the context of data science

and statistical modeling. Here are some of the key reasons why EDA is a critical step in the data analysis

process:

● Helps to understand the dataset, showing how many features there are, the type of data in each

feature, and how the data is spread out, which helps in choosing the right methods for analysis.

● EDA helps to identify hidden patterns and relationships between different data points, which

help us in and model building.

● Allows to spot errors or unusual data points (outliers) that could affect your results.

● Insights that you obtain from EDA help you decide which features are most important for

building models and how to prepare them to improve performance.

● By understanding the data, EDA helps us in choosing the best modeling techniques and

adjusting them for better results.

Types of Exploratory Data Analysis

There are various sorts of EDA strategies based on nature of the records. Depending on the number of

columns we are analyzing we can divide EDA into three types:

1. Univariate

2. Bivariate

3. Multivariate.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 2

1. Univariate Analysis

Univariate analysis focuses on studying one variable to understand its characteristics. It helps describe the

data and find patterns within a single feature. Common methods include histograms to show data

distribution, box plots to detect outliers and understand data spread, and bar charts for categorical data.

Summary statistics like mean, median, mode, variance, and standard deviation help describe the

central tendency and spread of the data.

2. Bivariate Analysis

Bivariate analysis focuses on exploring the relationship between two variables to find connections,

correlations, and dependencies. It’s an important part of exploratory data analysis that helps understand

how two variables interact. Some key techniques used in bivariate analysis include scatter plots, which

visualize the relationship between two continuous variables; correlation coefficient, which measures how

strongly two variables are related, commonly using Pearson’s correlation for linear relationships; and

cross-tabulation, or contingency tables, which show the frequency distribution of two categorical

variables and help understand their relationship.

Line graphs are useful for comparing two variables over time, especially in time series data, to identify

trends or patterns. Covariance measures how two variables change together, though it’s often

supplemented by the correlation coefficient for a clearer, more standardized view of the relationship.

3. Multivariate Analysis

Multivariate analysis examines the relationships between two or more variables in the dataset. It aims to

understand how variables interact with one another, which is crucial for most statistical modeling

techniques. It include Techniques like pair plots, which show the relationships between multiple variables

at once, helping to see how they interact. Another technique is Principal Component Analysis (PCA),

which reduces the complexity of large datasets by simplifying them, while keeping the most important

information.

In addition to univariate and multivariate analysis, there are specialized EDA techniques tailored for

specific types of data or analysis needs:

● Spatial Analysis: For geographical data, using maps and spatial plotting to understand the

geographical distribution of variables.

● Text Analysis: Involves techniques like word clouds, frequency distributions, and sentiment

analysis to explore text data.

● Time Series Analysis: This type of analysis is mainly applied to statistics sets that have a

temporal component. Time collection evaluation entails inspecting and modeling styles, traits,

and seasonality inside the statistics through the years. Techniques like line plots,

autocorrelation analysis, transferring averages, and ARIMA (AutoRegressive Integrated

Moving Average) fashions are generally utilized in time series analysis.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 3

Steps for Performing Exploratory Data Analysis

Performing Exploratory Data Analysis (EDA) involves a series of steps designed to help you understand

the data you’re working with, uncover underlying patterns, identify anomalies, test hypotheses, and ensure

the data is clean and suitable for further analysis.

Step 1: Understand the Problem and the Data

The first step in any data analysis project is to clearly understand the problem you’re trying to solve and

the data you have. This involves asking key questions such as:

● What is the business goal or research question?

● What are the variables in the data and what do they represent?

● What types of data (numerical, categorical, text, etc.) do you have?

● Are there any known data quality issues or limitations?

● Are there any domain-specific concerns or restrictions?

By thoroughly understanding the problem and the data, you can better plan your analysis, avoid wrong

assumptions, and ensure accurate conclusions.

Step 2: Import and Inspect the Data

After clearly understanding the problem and the data, the next step is to import the data into your analysis

environment (like Python, R, or a spreadsheet tool). At this stage, it’s crucial to examine the data to get

an initial understanding of its structure, variable types, and potential issues.

Here’s what you can do:

● Load the data into your environment carefully to avoid errors or truncations.

● Examine the size of the data (number of rows and columns) to understand its complexity.

● Check for missing values and see how they are distributed across variables, since missing

data can impact the quality of your analysis.

● Identify data types for each variable (like numerical, categorical, etc.), which will help in the

next steps of data manipulation and analysis.

● Look for errors or inconsistencies, such as invalid values, mismatched units, or outliers, which

could signal deeper issues with the data.

By completing these tasks, you’ll be prepared to clean and analyze the data more effectively.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 4

Step 3: Handle Missing Data

Missing data is common in many datasets and can significantly affect the quality of your analysis. During

Exploratory Data Analysis (EDA), it’s important to identify and handle missing data properly to avoid

biased or misleading results.

Here’s how to handle it:

● Understand the patterns and possible reasons for missing data. Is it missing completely at

random (MCAR), missing at random (MAR), or missing not at random (MNAR)?

Knowing this helps decide how to handle the missing data.

● Decide whether to remove missing data (listwise deletion) or impute (fill in) the missing

values. Removing data can lead to biased outcomes, especially if the missing data isn’t MCAR.

Imputing values helps preserve data but should be done carefully.

● Use appropriate imputation methods like mean/median imputation, regression

imputation, or machine learning techniques like KNN or decision trees based on the data’s

characteristics.

● Consider the impact of missing data. Even after imputing, missing data can cause uncertainty

and bias, so interpret the results with caution.

Properly handling missing data improves the accuracy of your analysis and prevents misleading

conclusions.

Step 4: Explore Data Characteristics

After addressing missing data, the next step in EDA is to explore the characteristics of your data by

examining the distribution, central tendency, and variability of your variables, as well as identifying

any outliers or anomalies. This helps in selecting appropriate analysis methods and spotting potential data

issues. You should calculate summary statistics like mean, median, mode, standard deviation,

skewness, and kurtosis for numerical variables. These provide an overview of the data’s distribution and

help identify any irregular patterns or issues.

Step 5: Perform Data Transformation

Data transformation is an essential step in EDA because it prepares your data for accurate analysis and

modeling. Depending on your data’s characteristics and analysis needs, you may need to transform it to

ensure it’s in the right format.

Common transformation techniques include:

● Scaling or normalizing numerical variables (e.g., min-max scaling or standardization).

● Encoding categorical variables for machine learning (e.g., one-hot encoding or label

encoding).

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 5

● Applying mathematical transformations (e.g., logarithmic or square root) to correct

skewness or non-linearity.

● Creating new variables from existing ones (e.g., calculating ratios or combining variables).

● Aggregating or grouping data based on specific variables or conditions.

Step 6: Visualize Data Relationship

Visualization is a powerful tool in the EDA process, helping to uncover relationships between variables

and identify patterns or trends that may not be obvious from summary statistics alone.

● For categorical variables, create frequency tables, bar plots, and pie charts to understand the

distribution of categories and identify imbalances or unusual patterns.

● For numerical variables, generate histograms, box plots, violin plots, and density plots to

visualize distribution, shape, spread, and potential outliers.

● To explore relationships between variables, use scatter plots, correlation matrices, or

statistical tests like Pearson’s correlation coefficient or Spearman’s rank correlation.

Step 7: Handling Outliers

Outliers are data points that significantly differ from the rest of the data, often caused by errors in

measurement or data entry. Detecting and handling outliers is important because they can skew your

analysis and affect model performance. You can identify outliers using methods like interquartile range

(IQR), Z-scores, or domain-specific rules. Once identified, outliers can be removed or adjusted

depending on the context. Properly managing outliers ensures your analysis is accurate and reliable.

Step 8: Communicate Findings and Insights

The final step in EDA is to communicate your findings clearly. This involves summarizing your analysis,

pointing out key discoveries, and presenting your results in a clear and engaging way.

● Clearly state the goals and scope of your analysis.

● Provide context and background to help others understand your approach.

● Use visualizations to support your findings and make them easier to understand.

● Highlight key insights, patterns, or anomalies discovered.

● Mention any limitations or challenges faced during the analysis.

● Suggest next steps or areas that need further investigation.

Effective conversation is critical for ensuring that your EDA efforts have a meaningful impact and that

your insights are understood and acted upon with the aid of stakeholders.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 6

Exploratory Data Analysis (EDA) can be performed using a variety of tools and software, each offering

features that deal to different data and analysis needs.

In Python, libraries like Pandas are essential for data manipulation, providing functions to clean, filter,

and transform data. Matplotlib is used for creating basic static, interactive, and animated visualizations,

while Seaborn, built on top of Matplotlib, allows for the creation of more attractive and informative

statistical plots. For interactive and advanced visualizations, Plotly is an excellent choice

In R, packages like ggplot2 are powerful for creating complex and visually appealing plots from data

frames. dplyr helps in data manipulation, making tasks like filtering and summarizing easier, and tidyr

ensures your data is in a tidy format, making it easier to work with.

Typical graphical techniques used in EDA are:

● Box plot

● Histogram

● Multi-vari chart

● Run chart

● Pareto chart

● Scatter plot (2D/3D)

● Stem-and-leaf plot

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 7

● Parallel coordinates

● Odds ratio

● Targeted projection pursuit

● Heat map

● Bar chart

● Horizon graph

● Glyph-based visualization methods such as PhenoPlot and Chernoff faces

● Projection methods such as grand tour, guided tour and manual tour

● Interactive versions of these plots.

Why is EDA important in data science?

 The main purpose of EDA is to help look at data before making any assumptions. It can help

identify obvious errors, as well as better understand patterns within the data, detect outliers or anomalous

events, find interesting relations among the variables.

Data scientists can use exploratory analysis to ensure the results they produce are valid and applicable to

any desired business outcomes and goals. EDA also helps stakeholders by confirming they are asking the

right questions. EDA can help answer questions about standard deviations, categorical variables, and

confidence intervals. Once EDA is complete and insights are drawn, its features can then be used for more

sophisticated data analysis or modeling, including machine learning.

I have conducted an Exploratory Data Analysis (EDA) on the train.csv dataset, which is presented below.

Dataset from Kaggle : https://www.kaggle.com/datasets/shuofxz/titanic-machine-learning-from-

disaster?select=train.csv

import pandas as pd

df=pd.read_csv('train.csv')

df

Interpretation:

This Python code imports the pandas library and reads a CSV file named 'train.csv' into a DataFrame

named df using pd.read_csv('train.csv'). This function automatically detects column names, data types,

and missing values, allowing structured data to be efficiently loaded for analysis. The dataset contains 891

records with attributes: PassengerId, a unique identifier for each passenger; Survived, a binary indicator

(0 = No, 1 = Yes) showing survival status; Pclass, representing the passenger class (1st, 2nd, or 3rd);

Name, the full name of the passenger; Sex, indicating gender; Age, representing the passenger's age in

years (which may have missing values); SibSp, the number of siblings/spouses aboard; Parch, the number

https://www.ijsat.org/
mailto:editor@ijsat.org
https://www.kaggle.com/datasets/shuofxz/titanic-machine-learning-from-disaster?select=train.csv
https://www.kaggle.com/datasets/shuofxz/titanic-machine-learning-from-disaster?select=train.csv

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 8

of parents/children aboard; Ticket, the assigned ticket number; Fare, the price paid for the ticket; Cabin,

the assigned cabin number (with possible missing values); and Embarked, denoting the port of

embarkation (C = Cherbourg, Q = Queenstown, S = Southampton). By displaying df, users can view the

first and last few rows of the dataset in a structured tabular format. This Titanic dataset is widely used in

machine learning and statistical analysis for survival prediction, classification tasks, and exploratory data

analysis.

df.head()

Interpretation:

The command df.head() returns the first five rows of the DataFrame, providing a quick overview of the

dataset. In the Titanic dataset, it displays key attributes such as PassengerId, a unique identifier for each

passenger; Survived, indicating survival status (0 = Did not survive, 1 = Survived); Pclass, representing

the passenger's ticket class (1st, 2nd, or 3rd); Name, showing the passenger's full name; Sex, specifying

gender; Age, denoting the passenger's age, which may contain missing values; SibSp, the number of

siblings/spouses aboard; Parch, the number of parents/children aboard; Ticket, the ticket number assigned;

Fare, representing the price paid for the ticket; Cabin, indicating the assigned cabin (which may have

missing values); and Embarked, showing the port of embarkation (C for Cherbourg, Q for Queenstown, S

for Southampton).The Highest Fare in the five records is 71.2833. Moreover, The people booked the 3rd

class in Pclass.This command helps in quickly inspecting the dataset, identifying missing values, and

understanding the data structure before further analysis or preprocessing.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 9

import pandas as pd

df=pd.read_csv('train.csv')

df.info()

Interpretation:

The given Python code imports the pandas library and reads the 'train.csv' file into a DataFrame named

df using pd.read_csv('train.csv'). The df.info() function provides a concise summary of the dataset,

displaying key details such as the total number of entries (rows), the number of columns, column names,

data types, and non-null counts for each column. This function is particularly useful for identifying missing

values and understanding the data structure. Given the Titanic dataset, the output of df.info() would look

something like this:

This output shows that there are 891 records (entries) and 12 columns, with different data types such as

int64 (for numerical values like PassengerId and Pclass), float64 (for values like Age and Fare), and object

(for categorical/text values like Name and Sex). It also highlights missing values in columns like Age,

Cabin, and Embarked, which need to be handled before analysis. This function is crucial for understanding

the dataset structure and preparing it for further processing.

df.describe()

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 10

Interpretation :

The command df.describe() provides a statistical summary of all numerical columns in the dataset, giving

insights into the distribution, central tendency, and spread of the data. It displays key metrics such as

count, which shows the number of non-null values in each column (e.g., Age has 714 values, indicating

177 missing entries), and mean, representing the average value for each attribute (e.g., the average age is

approximately 29.7 years, while the average fare is around 32.2). The std (standard deviation) measures

data spread, revealing high variation in fare prices with a standard deviation of 49.69. The min and max

values indicate the smallest and largest values in each column, such as a minimum fare of 0 and a

maximum of 512.33. The 25%, 50% (median), and 75% percentiles describe the distribution, showing that

25% of passengers were aged 20 or younger, while 50% were aged 28. This summary helps in detecting

outliers, understanding the dataset's structure, and identifying missing values before performing data

preprocessing and analysis.

df.tail()

Interpretation:

 The command df.tail() retrieves the last five rows of the dataset, providing insight into the final entries.

In the Titanic dataset, it displays details such as PassengerId, which uniquely identifies each passenger,

and Survived, where 0 indicates the passenger did not survive and 1 means they did. For example,

passenger 887 (Rev. Juozas Montvila), a 27-year-old male, did not survive, while passenger 888 (Miss.

Margaret Graham), a 19-year-old female, survived. The Pclass column represents the ticket class, where

passengers like Karl Howell Behr (Passenger 889) traveled in 1st class, while Patrick Dooley (Passenger

891) traveled in 3rd class and did not survive. The Sex and Age columns indicate gender and age, though

some values, like Age for Passenger 888 (Johnston, Miss.), are missing. The SibSp and Parch columns

denote the number of siblings/spouses and parents/children aboard, respectively; for instance, Passenger

888 had one sibling and two parents onboard. The Ticket column contains ticket numbers such as 112053

for Miss. Graham and 370376 for Mr. Dooley, while Fare shows the price paid, which varies significantly,

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 11

with Mr. Behr paying 30.00 and Mr. Dooley paying only 7.75. The Cabin column is mostly empty, but

some passengers, like Karl Howell Behr, had cabin C148 assigned. Lastly, the Embarked column shows

the port of boarding, where most passengers embarked from Southampton (S), but Behr boarded from

Cherbourg (C) and Dooley from Queenstown (Q). This function helps check data consistency, missing

values, and the dataset's structure before analysis.

df.isnull()

Interpretation:

The command df.isnull() generates a DataFrame of the same shape as the original dataset, where each

value is either True or False, indicating whether a particular cell contains a missing (null) value. In the

Titanic dataset, this function helps identify missing values across different attributes. For instance, the

Cabin column has many True values, indicating a significant number of missing entries, with 687 out of

891 records lacking cabin information. The Age column also has missing values, with 177 passengers

having unknown ages, while the Embarked column has only two missing values. Other attributes, such

as PassengerId, Survived, Pclass, Name, Sex, SibSp, Parch, Ticket, and Fare, have no missing values. To

obtain a summary of missing values per column, the command df.isnull().sum() is used, which confirms

that Age, Cabin, and Embarked require attention before further data analysis or model training. This

function is crucial for handling missing data, allowing for appropriate imputation strategies or column

exclusions.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 12

print(df.isnull().sum())

Interpretation:

The command print(df.isnull().sum()) provides a summary of missing values in each attribute of the

Titanic dataset by counting the number of NaN (null) values per attribute. The output reveals that the

Cabin attribute has the highest number of missing values, with 687 out of 891 records lacking cabin

information, followed by the Age attribute, which has 177 missing values, indicating that a significant

portion of passengers' ages were not recorded. The Embarked attribute has only two missing values,

which can be easily filled using the most common embarkation port. Other attributes, such as PassengerId,

Survived, Pclass, Name, Sex, SibSp, Parch, Ticket, and Fare, are fully populated without any missing

values. Identifying missing data is crucial in data preprocessing, as it allows for appropriate handling

strategies such as imputation, attribute exclusion, or filling missing values with suitable replacements to

ensure accurate analysis and model performance.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 13

df['Embarked'].ffill(inplace=True)

df.isnull().sum()

Interpretation:

The command df['Embarked'].ffill(inplace=True) is used to fill the missing values in the Embarked

attribute using forward fill (ffill), which replaces any missing value with the previous non-null value in

the dataset. Before applying this method, the Embarked attribute had two missing values. After executing

the command, running df.isnull().sum() confirms that the missing values in Embarked have been

successfully filled, reducing its count to zero. The updated summary now shows that only the Age attribute

still has 177 missing values, and the Cabin attribute remains the most incomplete, with 687 missing

values. Forward fill is particularly useful for categorical data like Embarked, where filling missing values

with the most recent available data ensures continuity. However, for numerical columns like Age,

alternative imputation methods such as mean or median substitution would be more appropriate to

maintain data consistency and accuracy in further analysis.

import pandas as pd

from sklearn import preprocessing

df = pd.read_csv('train.csv')

label_encoder = preprocessing.LabelEncoder()

df['Sex'] = label_encoder.fit_transform(df['Sex'])

print(df)

Interpretation:

This code reads the Titanic dataset (train.csv) using pandas and applies Label Encoding to the Sex

attribute using scikit-learn's preprocessing module. Initially, the Sex attribute contains categorical

values (male and female), which are not directly usable in numerical computations. To convert them into

a machine-learning-friendly format, the LabelEncoder assigns numerical values where 'male' is encoded

as 1 and 'female' is encoded as 0. After executing the code, the dataset remains unchanged except for the

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 14

Sex attribute , which now contains numerical representations instead of text. The transformed dataset is

then printed, showing that all occurrences of male have been replaced with 1 and female with 0. This

encoding is particularly useful in machine learning applications, as numerical data is required for most

algorithms to process features efficiently. From first five records three of them are females. Converting

categorical variables into numerical format ensures that models can interpret and use the Sex column

effectively in predictive analysis.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 15

import matplotlib.pyplot as plt

import pandas as pd

df = pd.read_csv('train.csv')

plt.boxplot(df['Fare'])

plt.show()

Interpretation:

 This code reads the Titanic dataset (train.csv) using pandas and generates a box plot for the Fare

attribute using Matplotlib. A box plot is a powerful visualization tool that helps analyze the distribution,

median, quartiles, and outliers in numerical data. The central line inside the box represents the median

fare, while the edges of the box indicate the interquartile range (IQR), covering the middle 50% of fare

values. The whiskers extend to represent the range of non-outlier fares, whereas any individual points

beyond the whiskers are considered outliers, which in this case likely correspond to first-class passengers

who paid extremely high ticket prices. Given that Titanic fares varied significantly based on passenger

class and ticket type, the plot is expected to show a right-skewed distribution, where most fares are

relatively low, but a few high-priced tickets create extreme values. The highest outlier is abve 500. This

visualization is useful for identifying skewness, fare disparities across different classes, and potential

anomalies in the dataset.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 16

import numpy as np

from scipy import stats

z=np.abs(stats.zscore(df.Fare))

print(z)

threshold=3

print(np.where(z>3))

Interpretation:

This code calculates the Z-score for the Fare attribute in the Titanic dataset and identifies outliers based

on a threshold of 3 standard deviations. It first imports NumPy and SciPy, then computes the absolute Z-

score for each value in the Fare attribute using stats.zscore(df.Fare). The Z-score represents how far each

fare deviates from the mean (µ) in terms of standard deviations (σ). Values close to 0 indicate fares

near the average, while higher Z-scores indicate fares that are significantly different. The np.abs() function

ensures that all Z-score values are positive, making deviation analysis straightforward. The threshold is

set at 3, meaning any fare with a Z-score greater than 3 is considered an outlier. The function np.where(z

> 3) returns the indices of these outliers, highlighting extreme fare values. Given that Titanic ticket

prices ranged from as low as Rs. 0 to over Rs.600, expensive first-class tickets are expected to be

detected as outliers. The analysis helps in identifying unusually high fares that might influence statistical

models, and handling these extreme values properly can improve data-driven insights.

df['Embarked'].value_counts()

Interpretation:

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 17

 The command df['Embarked'].value_counts() calculates the number of occurrences for each unique

value in the Embarked attribute of the Titanic dataset, which represents the port from which each

passenger boarded. The three possible values are 'S' for Southampton, 'C' for Cherbourg, and 'Q' for

Queenstown. Based on the output, Southampton (S) had the highest number of passengers, with

approximately 644 people boarding from there, followed by Cherbourg (C) with 168 passengers,

and Queenstown (Q) with 77 passengers. This analysis helps in understanding the distribution of

passengers across different boarding locations, identifying the most common embarkation points, and

detecting any potential missing values or anomalies in the dataset. Since most passengers embarked from

Southampton, it suggests that the majority of the Titanic’s journey originated from there, making it a

significant boarding point in the dataset.

df['Age'].max()

Interpretation:

 The command df['Age'].max() retrieves the maximum age from the Age attribute in the Titanic dataset.

This function scans the entire attribute and returns the highest numerical value. Given the dataset's

historical context, the oldest passenger on board was 80 years old. This result provides insight into the age

distribution of passengers, highlighting that there were elderly individuals among the travelers. Analyzing

this information can help in survival analysis, where age might have influenced the likelihood of survival.

If there are missing values in the Age attribute, they will not affect the result since the .max() function

automatically ignores NaN (null) values by default.

df['Age'].min()

Interpretation:

 The command df['Age'].min() retrieves the minimum age from the Age attribute in the Titanic dataset.

This function scans the entire attribute and returns the smallest numerical value. Based on the dataset, the

youngest passenger on board was 0.42 years old (approximately 5 months old), indicating that there were

infants among the travelers. This information is useful for analyzing the age distribution of passengers,

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 18

especially in survival analysis, as younger passengers, particularly children, might have had a higher

priority for rescue. If there are missing values in the Age column, they do not affect the result, as the .min()

function automatically ignores NaN (null) values by default.

df['Age'].median()

Interpretation:

 The command df['Age'].median() calculates the median age of passengers in the Titanic dataset. The

median is the middle value when all ages are arranged in ascending order, providing a measure of central

tendency that is less affected by extreme values (outliers). Based on the dataset, the median age of

passengers is 28 years, meaning that half of the passengers were younger than 28, and the other half were

older. This is useful for understanding the age distribution of passengers and is often used to fill in missing

values when handling incomplete data. Since the median is not affected by outliers, it provides a more

robust measure of central tendency compared to the mean.

df['Fare'].mean()

Interpretation:

 The command df['Fare'].mean() calculates the average fare price paid by passengers in the Titanic

dataset. The mean fare represents the sum of all fare values divided by the total number of passengers.

Based on the dataset, the average fare is approximately 32.20. However, since fares varied significantly

depending on class (1st, 2nd, and 3rd), this mean value may be influenced by high-priced first-class tickets,

making the distribution right-skewed. To better understand the fare structure, it is useful to analyze the

median fare, interquartile range, and outliers.

df['Fare'].sum()

Interpretation:

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 19

 The command df['Fare'].sum() calculates the total fare revenue from all passengers in the Titanic

dataset by summing up all values in the Fare attribute. Based on the dataset, the total sum of fares is

approximately 28,693.9493 This value represents the combined amount paid by all 891 passengers for

their tickets. Since fares varied significantly based on passenger class, the sum includes a mix of high-cost

first-class tickets and lower-cost third-class tickets. This metric is useful for understanding the overall

revenue generated from ticket sales and analyzing the financial aspect of passenger distribution across

different classes.

import statistics as st

st.mode(df['Pclass'])

Interpretation:

 The command st.mode(df['Pclass']) calculates the mode of the Pclass attribute in the Titanic dataset.

The mode is the most frequently occurring value in a dataset. Since Pclass represents the passenger class

(1st, 2nd, or 3rd), the mode helps determine which class had the highest number of passengers.Based on

the dataset, the mode of Pclass is 3, meaning the majority of passengers traveled in 3rd class. This suggests

that a significant portion of Titanic's passengers belonged to a lower economic class, as third-class tickets

were the most affordable. Analyzing this information is useful for understanding passenger demographics

and survival rate trends, as survival chances varied across different classes.

print("Skewness: %f"% df['Age'].skew())

Interpretation:

 The command print("Skewness: %f" % df['Age'].skew()) calculates and prints the skewness of the Age

attribute in the Titanic dataset. Skewness measures the asymmetry of the data distribution:

● Skewness > 0 → Right-skewed (positively skewed): More values are concentrated on the left, with

a long tail on the right.

● Skewness < 0 → Left-skewed (negatively skewed): More values are concentrated on the right,

with a long tail on the left.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 20

● Skewness = 0 → Symmetrical distribution.

For the Titanic dataset, the skewness of the Age attribute is approximately 0.38, indicating a slightly

right-skewed distribution. This means that most passengers were younger, but a few older passengers

(such as those above 60) create a longer right tail. Understanding skewness helps in data

normalization, handling outliers, and making statistical inferences about passenger demographics.

print("Kurtosis: %f"% df['Age'].kurt())

 Interpretation:

 The command print("Kurtosis: %f" % df['Age'].kurt()) calculates and prints the kurtosis of the Age

attribute in the Titanic dataset. Kurtosis measures the tailedness of the data distribution:

● Kurtosis > 0 (Leptokurtic) → Distribution has heavier tails than a normal distribution, meaning

more extreme values (outliers).

● Kurtosis < 0 (Platykurtic) → Distribution has lighter tails, meaning fewer extreme values.

● Kurtosis = 0 (Mesokurtic) → The distribution is similar to a normal distribution.

The kurtosis of the Age attribute in the Titanic dataset is 0.17, indicating a distribution that is close to

normal but slightly leptokurtic (having slightly heavier tails). This means that while the distribution is not

extreme, it has a few more outliers (extreme age values) than a perfectly normal distribution.A kurtosis

value of 0.17 suggests that there are some older passengers (e.g., above 60 or 70 years old) or very young

infants that slightly increase the tail weight. However, the difference is not significant, meaning the age

distribution is fairly normal with only a slight presence of extreme values. Understanding kurtosis helps

in outlier detection, statistical modeling, an deciding whether data transformations are necessary.

import seaborn as sns

sns.distplot(df['Age'])

 Interpretation:

 The distribution plot of the Age attribute in the Titanic dataset, generated by sns.distplot(df['Age']),

forms a bell-shaped curve, indicating a nearly normal distribution. The histogram bars represent the

frequency of different age groups, while the Kernel Density Estimate (KDE) curve provides a smooth

approximation of the age distribution. The peak around 20-40 years suggests that most passengers were

young adults, while the slight right skewness (0.38) indicates a few older passengers (above 60 or 70

years) extending the tail on the right. Despite this minor skew, the distribution is approximately

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 21

symmetrical, resembling a Gaussian (normal) distribution. This bell-shaped pattern suggests that most

values cluster around the mean, with fewer passengers at the extreme age ranges. Such a distribution is

useful in statistical analysis, as many machine learning algorithms assume normality in data for better

performance and inference.

bf=df["Name"].duplicated()

df.drop_duplicates(keep=False,inplace=True)

bf

Interpretation:

 The code first identifies duplicate names in the Titanic dataset using df["Name"].duplicated(), which

returns a Boolean series where True indicates repeated names and False represents unique ones. This

Boolean series is stored in bf. Then, df.drop_duplicates(keep=False, inplace=True) completely removes

all occurrences of duplicate names, ensuring that only passengers with unique names remain in the dataset.

Since the Titanic dataset contains 891 records with attributes such as PassengerId, Survived, Pclass,

Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, and Embarked, this operation could significantly

reduce the dataset size if multiple passengers share the same name. The bf output helps in identifying

which names were marked as duplicates before removal. While this method effectively cleans the dataset,

caution is required since some duplicate names might belong to different individuals rather than being

actual data-entry errors.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 22

import seaborn as sns

import matplotlib.pyplot as plt

columns = ['Age', 'Fare', 'Pclass']

for each in columns:

 fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(13, 5))

 # Box plot

 sns.boxplot(x=df[each], orient='v', ax=ax1)

 # Histogram

 ax2.hist(df[each])

 # Distplot

 sns.distplot(df[each], ax=ax3)

 plt.show()

 Interpretation:

 This code uses Seaborn and Matplotlib to generate three different visualizations (box plot,

histogram, and distribution plot) for each of the selected numerical attributes —Age, Fare, and

Pclass—from the Titanic dataset.

Breakdown of the Code:

1. The list columns = ['Age', 'Fare', 'Pclass'] specifies the attributes for visualization.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 23

2. A for loop iterates over each column, creating three subplots using plt.subplots(1, 3, figsize=(13,

5)), arranging them horizontally in a single row with three plots per figure.

3. Box Plot (ax1): Created using sns.boxplot(), it shows the median, quartiles, and potential

outliers for each column.

4. Histogram (ax2): Created using ax2.hist(), it displays the frequency distribution of the values in

the column.

5. Distribution Plot (ax3): Created using sns.distplot(), it provides a smooth KDE curve over the

histogram to visualize the probability distribution of values.

6. plt.show() ensures that each set of plots is displayed before moving to the next column.

Interpretation of Each Plot:

● Box Plot:

○ Helps detect outliers (e.g., Fare has a long right tail with extreme values).

○ Shows median and interquartile range (IQR), which is useful for spotting skewness in

data.

● Histogram:

○ Displays frequency distributions (e.g., Pclass is categorical, so bars will be discrete).

○ Helps in understanding skewness and spread of data.

● Distribution Plot:

○ Shows a smooth KDE curve over the histogram, making it easier to see normality and

skewness.

○ If the curve is bell-shaped, the data is normally distributed (e.g., Age is nearly normal).

○ If there is a long tail, it suggests skewness (e.g., Fare has a right-skewed distribution).

Possible Observations from the Titanic Dataset:

● Age appears to be nearly normal, with a slight right skew due to older passengers and it has

outliers.

● Fare is highly right-skewed, meaning a few passengers paid significantly higher fares than the

majority and it has outliers .

● Pclass has distinct bars in the histogram, as it is a categorical variable (1st, 2nd, and 3rd class).

This visualization helps in understanding data distribution, identifying outliers, and preparing data

for further analysis or machine learning models.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 24

import seaborn as sns

sns.boxplot(x='Survived',y='Age',data=df)

plt.show()

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 25

 Interpretation:

 This code uses Seaborn to create a box plot that visualizes the relationship between survival status

(Survived) and age (Age) in the Titanic dataset. The sns.boxplot(x='Survived', y='Age', data=df)

function plots Survived on the x-axis and Age on the y-axis, allowing us to compare the age distribution

of passengers who survived (Survived = 1) versus those who did not (Survived = 0).

Interpretation of the Box Plot:

● Each box represents the interquartile range (IQR) (middle 50% of the data).

● The median age for both survived and non-survived groups is visible as a horizontal line inside

each box.

● Outliers, such as very young or very old passengers, appear as individual points beyond the

whiskers.

● If the box for Survived = 1 is higher than Survived = 0, it indicates age might have influenced

survival rates.

Possible Observations from Titanic Data:

● Younger passengers (children) might have a higher survival rate, as seen from a lower median

age for survivors.

● Older passengers (above 50) are relatively fewer among survivors, suggesting they had a lower

survival rate.

● The spread of age is wider in non-survivors, implying a more diverse age range among those

who did not survive.

This visualization helps in understanding whether age had an impact on survival chances and is useful

for further exploratory data analysis.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 26

import seaborn as sns

sns.boxplot(x='Sex',y='Age',data=df)

plt.show()

 Interpretation:

 This code uses Seaborn to create a box plot that visualizes the age distribution across different sexes

(Male and Female) in the Titanic dataset. The function sns.boxplot(x='Sex', y='Age', data=df) plots Sex

on the x-axis and Age on the y-axis, allowing us to compare the age distribution of male and female

passengers. The box plot provides insights into the median age, interquartile range (IQR), and outliers for

each gender.

Interpretation of the Box Plot:

● The median age (horizontal line inside each box) for males and females can be compared.

● The interquartile range (IQR) shows the middle 50% of ages for each gender.

● Outliers, such as very young or very old passengers, appear as individual points beyond the

whiskers.

Possible Observations from Titanic Data:

● The median age of male and female passengers appears similar, likely around 28-30 years.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 27

● The spread of ages is slightly larger for males, suggesting a broader age distribution among male

passengers.

● There are more visible outliers among male passengers, indicating the presence of older men or

young boys.

● Female passengers may have a slightly lower IQR, suggesting their ages are more concentrated

around the median.

This visualization helps analyze the age distribution by gender and can be used for further statistical

comparisons or feature engineering in machine learning models.

import seaborn as sns

import pandas as pd

import matplotlib.pyplot as plt

df=pd.read_csv('train.csv')

sns.violinplot(x='Sex',y='Age',data=df,color='y')

plt.show()

 Interpretation:

 This code uses Seaborn to create a violin plot that visualizes the distribution of age across different

sexes (Male and Female) in the Titanic dataset. The function sns.violinplot(x='Sex', y='Age', data=df,

color='y') plots Sex on the x-axis and Age on the y-axis, with a violin-shaped plot that shows the

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 28

distribution, density, and probability of different age values for each gender. The color='y' parameter

sets the violin plot to yellow.

Interpretation of the Violin Plot:

● The width of the violin at different ages represents the density (how many passengers fall into

that age range).

● The thicker regions indicate where most of the data points are concentrated.

● The median and interquartile range (IQR) are visible as white lines inside each violin.

● The upper and lower tails extend toward outliers, showing the range of ages for both genders.

Possible Observations from Titanic Data:

● Males have a wider distribution of ages, meaning their ages are more spread out compared to

females.

● Females have a higher concentration of younger passengers, as the density is more compact in

the lower age range.

● There are more young male passengers, as indicated by the greater width in the lower age range.

● The age distribution for females appears more symmetric, while males show more variation.

This violin plot provides a more detailed view than a box plot by showing both the distribution shape

and density, helping in better understanding age patterns among male and female passengers.

data = pd.concat([df['Age'], df['Fare']], axis=1)

data.plot.scatter(x='Age', y='Fare', ylim=(0,200));

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 29

 Interpretation:

 This code creates a scatter plot to visualize the relationship between Age and Fare in the Titanic

dataset. The pd.concat() function combines the Age and Fare columns, and the plot.scatter(x='Age',

y='Fare', ylim=(0,200)) method generates a scatter plot with Age on the x-axis and Fare on the y-axis. The

ylim=(0,200) parameter restricts the fare values to a range between 0 and 200 to remove extremely high

fare values that could skew the visualization.

Interpretation of the Scatter Plot:

● Each point represents a passenger, with their age and fare plotted on the respective axes.

● Passengers below 20 years generally paid lower fares, as seen in the cluster of points in the lower-

left region.

● There is a wide variation in fares among older passengers, with some paying significantly

higher fares.

● A few outliers can be seen where older passengers paid very high fares, indicating they might

have traveled in first class.

● No strong linear relationship between age and fare is observed, suggesting that ticket price was

more influenced by class rather than age.

This scatter plot helps identify trends, outliers, and clusters within the data, providing insights into how

fare prices varied across different age groups.

import matplotlib.pyplot as plt

import seaborn as sns

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 30

Select only the numeric columns

numeric_df = df.select_dtypes(include=['number'])

Correlation matrix

corrmat = numeric_df.corr()

Plot the heatmap

f, ax = plt.subplots(figsize=(12, 9))

sns.heatmap(corrmat, vmax=1, square=True)

plt.show()

 Interpretation:

 This code generates a heatmap to visualize the correlation between numeric variables in the Titanic

dataset. The function df.select_dtypes(include=['number']) filters only the numeric columns, and

numeric_df.corr() computes the correlation matrix, which measures how strongly two variables are

related. The Seaborn heatmap is then plotted using sns.heatmap(corrmat, vmax=1, square=True), where:

● vmax=1 ensures that the color scale ranges from -1 to 1 (full correlation range).

● square=True makes the heatmap square-shaped for better readability.

● f, ax = plt.subplots(figsize=(12,9)) sets the figure size for clarity.

Interpretation of the Heatmap:

● Values close to +1 (light colors) indicate a strong positive correlation (e.g., if one variable

increases, the other also increases).

● Values close to -1 (dark colors) indicate a strong negative correlation (e.g., if one variable

increases, the other decreases).

● Values around 0 (neutral colors) indicate no significant correlation.

Possible Observations from Titanic Data:

● Fare and Pclass show a strong negative correlation, meaning higher-class passengers (Pclass=1)

generally paid more.

● Survival (Survived) is positively correlated with Fare, suggesting that passengers who paid

higher fares had a better chance of survival.

● Age has little to no correlation with Survived, indicating age alone was not a strong determinant

of survival.

● SibSp (Siblings/Spouses Aboard) and Parch (Parents/Children Aboard) are positively

correlated, meaning families tended to travel together.

This heatmap is a powerful tool for feature selection and analysis in machine learning, helping identify

key relationships between variables in the Titanic dataset.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 31

numeric_df.corr()

Interpretation:

The function numeric_df.corr() computes the correlation matrix for all numeric columns in the Titanic

dataset. Correlation values range from -1 to 1, where:

● +1 indicates a strong positive correlation (as one variable increases, the other also increases).

● -1 indicates a strong negative correlation (as one variable increases, the other decreases).

● 0 indicates no correlation between the variables.

Key Insights from Correlation Matrix:

● Fare and Pclass are strongly negatively correlated (-0.55), meaning first-class passengers

(Pclass=1) generally paid more.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 32

● Survival is positively correlated with Fare (0.26), suggesting passengers who paid higher fares

had better chances of survival.

● Pclass and Age have a negative correlation (-0.37), meaning older passengers were more likely

to be in lower classes.

● SibSp and Parch have a positive correlation (0.41), indicating that families traveled together.

● Survived has a weak correlation with Age (-0.08), meaning age alone was not a major factor in

survival.

This correlation matrix helps in feature selection and analysis for predictive modeling in machine

learning.

import pandas as pd

from sklearn import preprocessing

from scipy.stats import pearsonr

Convert 'Embarked' column to numeric values using LabelEncoder

label_encoder = preprocessing.LabelEncoder()

df['Embarked'] = label_encoder.fit_transform(df['Embarked'])

Extract the numeric columns for correlation

list1 = df['Fare']

list2 = df['Embarked']

Apply the pearsonr() function

corr, _ = pearsonr(list1, list2)

print('Pearsons correlation: %.3f' % corr)

 Interpretation:

 The Pearson correlation coefficient between Fare and Embarked is -0.221, indicating a weak

negative correlation. This means that as Fare increases, the Embarked value tends to decrease

slightly. Since the LabelEncoder converted the 'Embarked' column into numerical values (0, 1, 2 for

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 33

Cherbourg (C), Queenstown (Q), and Southampton (S), respectively), the negative correlation suggests

that passengers who embarked from ports with lower numerical values (e.g., Cherbourg) generally

paid higher fares, whereas those from Southampton or Queenstown paid lower fares on average. This

aligns with historical passenger data, where Cherbourg had more first-class passengers, leading to higher

ticket fares, while Southampton, the primary departure point, had many third-class passengers,

resulting in lower fares. Although the correlation is not strong, it provides insights into how ticket prices

varied based on embarkation locations.

sns.pairplot(df,hue="Survived",size=2)

plt.show()

 Interpretation:

 This code generates a pairplot using the Seaborn library to visualize relationships between numerical

features in the dataset, with different colors based on the 'Survived' attribute.

Code Breakdown:

1. sns.pairplot(df, hue="Survived", size=2):

○ Creates scatter plots for each pair of numerical attributes in the dataset.

○ Uses 'Survived' as the hue to differentiate between survivors (1) and non-survivors (0)

using color.

○ The diagonal plots will display histograms of individual features.

2. plt.show():

○ Displays the generated pairplot.

Interpretation:

● Patterns between numerical features:

○ Helps identify correlations between survival and other attributes like Age, Fare, Pclass,

and SibSp.

○ For example, higher Fare values might be more associated with survivors, indicating that

first-class passengers had higher survival rates.

● Clusters and distributions:

○ Different clusters in scatter plots can reveal trends (e.g., younger passengers in first class

might have had better survival chances).

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 34

Expected Insights:

● Higher fares might correspond to a higher survival rate.

● Passengers in lower Pclass (3rd class) might show a higher density of non-survivors.

● Age distributions could indicate whether younger passengers (e.g., children) had better

survival rates.

This visualization is useful for exploratory data analysis (EDA) and helps in feature selection for

predictive modeling.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 35

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from scipy.stats import uniform

train_df = pd.read_csv('train.csv')

column_name = 'Pclass'

data = train_df[column_name]

uniform_data = uniform.rvs(size=len(data), loc=min(data), scale=max(data) - min(data))

train_df['uniform_'+column_name] = uniform_data

sns.histplot(uniform_data, bins=50, kde=True, color='skyblue', alpha=0.7)

plt.xlabel('Uniform Distribution')

plt.ylabel('Frequency')

plt.title('Uniform Distribution for '+column_name)

plt.show()

Interpretation:

 This code generates a uniform distribution based on the values of the 'Pclass'attribute in the Titanic

dataset and visualizes it using a histogram with a KDE (Kernel Density Estimate) curve.

Code Breakdown & Execution Flow:

1. Loading the Dataset

○ train_df = pd.read_csv('train.csv')

○ Reads the Titanic dataset into a Pandas DataFrame.

2. Extracting 'Pclass' Data

○ column_name = 'Pclass'

○ data = train_df[column_name]

○ Extracts the 'Pclass' attribute for processing.

3. Generating a Uniform Distribution

○ uniform.rvs(size=len(data), loc=min(data), scale=max(data) - min(data))

○ Uses the Scipy uniform.rvs() function to generate random values from a uniform

distribution.

○ size=len(data): Ensures the number of generated values matches the dataset.

○ loc=min(data): The minimum value in 'Pclass' is set as the starting point.

○ scale=max(data) - min(data): The range is determined based on 'Pclass'.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 36

4. Adding the New Uniformly Distributed Data to the DataFrame

○ train_df['uniform_'+column_name] = uniform_data

○ Stores the generated uniform distribution values in a new attribute named

'uniform_Pclass'.

5. Plotting the Histogram & KDE

○ sns.histplot(uniform_data, bins=50, kde=True, color='skyblue', alpha=0.7)

○ Plots a histogram with 50 bins to visualize the uniform distribution.

○ kde=True: Adds a density curve for smooth visualization.

○ color='skyblue', alpha=0.7: Sets the color & transparency for aesthetics.

6. Setting Labels & Title

○ Adds appropriate labels and a title:

■ plt.xlabel('Uniform Distribution')

■ plt.ylabel('Frequency')

■ plt.title('Uniform Distribution for Pclass')

7. Displaying the Plot

○ plt.show()

Interpretation of the Plot:

● Uniform Distribution means each class (1st, 2nd, 3rd) has an equal probability of being

selected within the defined range.

● The histogram should show a flat (or nearly flat) distribution, where all values are equally

likely.

● The KDE curve helps verify if the generated random values are spread evenly across the range.

Use Case:

● This is useful in simulation studies to create synthetic datasets.

● Helps compare real Titanic passenger distribution vs. randomly generated uniform data.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 37

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

train_df = pd.read_csv('train.csv')

column_name = 'PassengerId'

data = train_df[column_name]

mean, std_dev = data.mean(), data.std()

normal_data = np.random.normal(mean, std_dev, len(data))

train_df['normal_'+column_name] = normal_data

sns.histplot(normal_data, bins=50, kde=True, color='blue', alpha=0.7)

plt.xlabel('Normal Distribution')

plt.ylabel('Frequency')

plt.title('Normal Distribution for '+column_name)

plt.show()

 Interpretation:

This code generates a normal (Gaussian) distribution based on the 'PassengerId' attribute in the Titanic

dataset and visualizes it using a histogram with a KDE (Kernel Density Estimate) curve.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 38

Code Breakdown & Execution Flow:

1. Loading the Dataset

○ train_df = pd.read_csv('train.csv')

○ Reads the Titanic dataset into a Pandas DataFrame.

2. Extracting 'PassengerId' Data

○ column_name = 'PassengerId'

○ data = train_df[column_name]

○ Extracts the 'PassengerId' attribute for processing.

3. Calculating Mean & Standard Deviation

○ mean, std_dev = data.mean(), data.std()

○ Computes the mean (μ) and standard deviation (σ) of 'PassengerId'.

4. Generating Normally Distributed Data

○ normal_data = np.random.normal(mean, std_dev, len(data))

○ Uses np.random.normal() to generate normally distributed random values:

■ Mean (μ) = Computed from 'PassengerId'

■ Standard deviation (σ) = Computed from 'PassengerId'

■ Size = Matches the number of rows in the dataset

5. Adding the Generated Normal Data to the DataFrame

○ train_df['normal_'+column_name] = normal_data

○ Stores the new normally distributed values in a new column 'normal_PassengerId'.

6. Plotting the Histogram & KDE

○ sns.histplot(normal_data, bins=50, kde=True, color='blue', alpha=0.7)

○ Plots a histogram with 50 bins to visualize the normal distribution.

○ kde=True: Adds a density curve for smooth visualization.

○ color='blue', alpha=0.7: Sets the color & transparency for aesthetics.

7. Setting Labels & Title

○ Adds appropriate labels and a title:

■ plt.xlabel('Normal Distribution')

■ plt.ylabel('Frequency')

■ plt.title('Normal Distribution for PassengerId')

8. Displaying the Plot

○ plt.show()

Interpretation of the Plot:

● Normal Distribution (Bell Curve): The generated values should follow a symmetric bell-

shaped curve centered around the mean PassengerId.

● Standard Deviation (σ): Determines how spread out the values are.

● Histogram: Shows frequencies of different values in the generated data.

● KDE Curve: Helps visualize the density of the distribution.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 39

Use Case:

Code Breakdown & Execution Flow:

1. Loading the Dataset

○ train_df = pd.read_csv('train.csv')

○ Reads the Titanic dataset into a Pandas DataFrame.

2. Extracting 'Survived' Data

○ column_name = 'Survived'

○ data = train_df[column_name]

○ Extracts the 'Survived' attribute, which is binary (0 = Did not survive, 1 = Survived).

3. Calculating Poisson Parameter (λ - Lambda)

○ lambda_param = data.mean()

○ Computes the mean survival rate, which represents the Poisson λ (lambda) parameter.

4. Generating Poisson-Distributed Data

○ poisson_data = np.random.poisson(lam=lambda_param, size=len(data))

○ Uses np.random.poisson() to generate Poisson-distributed random values, where:

■ Lambda (λ) = Mean survival rate (probability of survival)

■ Size = Matches the number of passengers in the dataset.

5. Storing Poisson Data in DataFrame

○ train_df['poisson_'+column_name] = poisson_data

○ Stores the generated Poisson data in a new attribute 'poisson_Survived'.

6. Plotting the Histogram

○ plt.hist(data, bins=30, alpha=0.5, label='Original Data')

○ plt.hist(poisson_data, bins=30, alpha=0.5, label='Poisson Distribution')

○ Plots two histograms:

■ One for the original 'Survived' attribute .

■ One for the Poisson-generated data.

○ Alpha (0.5) ensures transparency for overlapping visualization.

7. Adding Labels & Title

○ plt.legend() → Adds a legend to differentiate between original and Poisson data.

○ plt.title('Poisson Distribution for Survived') → Titles the plot.

○ plt.xlabel('Values') → X-axis represents survival values.

○ plt.ylabel('Frequency') → Y-axis represents the frequency of occurrences.

8. Displaying the Plot

○ plt.show()

Interpretation of the Plot:

1. Poisson Distribution Overview:

● A Poisson distribution models the probability of a given number of events occurring in a fixed

interval (e.g., number of survivors per group of Titanic passengers).

● It is discrete and is commonly used for count-based data.

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 40

2. Comparison with Original Data:

● The original 'Survived' column contains only 0 or 1 values.

● The Poisson distribution models event occurrences and may generate values >1, though rare.

● Poisson data closely follows the mean survival rate but shows a broader spread.

Use Cases:

● Survival Probability Modeling: Poisson distribution is useful for predicting survival rates under

different conditions.

● Event Frequency Analysis: It can estimate the likelihood of specific events happening (e.g., how

many passengers survived per group).

● Synthetic Data Generation: Helps in data augmentation for machine learning models.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

train_df = pd.read_csv('train.csv')

column_name = 'Fare'

data = train_df[column_name].dropna()

n = int(np.ceil(data.max()))

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 41

p = min(data.mean() / n, 0.99)

binomial_data = np.random.binomial(n, p, size=len(data))

sns.histplot(data, bins=30, color='blue', label='Original Data', alpha=0.5)

sns.histplot(binomial_data, bins=30, color='red', label='Binomial Distribution', alpha=0.5)

plt.legend()

plt.title('Binomial Distribution for'+ column_name)

plt.xlabel('Values')

plt.ylabel('Frequency')

plt.show()

 Interpretation:

 This code simulates a Binomial distribution based on the 'Fare' column from the Titanic dataset

and compares it with the original distribution using histograms.

Code Breakdown & Execution Flow with Specifications:

1. Loading the Dataset

○ train_df = pd.read_csv('train.csv')

○ Reads the Titanic dataset, which contains 891 records with attributes like PassengerId,

Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, and Embarked.

2. Extracting the 'Fare' attribute

○ column_name = 'Fare'

○ data = train_df[column_name].dropna()

○ Drops missing values (NaN) in the 'Fare' attribute before analysis.

3. Defining Binomial Distribution Parameters:

○ Number of Trials (n):

■ n = int(np.ceil(data.max()))

■ The maximum fare value is taken as n and rounded up using ceil().

○ Probability of Success (p):

■ p = min(data.mean() / n, 0.99)

■ The probability is derived as mean fare / max fare, ensuring it does not exceed

0.99.

4. Generating Binomial Distribution Data:

○ binomial_data = np.random.binomial(n, p, size=len(data))

○ Creates synthetic binomially distributed data based on the calculated parameters.

5. Plotting the Distribution:

○ Original 'Fare' Data:

■ sns.histplot(data, bins=30, color='blue', label='Original Data', alpha=0.5)

○ Simulated Binomial Data:

■ sns.histplot(binomial_data, bins=30, color='red', label='Binomial Distribution',

alpha=0.5)

https://www.ijsat.org/
mailto:editor@ijsat.org

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026505 Volume 16, Issue 2, April-June 2025 42

○ Labels, legends, and axes are added to ensure clarity.

6. Displaying the Plot:

○ plt.legend(), plt.title('Binomial Distribution for ' + column_name), plt.xlabel('Values'),

plt.ylabel('Frequency')

○ The histogram visualizes the difference between the original Fare distribution and the

simulated Binomial distribution.

Specifications & Observations:

● The original 'Fare' data is continuous, whereas a Binomial distribution is discrete.

● The Fare distribution is positively skewed, which might not fit well with a Binomial model.

● The Binomial model assumes independent trials, which may not accurately represent how fares

were assigned in the Titanic dataset.

This method is useful for understanding the suitability of different probability distributions for real-world

datasets.

https://www.ijsat.org/
mailto:editor@ijsat.org

