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Abstract:  

This paper introduces a novel approach, the Inverse Fractional Shehu Transform Method, for solving both 

homogeneous and non-homogeneous linear fractional differential equations. The fractional derivatives are 

considered in the Riemann-Liouville and Caputo senses. By applying the Laplace transform and the 

convolution product to the Riemann-Liouville fractional of matrices, we obtain accurate solutions for 

systems of matrix fractional differential equations. The method’s effectiveness is demonstrated through 

examples, and its accuracy is verified by comparing the results with existing solutions in the literature. A 

numerical algorithm of fractional differential algebraic equations in terms of the theory of sliding mode 

control and the Gr�̈�nwald-Letnikov is proposed assuming sliding mode surface.  

 Keywords: Inverse Fractional Shehu transform, Riemann-Liouville fractional derivative, Differential-

Algebraic Equations, Sliding Mode Control, Laplace Transform. 

1. Introduction: 

Fractional differential equations (FDEs) have gained significant attention in applied mathematics and 

physics due to their ability to model complex phenomena in various fields such as electrical circuits, fluid 

mechanics, diffusion processes, relaxation phenomena, damping laws, and mathematical biology. To solve 

these equations, several mathematical techniques have been developed, including the Variational Iteration 

Method(VIM), Variational Iteration Method (VIM) [35], Adomian Decomposition Method (ADM)[8], 

New Iterative Method [16], Differential Transform Method , Homotopy Analysis Method (HAM) [1], 

Homotopy Permutation Method(HPM) [13], Fractional Reduced Differential Transform Method [18], 

Fractional Residual Power Series Method [19].Classical methods like the Laplace Transform Method, 

Fractional Green’s Function Method, Mellim Transform Method and Method of Orthogonal Polynomials 

have also been employed [30]. 

      In this context, the Inverse Fractional Shehu Transform Method has been proposed as an effective tool 

for solving linear FDEs [15]. This method utilizes operational matrices of fractional derivatives in 

conjunction with the Laplace transform to obtain solutions for fractional-order, multi-term differential 

equations. The application of this method is further extended to fractional differential-algebraic equations 
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(FDAEs), which are prevalent in the modeling of multi-body dynamics in complex mechanical systems 

[25, 23, 7]. Solving FDEs is challenging, and numerical techniques, such as those based on sliding mode 

control theory, have been developed to address this issue. In engineering applications, systems described 

by FDAEs often arise, particularly in the context of fractional chaotic systems controlled by sliding mode 

models. These systems are characterized by FDAEs, with the sliding surface corresponding to algebraic 

equations. Applications of FDAEs are found in fields such as electrochemistry, fractional control systems, 

and biochemistry. The numerical algorithms for solving FDAEs, especially those incorporating fractional 

calculus, play a crucial role in addressing dynamic problems in mechanical systems and related 

engineering fields. In this paper, the application of the Inverse Fractional Shehu Transform Method to 

solve linear and nonlinear fractional differential equations is explored with a particular focus on systems 

involving FDAEs. We also discuss the integration of sliding mode control theory in the numerical solution 

of FDAEs, highlighting its effectiveness in handling uncertainties and disturbances in fractional-order 

systems. 

    Whenever a fractional chaotic system is regulated by the sliding mode model in a control theory, the 

control equations of motion are FDAEs and the sliding surface corresponds to the algebraic equations. 

FDAEs can be involved /employed in fields such as electrochemistry, fractional controller, biochemistry 

etc [10]. Several algebraic systems mostly approaching from engineering applications and is mostly 

applied for describing dynamic problems. Using FDAEs recently with the application of fractional order 

theory in engineering is becoming an interest task for describing dynamic problems in mechanical systems 

and engineering related fields. Like DAEs in aerospace, robot and engineering fields, the numerical 

algorithm of FDAEs working in association of fractional calculus and engineering technology will take 

an important part. For the solution of FDAEs, certain nonlinear control technologies are also employed 

successfully. Wang et al. [34] on the basis of sliding mode control theory presented a numerical method 

of FDAEs.   

By applying various methods such as variational iteration method [26, 29], Spectral methods [24], 

Adomian Decomposition method [27], Homotopy perturbation method [11] etc the fractional calculus 

operation have been analyzed as PDEs, fractional integro-differential equations and dynamic systems. For 

fractional calculus of the matrices type several operations are analyzed convolution product is developed 

to the Riemann-Liouville fractional integral of matrices [21]. The Legendre operational matrix to the 

fractional differential equations for linear and non-linear are universal. Further combination of Legendre 

series with the Legendre operational matrix of fractional derivative are employed in Caputo sense for the 

numerical integration of FDEs [32]. With the presentation of new shifted Chebyshev operational matrix 

of fractional integration in the Riemann-Liouville sense for evaluating linear, multi-term fractional 

differential equations is forwarded by applying it with spectral Tau method [3]. On the basis of operational 

matrices of differintegrals for various kinds of fractional differential equation for linear and non-linear 

spectral tools are analysed [4]. Approximation and numerical methods are applied as most fractional 

differential equations do not give exact analytic solutions. For the fractional differential equations the 

numerical solutions related to finite difference methods and several spectral algorithm for FDE were 

declared [5]. Bhrawy [5] proposed an operational matrix formulation of the collecting technique for 1 and 

2-dimensional non-linear fractional sub-diffusion equations. 
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Definitions and Preliminaries: 

Various definitions of a fractional derivative of order 𝛼 ≥ 0 are used amongst which commonly used are 

the Riemann-Liouville and Caputo. 

Definition 1.1 

     For a function f ∈ 𝐶𝜇, 𝜇 ≥ −1, the Riemann- Liouville fractional integral operator 𝐼𝛼 of order 𝛼 is 

defined as the following: 

                                                        𝐼𝛼𝑓(𝑡) = {

1

Γ(𝛼)
∫ (𝑡 − 𝜉)𝛼−1𝑓(𝜉)𝑑𝜉, 𝛼 > 0, 𝑡 > 0,
𝑡

0

𝑓(𝑡),                           𝛼 = 0,
 

where Γ(. ) Is the Gamma function. 

Definition 1.2  

The Riemann- Liouville fractional derivative operator 𝐷𝛼𝑅  of order 𝛼 for a function f ∈ 𝐶𝜇, 𝜇 ≥ −1, is 

given as  

                       𝐷𝛼𝑓(𝑡) = 𝐷𝑛𝐼𝑛−𝛼𝑓(𝑡) =
1

Γ(𝑛−𝛼)

𝑅 𝑑𝑛

𝑑𝑡𝑛
∫ (𝑡 − 𝜉)𝑛−𝛼−1𝑓(𝜉)𝑑𝜉
𝑡

0
 , 𝑡 > 0,  

 Where  𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁.   

Definition 1.3  

The fractional derivative of f(t) in the Caputo sense is defined as the following  

         𝐷𝛼𝑓(𝑡) = 𝐼𝑛−𝛼𝐷𝑛𝑓(𝑡) =
1

Γ(𝑛−𝛼)

𝑐 ∫ (𝑡 − 𝜉)𝑛−𝛼−1𝑓(𝑛)(𝜉)𝑑𝜉
𝑡

0
 , 𝑡 > 0,  

   Where  𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, f∈  𝐶−1
𝑛    [20] 

Shehu transform: 

 Shehu transform is a new integral transform introduced by Shehu Maitama Shehu et al. (2019) for 

applying in solving an ordinary and partial differential equations. 

Definition 1.4 

For the set of functions given below 

                𝐴 = {
𝑓(𝑡)

∃𝑁
, 𝜂1, 𝜂2 > 0, |𝑓(𝑡)| < Nexp (

|𝑡|

𝜂𝑗
) , 𝑖𝑓 𝑡 ∈ (−1)𝑖 × [0,∞)},                         the Shehu 

transform of the function f(t) of exponential order is defined by the integral 

                 𝕊[𝑓(𝑡)] = 𝐹(𝑠, 𝑢) = ∫ 𝑒(−
𝑠𝑡

𝑢
)𝑓(𝑡)𝑑𝑡, 𝑡 > 0,

∞

0
 

Inverse Shehu transform:  

For finding the inverse Shehu transform function f (t)= 𝕊−1[𝐹(𝑠, 𝑢)], the following theorems are 

important. 
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Theorem 1: If 𝛼, 𝛽 > 0, 𝑎 ∈ ℝ, and |𝑎| <
𝑠𝛼

𝑢𝛼
, then the inverse Shehu transform formula is 

                                   𝕊−1 [
𝑢𝛽𝑠𝛼−𝛽

𝑠𝛼+𝑎𝑢𝛼
] = 𝑡𝛽−1𝐸𝛼,𝛽(−𝑎𝑡

𝛼) 

Theorem 2: 

If 𝛼 ≥ 𝛽 > 0, 𝑎 ∈ ℝ, and |𝑎| < (
𝑠

𝑢
)
𝛼−𝛽

, then the inverse Shehu transform formula is  

                        𝕊−1 [
𝑢(𝑛+1)(𝛼+𝛽)

(𝑠𝛼𝑢𝛽+𝑎𝑢𝛼𝑠𝛽)
𝑛+1] = 𝑡

𝛼(𝑛+1)−1∑
(−𝑎)𝑘(𝑛+𝑘

𝑘
)

Γ(𝑘(𝛼−𝛽)+(𝑛+1)𝛼)
𝑡𝑘(𝛼−𝛽)∞

𝑘=0  

                                 

Theorem 3: 

  If 𝛼 ≥ 𝛽, 𝛼 > 𝛾, 𝑎 ∈ ℝ, |𝑎| < (
𝑠

𝑢
)
𝛼−𝛽

, 𝑎𝑛𝑑|𝑏| <
𝑠𝛼𝑢𝛽+𝑎𝑢𝛼𝑠𝛽

𝑢𝛼+𝛽
 , then the inverse Shehu transform formula 

is 

                                [
𝑢𝛼+𝛽−𝛾𝑠𝛾

𝑠𝛼𝑢𝛽+𝑎𝑢𝛼𝑠𝛽+𝑏𝑢𝛼+𝛽
] = 𝑡𝛼−𝛾−1∑ ∑

(−𝑏)𝑛(−𝑎)𝑘(𝑛+𝑘
𝑘
)

Γ(𝑘(𝛼−𝛽)+(𝑛+1)𝛼−𝛾)
𝑡𝑘(𝛼−𝛽)+𝑛𝛼∞

𝑘=0
∞
𝑛=0   

 

Property (1): 

The Shehu transform is a linear operator. 

Property (2): 

Let us suppose that F(s, u) and G (s, u)be the Shehu transforms of f(t) and g(t), both defined on a set  𝐴 =

{
𝑓(𝑡)

∃𝑁
, 𝜂1, 𝜂2 > 0, |𝑓(𝑡)| < N exp (

|𝑡|

𝜂𝑗
) , 𝑖𝑓 𝑡 ∈ (−1)𝑖 × [0,∞)}.     

Then the Shehu transform of their convolution is defined as  

                      𝕊[(𝑓 ∗ 𝑔)(𝑡)] = 𝐹(𝑠, 𝑢)𝐺(𝑠, 𝑢),  

where the convolution of the two functions is given by  

                                                  (𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝜉)𝑔(𝑡 − 𝜉)𝑑𝜉 =  ∫ 𝑓(𝑡 − 𝜉)𝑔(𝜉)𝑑𝜉 
𝑡

0

𝑡

0
 

Property (3): 

The Shehu transform of 𝑡𝛼  is given by  

                                                              𝕊[𝑡𝛼] = (
𝑢

𝑠
)
𝛼+1

Γ(𝛼 + 1) 
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Shehu transform for fractional derivatives:  

For the function f(t) of order 𝛼, if F(s, u) be the Shehu transform of f(t), then the Shehu transform of the 

Riemann-Liouville fractional integral is given as  

                               𝕊[𝐼𝛼𝑓(𝑡)] = (
𝑢

𝑠
)
𝛼

𝐹(𝑠, 𝑢) 

Proof: 

    For a function f ∈ 𝐶𝜇, 𝜇 ≥ −1, the Riemann- Liouville fractional integral operator 𝐼𝛼 of order 𝛼 is 

defined as the following: 

                                                        𝐼𝛼𝑓(𝑡) = {

1

Γ(𝛼)
∫ (𝑡 − 𝜉)𝛼−1𝑓(𝜉)𝑑𝜉, 𝛼 > 0, 𝑡 > 0,
𝑡

0

𝑓(𝑡),                           𝛼 = 0,
     (1) 

Where Γ(. ) Is the Gamma function. 

As in equation (1), the Riemann-Liouville fractional integral for the function f(t) can be given as 

convolution 

                                                        𝐼𝛼𝑓(𝑡) =
1

Γ(𝛼)
𝑡𝛼−1 𝜁 ∗ 𝑓(𝑡) 

Using property (2) and (3) and applying the Shehu transform above, the following result is obtained as  

                           𝕊[𝐼𝛼𝑓(𝑡)] = 𝕊 [
1

Γ(𝛼)
𝑡𝛼−1 ∗ 𝑓(𝑡)] = 𝕊 [

𝑡𝛼−1

Γ(𝛼)
] 𝕊[𝑓(𝑡)] = (

𝑢

𝑠
)
𝛼

𝐹(𝑠, 𝑢)    

   

The application of the inverse fractional Shehu transform method to some linear fractional differential 

equations [20]. 

Example 1. 

  For the following linear fractional initial value problem [22] 

                                         𝐷
1

2
𝑅 𝑦(𝑡) + 𝑦(𝑡) = 0,                                                            (2)                                                                  

Subject to the initial condition                                                                                                                                                               

[ 𝐷−1/2𝑅 𝑦(𝑡)]
𝑡=0

= 2.                                                                                                     (3)                                                                                                         

By a theorem and applying the Shehu Transform on both sides of (2), we have                                             

               (
𝑠

𝑢
)

1

2
𝑌(𝑠, 𝑢) − ∑ (

𝑠

𝑢
)
𝑘

𝑛−1
𝑘=0 [ 𝐷

1

2
−𝑘−1𝑅 𝑓(𝑡)]

𝑡=0
+ 𝑌(𝑠, 𝑢) = 0.                           (4)                                                           

Using (3) into (4), we get 

                                           [(
𝑠

𝑢
)
1/2

+ 1] 𝑌(𝑠, 𝑢) − 2 = 0.                                                                           So 

                                          Y(s, u) = 𝑆[𝑦(𝑡)] =  
2𝑢1/2

𝑠1/2+ 𝑢1/2
 .  
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From the Theorem (1), the exact solution of this problem can be obtained as  

                                           y (t) = 2𝑡−1/2𝐸1
2
,
1

2

(−𝑡1/2).                                                                                                

Example 2:                                                                                                                                                                                    For 

the initial value problem of non-homogeneous Bagley-Torvik equation [ 2 ] 

                                           𝑦 ,,(𝑡) + 𝐷
3

2𝑦(𝑡) + 𝑦(𝑡) = 1 + 𝑡,                           (5)                                                                            

subject to the initial conditions 

                                               y (0) = 𝑦 ,(0) = 1                                              (6)                                                                                                          

Applying the Shehu Transform on both sides of (5)and using a Theorem     , we have 

𝑠2

𝑢2
𝑌(𝑠, 𝑢) −

𝑠

𝑢
𝑦(0) − 1 +

𝑠3/2

𝑢3/2
Y(𝑠, 𝑢) −

𝑠1/2

𝑢1/2
𝑦(0) −

𝑠−1/2

𝑢−1/2
𝑦 ,(0) + 𝑌(𝑠, 𝑢) =

𝑢

𝑠
+
𝑢2

𝑠2
   

                                                                                                                             (7)                    Substituting 

(6) into (7), we get 

                      Y(𝑠, 𝑢) [
𝑠2

𝑢2
 +

𝑠3/2

𝑢3/2
+ 1] =

𝑢

𝑠
+
𝑢2

𝑠2
+

𝑠

𝑢
+ 1 +

𝑠1/2

𝑢1/2
+

𝑠−1/2

𝑢−1/2
              (8)   

Then (8) gives 

                        Y(𝑠, 𝑢) [
𝑠2

𝑢2
+

𝑠3/2

𝑢3/2
+] = (

𝑢

𝑠
+
𝑢2

𝑠2
) (

𝑠2

𝑢2
+

𝑠3/2

𝑢3/2
+ 1)                        (9) 

So                                  Y(s, u) = 𝑆[𝑦(𝑡)] =
𝑢

𝑠
+
𝑢2

𝑠2
,                                            (10) 

Taking the inverse Shehu transform of (10), we get 

                                        y (t)= 1 + 𝑡  

which is the exact solution of the problem. 

Example 3: 

For the following linear fractional initial value problem [ 28 ] 

                                          𝐷𝛼𝑐 y (t)= 𝑦(𝑡) + 1, 0 < 𝛼 ≤ 1,                             (11) 

Subject to the initial condition 

                                       y (0)= 0.                                                                   (12) 

Applying the Shehu transform to both sides of (11) and using Theorem    , we get 

                                         
𝑠𝛼

𝑢𝛼
𝑌(𝑠, 𝑢) = 𝑌(𝑠, 𝑢) +

𝑢

𝑠
,  

So                                     Y(𝑠, 𝑢) = 𝑆[𝑦(𝑡)] =  
𝑢𝛼+1𝑠−1

𝑠𝛼+ 𝑢𝛼
 

Applying the Theorem 1, the exact solution of this problem can be obtained as 

                                         y (t) = 𝑡𝛼𝐸𝛼,𝛼+1(𝑡
𝛼)                                              (13) 
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Fractional Differential-Algebraic Equations:   

For the following affine nonlinear fractional differential-algebraic equation  

                                        {
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑥

(𝛼)(𝑡) + 𝑓(𝑥, 𝑡) + 𝐵2𝑤(𝑡)

𝑠(𝑥) = 0
    (14)      

Where x = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 is the state vector, 𝑥(𝛼)(𝑡) is the fractional derivatives of order 𝛼, f(x, t) is the 

nonlinear part, w(t) is the external input, s(x) is the algebraic equation and A, 𝐵1, 𝐵2 are the coefficient 

matrices.                 

Example 4: 

An example with Exact Solutions [33] 

Let us consider a nonlinear fractional order differential-algebraic equation 

                                           

{
 
 

 
 �̇�1 = −𝑥1 +

3

2
𝑥2 − 𝑥3 +

1

Γ(2.5)
𝑥1
0.5 + 𝑥3

1.5

�̇�2 = 𝑥2 +
1

2

1

𝑥2
− 𝑥3

1.5

�̇�3 = 
1

2
𝑥1 + 1 −

1

2
𝑥3
1.5

𝑥1 − 𝑥2𝑥3 = 0          

           (15) 

Its exact solution are  

                                            {
𝑥1 = 𝑡

1.5

𝑥2 = 𝑡
0.5

𝑥3 = 𝑡

                                                              (16)                          

By (14) and (15), this can be expressed in the matrix form, then we get 

              A  = [

−1
3

2
−1

0 1 0
1

2
0 0

], 𝐵1 = [

1

Γ(2.5)
0 0

0 0 0
0 0 0

] , f (x, t) = 

[
 
 
 

𝑥3
1.5

1

2

1

𝑥2
− 𝑥3

0.5

1 −
1

2
𝑥3
1.5
]
 
 
 

       (17) 

Using the sliding mode control theory, we convert the fractional order differential-algebraic equation into 

an equivalent fractional differential equation, and obtain the sliding mode surface, given by  

                                 �̇�(t) = 𝐴𝑥(𝑡) + 𝐵1𝑥
(0.5)(𝑡) + 𝑓(𝑥, 𝑡) + 𝑔(𝑥)𝑢 

                                                       s (x) =  𝑥1 − 𝑥2𝑥3 = 0                                       (18) 

Considering the controllability condition, the control matrix is chosen as g(x) = (0,1, 0)𝑇.The parameters 

of sliding mode are set to be 𝜀 = 5 𝑎𝑛𝑑 𝜆 = 5. The control vector u is consistent with the control law. 

We start with the initial condition x (𝜏)  = (0.001, 0.1,0.01)𝑇 , (𝜏 ≤ 0). (  ) is solved numerically by using 

the present method, and the numerical solutions are studied by comparing with the exact solutions in the 

followings.  
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The Laplace transform is used for designing various engineering systems as control system in many 

applications 

         Consider fractional-order, multi-term differential equation with constant coefficients 

             ∑ 𝑎𝑖𝐷
𝑣𝑦(𝑡) = 𝐷𝑛[𝐷−(𝑛−𝑣)𝑦(𝑥)]𝑛

𝑖=0 = 𝐷𝑛[𝐷−𝑢𝑦(𝑥)]  

By taking Laplace transform on the above equation, we have  

 

             ∑ 𝑎𝑖
𝑛
𝑖=0 𝐿{𝐷𝑣𝑦(𝑥)} = ∑ 𝑎𝑖𝐿{𝐷

𝑛[𝐷−(𝑛−𝑣)𝑦(𝑥)]}𝑛
𝑖=0 𝑛    

               = ∑ 𝑎𝑖𝑠
𝑣𝑛

𝑖=0 Y(s )−∑ 𝑎𝑖 ∑ 𝑠𝑛−𝑖𝐷𝑖−1+𝑣𝑦(0)𝑛
𝑖=1

𝑛
𝑖=0  

Using more simplifying notations, the last expression can be reduced to  

             ∑ 𝑎𝑖
𝑛
𝑖=0 𝐿{𝐷𝑣𝑦(𝑥)} = 𝐴𝑛(𝑠)𝑌(𝑠) − 𝐴𝑛(0, 𝑇)  

We have borrowed the notation style from the soft-ware engineering concepts 

              𝐴𝑛(𝑠) = ∑ 𝐴𝑛𝑠
𝑣𝑛

𝑘=0  

Therefore 

                 Y(s) = 
𝑈(𝑠)

𝐴𝑛(𝑠)
−
𝐴𝑛(0,𝑇)

𝐴𝑛(𝑠)
 

System of fractional differential equations and real symmetric matrices: [15] 

For solving systems of fractional differential equations, the applications of this method with real 

symmetric matrices are discussed. 

Let A be a real symmetric matrix .Let the following system of fractional order be considered. 

         𝑋𝛼 = (
𝑥1
𝛼

⋮
𝑥𝑛
𝛼
) = 𝐴𝑥 + 𝑔(𝑡) = (

𝑥1
⋮
𝑥𝑛
) + (

𝑔1(𝑡)
⋮

𝑔𝑛(𝑡)
) 

In this g is a continuous, vector-valued function of variable x for the unknown vector function X = 𝑋(𝑡). 

A is a diagonizable matrix as it is a symmetric matrix. Let 𝑣1, … , 𝑣𝑛 be the corresponding eigen vectors to 

the eigen-values  𝜆1, … , 𝜆𝑛. 

Putting x = 𝑃𝑦 into the above equation gives 

              𝐷𝛼𝑃𝑦 = 𝐴(𝑃𝑦) + 𝑔(𝑡) 

                     P𝐷𝛼𝑦 =  𝐴(𝑃𝑦) + 𝑔(𝑡) 

Since P contains real numbers, then 

                     𝐷𝛼𝑦 =  𝑃−1𝐴𝑃𝑦 + 𝑃−1𝑔(𝑡) 

                              =   𝑃𝑇𝐴𝑃𝑦 + 𝑃𝑇𝑔(𝑡) 

https://www.ijsat.org/
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                               = 𝐷𝑦 + 𝑃𝑇𝑔(𝑡) 

                               = 𝐷𝑦 + ℎ𝑔(𝑡)  

where D is the diagonalized matrix of A and h = 𝑃𝑇𝑔(𝑡) 

                   (
𝑦1
𝛼

⋮
𝑦2
𝛼
) = (

𝑦1
⋮
𝑦𝑛
) + (

ℎ1(𝑡)
⋮

ℎ𝑛(𝑡)
) 

Thus 

                     𝐷𝛼𝑦𝑖 = 𝜆𝑖𝑦𝑖 + ℎ𝑖(𝑡) 

By taking Laplace transform, it gives 

        L{𝐷𝛼𝑦𝑖} = 𝐿{𝐷𝑛[𝐷−(𝑛−𝛼)𝑦𝑖]} 

                       = 𝑠𝑛𝐿{𝐷−(𝑛−𝛼)𝑦𝑖} − ∑ 𝑠𝑛−𝑖𝐷𝑖−1−(𝑛−𝛼)𝑛
𝑖=1 𝑦𝑖(0) 

                       = 𝑠𝑛{𝑠−(𝑛−𝛼)𝑌𝑖(𝑠)} − ∑ 𝑠𝑛−𝑖𝐷𝑖−1−(𝑛−𝛼)𝑛
𝑖=1 𝑦𝑖(0) 

                       = 𝑠𝛼𝑌𝑖(𝑠) − ∑ 𝑠𝑛−𝑖𝐷𝑖−1−𝑛+𝛼𝑛
𝑖=1 𝑦𝑖(0) 

By taking the inverse Laplace transform, the solution is obtained. 

Consider the first order of the fractional differential equation 

                            𝐷0.5𝑦(𝑡) + 𝐴𝑦(𝑡) = 𝑢(𝑡) 

By taking Laplace transform on the above equation,  

                              Y(s) =
1−𝑒−𝑠𝑇−𝑠0.5𝑒−𝑠𝑇𝑢(𝑇)

𝑠0.5(𝑠0.5+𝑐)
                                    

Since Y(s) must be analytic from the above equation at s = −𝑐 

                                1−𝑒−𝑠𝑇 + 𝑐𝑒𝑐𝑇𝑢(𝑇) = 0  

This gives the boundary value for u (T) as  

                                 u (T) = 
1−𝑒−𝑐𝑇

𝑐
      

Similarly writing the system function 

                                 𝑠0.5𝑌(𝑠) + 𝑒−𝑠𝑇𝑦(𝑇) + 𝐴𝑦(𝑡) = 𝑈(𝑠) 

Solving for Y(s) 

  Y(s) =
1−𝑒−𝑠𝑇−𝑠0.5𝑒−𝑠𝑇𝑢(𝑇)−𝑠0.5(𝑠0.5+𝑐)𝑒−𝑠𝑇𝑦(𝑇)

𝑠0.5(𝑠0.5+𝑐)(𝑠0.5 +𝑝)
 

Y(s) must be analytic from the above equation at s = −𝑝 

         1−𝑒𝑝𝑇 + 𝑝0.5𝑒𝑝𝑇𝑢(𝑇) + 𝑝0.5(𝑐 − 𝑝)𝑒𝑝𝑇𝑦(𝑇) = 0 

https://www.ijsat.org/
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Hence 

                                 y (T) = 
1−𝑒−𝑝𝑇−𝑝0.5𝑢(𝑇)

𝑝0.5(𝑐−𝑝)
  

Example 5: [15]    Solve the fractional-order system when 𝛼 =  
2

3
   

𝑋𝛼 = (
𝑥1
𝛼

𝑥2
𝛼)  = (

−2 1
1 −2

) (
𝑥1
𝑥2
) +(2𝑒

−𝑡

3
) = 𝐴𝑥 + 𝑔(𝑡)          

Substituting x= 𝑃𝑦 forms a simple system, with P= (𝑣1   𝑣2)       

1. f values 𝜆 of A occurs when |𝐴 − 𝜆𝐼| = 0 

 

            |
−2 − 𝜆 1
1 −2 − 𝜆

| =  (𝜆 − 2)2 − 1 = (𝜆 + 1)(𝜆 + 3)         

Hence, 𝜆 = −1,−3 

 In case, 𝜆 = −1 

                             (
−1 1
1 −1

) (
𝑣1
𝑣2
) = (

0
0
) 

And 𝑣1 = 𝑣2. Thus 𝑣1 = (
1
1
) 

In case, 𝜆 = −3 

                           (
1 1
1 1

) (
𝑣1
𝑣2
) = (

0
0
) 

And 𝑣1 = −𝑣2. Thus 𝑣1 = (
1
−1
) 

Substituting 𝑥 = 𝑃𝑦 into the differential equation yields 

                     𝑦 , = 𝑃−1𝐴𝑃𝑦 + 𝑃−1𝑔 = 𝐷𝑦 + 𝑃𝑇𝑔 

              (
−1 0
0 −3

) (
𝑦1
𝑦2
) +

1

√2
(
1 1
1 −1

) (2𝑒
−𝑡

3
) = (

−𝑦1 +
1

√2
(2𝑒−𝑡 + 3)

−3𝑦2 +
1

√2
(2𝑒−𝑡 − 3)

)  

Now, first row yields 

              𝐷
2

3𝑦1 =
1

√2
(2𝑒−𝑡 + 3) 

               𝑠
2

3𝑦1(𝑠) − 𝐷
−(1−

2

3
)𝑦1(0) =  

1

√2
(
2

𝑠+1
+ 3) 

               𝑠
2

3𝑦1(𝑠) − 𝑐 =  
1

√2
(
2

𝑠+1
+ 3) 

               𝑦1(𝑥) =
1

√2
(𝑡

2

3𝐸
1,
5

3

(𝑡) +
3𝑡
2
3
−1

Γ(
2

3
)
) +

𝑐𝑡
2
3
−1

Γ(
2

3
)
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Similarly   𝑦2(𝑥) =
1

√2
(𝑡

2

3𝐸
1,
5

3

(𝑡) +
3𝑡
−1
3

Γ(
2

3
)
) −

𝑐𝑡
−1
3

Γ(
2

3
)
    

2. Conclusion:  

The Laplace transform method has proven to be a satisfactorily implementing and effective as well as 

reliable approach for solving and finding matrix fractional partial differential equations and matrix 

fractional differential equations. It demonstrates a high rate of convergence and practical applicability. 

Additionally, the inverse fractional transform method has been successfully applied to both homogeneous 

and non-homogeneous problems showing promise as a powerful and efficient tool for accurately solving 

linear fractional differential equations. Furthermore, the precision of numerical techniques for systems 

involving fractional differential-algebraic equations can be enhanced by utilizing the direct violation 

correction method, particularly when applied in conjunction with sliding mode control. 
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