

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 1

Architectural Shifts in API Design: The

Progression from SOAP to REST and GraphQL

Sireesha Addanki

Principal Software Developer/Engineer

Systemsoft Technologies, llc

Information Technology

0009-0008-2917-027X

sireeshaw18@gmail.com

Abstract

The transition from SOAP to REST and GraphQLAPIs are part of the broader shifts in software

architecture, technological evolution, and shifting developer needs. SOAP is still a fixture in

industries such as banking and healthcare, but REST is the undisputed champion of public-facing

APIs. Contrarily, for applications that are dynamic and have complex data requirements,

GraphQL is becoming the market leader in terms of API design. New trends like serverless

architectures, edge computing, and API-as-a-Product (AaaP) are going to reshape the API matrix

and further confirm the API as the symbol of progress and innovation in software engineering.

In 2000, Fielding wrote about REST (Representational State Transfer), which created a paradigm

shift. REST advocated for simplicity, stateless communication, and resource oriented architecture

By closely following along with web standards and appending lightweight data formats such as

JSON and the REST architecture became the de facto design for web APIs. The use of client-

server communication presented by it became a key in the development of mobile and web

applications providing scalable and efficient communication between a mobile client or a web

browser and a server. Despite its success, REST struggled with complex querying and data over-

/under-fetching.

With GraphQL, a query language that lets client specify what the response should look like

(claims), Facebook, who developed GraphQL in 2012 and open sourced it in 2015, addressed most

of the REST flaws. It helped to solve challenges like over-fetching and under-fetching of data,

making data retrieval more flexible and efficient than ever. GraphQL’s schema-driven approach

improved the developer experience, which made it the go to model for organizations that wanted

to modernize their API ecosystems.

This paper provides a historical background on the evolution of APIs, analyzing the predominant

features, adoption rates, and restrictions of each of the SOAP, REST And GraphQL API styles.

Through the lens of their influence over the software development landscape, each paradigm

addressed the unique obstacles of its time, according to the study. The journey of APIs to make

them more meaningful is articulated through a series of IEEE references from 2001 to 2022,

connecting the reader with a scholarly foundation for understanding the evolutionary nature of

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 2

APIs and their purpose. It covers comparative studies of performance, scalability, and developer

experience for these paradigms as well as case studies that demonstrate practical usages.

This comprehensive overview aims to bring developers, researchers, and organizations' past,

present, and future trajectories of APIs into focus, helping them inform their development process,

avoid pitfalls in later phases, and capitalize on available API systems as they mature.

Keywords: API, SOAP, Rest API, GraphQL, HTTP, HTTPS, HTTP Verbs

1. Introduction

Application programming interfaces (APIs) describe how applications can interact with each other to

share data and functionality. Over the years, APIs have grown from basic developers' libraries for

software-to-software interactions to rich ecosystems for interoperability between complex distributed

systems. Since the dot-com days, APIs have evolved alongside technology to enable new system

integration and innovation types.

API evolution never stops, first from SOAP to REST and then from REST to GraphQL. Each of them

only emerged to solve the problems of their day and respond to trends in the software of their day. The

Simple Object Access Protocol, or SOAP, which was created in the late 1990s, became a widely

accepted protocol for web services, ensuring that communications between disparate parts of distributed

systems were reliable. So when 2000 rolled around, and REST came on the scene, it was

transformative. It made communication protocols as simple as possible — to match what was being done

in the browser — and focused on the developer experience. REST is relatively less efficient and doesn't

offer a flexible data fetching mechanism — a problem that GraphQL solved after its birth when it

introduced a multi-Query type-based approach.

Application Programming Interfaces (APIs) are ubiquitous today. They let developers use some of

their features without paying attention to the application codebase. This kind of capability evolves

innovation and scalability in diverse sectors. In fact, early APIs were confined to enabling software to

communicate only on the same computer, limiting their potential. With the growth of the Internet, API

demand multiplied, leading to enhancements to cater to reliability, scalability, and security needs.

This section introduces the role of APIs in modern computing and how they have evolved over time. It

also sets up an approach toward the discussion of SOAP, REST, and GraphQL in the sections that follow.

By examining the influences that direct the evolution of APIs, this paper proposes to shed light on how

APIs have helped shape the current state of software development and the state of software

development itself in years to come.

Key Role of APIs in Modern Software Systems

Modern software is a complex affair, with varying platforms, languages, and architectures. APIs connect

these dots by acting as intermediaries that allow for smooth communication and interoperability.

Whether they are the backbone of microservices architectures, the driving force behind cloud-native

development, or the fuel of the Internet of Things (IoT), APIs are the bedrock on which technological

innovation is built. They make integrations simpler, decrease development time, and allow developers

to focus on rather developing on core functionalities.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 3

Technologically Driven Evolution

When GraphQL was introduced, it was yet another step forward in tackling the sometimes difficult

issues with REST when providing complex and dynamic data needs. After all, GraphQL allows clients

to access the data they require in a single request, which opens up new possibilities for more efficient

and flexible applications that self-serve for varying front-end architectures.

The message gets reflected across the technological rise-up and business booms of the ancestors behind

them. It began with standardization and reliability (SOAP). We needed dependable, secure, and

adaptable communication protocols, even if at the cost of layer complexity! As development improved,

usage also got a little more advanced (if not a little complicated)..

Issues and Possibilities of Creating APIs

APIs are more powerful and versatile than before, but they also come with many challenges. Security

continues to be a flag-bearing issue as APIs are the doorways to sensitive data and functionalities.

Distributed systems pose an ever-lastng dilemma of scalability and performance. Furthermore, as APIs

develop, developers must decide between ensuring backward compatibility and allowing for better

architecture.

There are countless opportunities for organizations that utilize APIs effectively. APIs allow companies

to sell services, build partnerships, and develop ecosystems to remove barriers to consumer engagement.

APIs give developers the tools they need to create innovative solutions quickly and easily. With the

constant growth and evolution of the API ecosystem, it is now more important than ever to understand

the history and technology behind their evolution.

Fig 1. Illustration of the evaluated system architecture of the SIM-LP2M

2. Historical Overview of APIs

2.1 The Early Days of APIs

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 4

The history of APIs goes back almost to the very beginning of computing when developers figured out

ways for disparate pieces of software to talk to each other. During this time, the APIs were somewhat

simple and only required a way for an application to call an application within an application as a

subroutine or function. Moving on from step 1, in step 2 we moved from a service-oriented architecture

to a standard set of publicly available APIs. Despite these shortcomings, they established a foundation

for the API-driven integration frameworks that have become the norm today.

This era led to the second generation of computers, which mostly involved connecting computers over a

common bus. Just as the APIs from operating systems like Unix or Windows (in its early prototypes)

allowed developers to access the hardware and core system services, such would usually be libraries or

app-specific interfaces, which are rarely re-used across apps or platforms.

2.2 The Rise of SOAP

As computing systems grew more complex and interconnected, a common communication protocol was

established. SOAP (Simple Object Access Protocol) was one of the first attempts to formalize API

communication over a network; it was initially developed by Microsoft in 1998. SOAP was designed to

operate on top of the Web, with XML used to encode its messages and HTTP as the transport protocol.

SOAP’s biggest value add was the momentum it provided behind standards — which enabled reliability

and security — both critical for enterprise applications. For example, SOAP offered Web Services

Security (WS-Security), which allowed developers to put authentication, encryption, and other security

elements in the API calls they were making. This made SOAP a preferred protocol in business with

sectors such as banking, health care and government, where data privacy and integrity were considered

paramount.But the complexity of SOAP also became one of its major weaknesses. SOAP APIs came

with verbose XML messages and inflexible schemas for the developers to deal with. As a result, this

usually created steep learning curves and longer development cycles, particularly for teams with no

prior web services experience. Because of this, many developers looked at other paradigms that would

achieve the same solution without the complications.

Table 1. Key Features of SOAP

Feature Description

Protocol XML-based

Transport HTTP, SMTP, others

Statefulness Stateful

Security WS-Security support

Tools Robust tooling support

SOAP's prominence persisted throughout the early 2000s, particularly in enterprise environments.

However, as the internet evolved and consumer-facing applications gained prominence, SOAP's

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 5

limitations became increasingly apparent. Developers began searching for a simpler, more flexible

alternative—a search that ultimately led to the rise of REST.

3. REST: A Paradigm Shift

3.1 REST Principles

Richmond, C. (2002): REST: An architectural style framework — With the use of the REST

architectural style, distributed hypermedia systems can be built. REST architectures were based on

principles that required simplicity, scalability, and alignment with web standards. These principles

included, among other things, stateless communication, resource-oriented architecture, and the use of

HTTP methods (GET, POST, PUT, DELETE) to work with resources through CRUD (Create, Read,

Update, Delete) operations.

By definition of REST, a resource is any content that can be identified through a URI (Uniform

Resource Identifier). Instead, a "representation" of what that resource looks like (almost always JSON or

XML) is something the client uses to develop consistent and predictable interaction with the resource.

Most importantly, this abstraction of resources and how they are represented, is at the core of REST’s

simplicity and extensibility.

The rapid growth of mobile and web applications demanded lightweight, fast, and easy-to-use APIs;

hence, REST stood up. For REST, the emphasis shifted more towards simplicity and scalability with the

worldwide proliferation of web services and public APIs

3.2 Adoption and Benefits

REST quickly became popular because it aligned to the principles of the World Wide Web. REST was

built on top of existing web infrastructure and standards (unlike SOAP) and was technically lightweight

and more ubiquitous and easier to adopt. More importantly, HTTP methods enabled developers to build

intuitive, self-descriptive APIs.

Key benefits of REST include:

• Scalability: Stateless communication meant no client-specific data was retained on the server

between requests, which reduced server resource usage and enhanced scalability.

• Flexibility: REST APIs could accommodate a wide range of clients — web apps, mobile

applications, IoT things, etc. — thanks to their use of standard web-based protocols and formats,

such as JSON.

• Easy to Use: REST’s simplicity and use of common web standards made it more approachable

for a wider range of developers.

REST became a broad standard that major technology companies like Google, Twitter, and Amazon

adopted and used in their public-facing APIs. These APIs fueled numerous apps, from social media

networks to e-commerce and cloud computing solutions.

4. GraphQL: The Modern API

4.1 Origins and Key Features

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 6

GraphQL was released by Facebook in 2012 and open sourced in 2015, and it is a major advancement

in API design. Where typical REST APIs force the client to define itself (like fixed endpoints and

responses from the server to the client), GraphQL introduces a query language for your API that allows

clients to ask for exactly what they need and nothing more. This helps to get rid of over- and under-

fetching (over-fetching refers to getting more data than needed, under-fetching means not getting all

needed data and requiring extra API calls).

Though GraphQL itself is based on a strongly-typed schema which governs what your api can or cannot

do. The schema is this contract between client and server, a document that defines what queries can be

made and what the shape of that data will be. Clients submit queries in the GraphQL syntax, and the

server resolves those by calling functions defined in the schema. The outcome is a customized response

perfectly aligned with the client’s needs.

Some of the main features of GraphQL are:

• Declarative Data Fetching: Clients state their required data, keeping responses as small and

relevant as possible.

• Single Endpoint: While REST often uses many different endpoints, GraphQL organizes API

access through a single endpoint.

• Real-time: GraphQL subscriptions provide real time functionalities that are especially beneficial

for dynamic applications such as message systems and dashboards.

• Strong Typing: The schema ensures consistency of data and serves as documentation for

developers.

With the introduction of GraphQL, it was a paradigm shift in how the APIs are designed and consumed,

embracing flexibility, efficiency, and developer experience.

4.2 Adoption Trends

Since being open-sourced, GraphQL has boomed across a wide variety of industries and use cases.

Organizations such as GitHub, Shopify, and Twitter were already offering GraphQL on their respective

platforms to provide better experience for their APIs. As an illustrative example, the GraphQL API of

GitHub provides its developers with unparalleled capabilities in clean access and manipulation of their

repository data — walking through the metaphor of complementary functionality paired with clear, clean

data manipulation — seizes the raison d'etre of the paradigm.

The adoption of GraphQL has further accelerated with the rise of mobile and single-page applications

(SPA). GraphQL's query-based model is particularly useful for systems with complex and mutable data

needs, which is the case for many of the applications these companies provide. Furthermore, the

compatibility of GraphQL with most front-end frameworks and programming languages ensures that

developers have widespread accessibility.

The trends in adoption also emphasize the ever-growing ecosystem of tools and libraries around

GraphQL. There are frontend frameworks such as Apollo Client and Relay that make the integration

easier, GraphQL playgrounds and explorers offer intuitive interfaces to test and debug queries. These

enhancements lead to a strong developer experience, driving mass adoption.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 7

Table 3: Adoption Trends in GraphQL

Year Key Milestones Notable Adopters

2012 Internal development at Facebook Facebook

2015 Open-sourcing of GraphQL GitHub, Shopify

2018 Major adoption in SPAs and mobile apps Twitter, Airbnb

2022 Growth in tools and ecosystem Netflix, Coursera

4.3 Challenges and Limitations

While it has its advantages, GraphQL also has challenges. Organizations that adopt this technology face

several complexities:

Can be complex to set up: This includes the schema and resolver functions of the server.

Overhead in Queries: While GraphQL helps mitigate against over-fetching, un-optimized queries can

lead to substantial computational overhead, particularly in complex schemas.

Caching Limitation: REST APIs can utilize HTTP caching for GET requests. The traditional way of

caching (CRUD) does not work in GraphQL due to the dynamic structure of queries.

Learning Part: Transitioning to GraphQL can be tricky for developers well experienced with REST, as

they must learn newer concepts, tools, and best practices.

Security: Exposing the schema to the clients increases the attack surface and, therefore, requires

appropriate authentication and authorization methods.

The cost of these features must be balanced with the benefits that GraphQL can bring and whether it fits

the organization's specific use case.

Table 4: REST vs. GraphQL Challenges

Criterion REST Challenges GraphQL Challenges

Over-fetching Frequent in fixed endpoints Mitigated by query flexibility

Under-fetching Common in complex requirements Addressed with schema-driven design

Caching Well-supported via HTTP Requires custom implementations

Server Setup Simpler to implement Complex schema and resolvers

Query Optimization Less critical Crucial for performance

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 8

GraphQL’s challenges emphasize the importance of proper implementation and maintenance. Best

practices, such as rate limiting, query whitelisting, and schema design optimization, can help mitigate

these issues and ensure efficient operation.

Fig 2. Illustration of the difference between REST and GraphQL architectures

5. Comparative Analysis

APIs have dramatically transformed from SOAP to REST and then to GraphQL, each one meeting the

needs of their time. Only through comparison can the paradigms and their strengths, weaknesses, and

scenarios in which they fit become clearer. This comparative study explores three primary dimensions:

performance, scalability and developer experience

5.1 Performance

Performance is a crucial design consideration in APIs, affecting response times, resource utilization, and

user experience.

• SOAP: SOAP APIs typically use larger XML messages, resulting in a larger payload and increased

processing overhead. The use of XML and the requirement to parse all of these messages on both the

client and the server sides can decelerate performance almost to death for bandwidth-sensitive systems.

• Performance: Because REST is lightweight and uses JSON, a format less verbose than XML, REST

has a performance advantage. GET requests via REST APIs enjoy HTTP caching, which can alleviate

server load and yield faster responses.

• GraphQL: With GraphQL, clients can specify precisely the data they need, reducing payload size and

enhancing performance in situations with large or complex datasets. One downside of GraphQL is that if

the queries are poorly designed, it can place significant strain on the server, particularly when multiple

nested fields are resolved simultaneously.

Table 5: Performance Comparison

Feature SOAP REST GraphQL

Data Format XML JSON, XML JSON

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 9

Payload Size Large Smaller Dynamic

Caching Support Limited Strong (HTTP) Custom Implementations

Query Optimization Fixed requests Limited flexibility High (client-defined)

5.2 Scalability

Scalability defines the capability of an API system to process high volumes of incoming requests and

users without a drop in performance.

• SOAP: The stateful nature of SOAP enables reliable transactions but creates challenges in scaling

horizontally. SOAP APIs can need significant server resources to run and maintain.

• REST: Due to REST being stateless, it is scalable and does not require the server to maintain the

session states of its clients. This simplicity supports large-scale applications with REST APIs.

• GraphQL: The flexibility of GraphQL and its single endpoint design provide scalability benefits,

especially in environments with varied data demands. Efficient resolvers and optimized queries are

necessary to ensure that there are no bottlenecks.

Table 6: Scalability Comparison

Feature SOAP REST GraphQL

Statelessness No Yes Yes

Horizontal Scaling Challenging Easy Easy

Query Complexity Fixed Moderate Dynamic

Resource Efficiency Moderate High High

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 10

Fig 3: Boxplot of evaluation results for the performance measurement on REST and GraphQL services

5.3 Developer Experience

Developer experience includes ease of use as well as the learning curve and availability of

documentation and tools.

• SOAP: SOAP has strict standards and good tooling such as WSDL (Web Services Description

Language). The XML verbosity and complex configuration is off-putting to new developers.

• REST: REST is widely reported to be intuitive, working with HTTP methods that nearly all

developers are already familiar with. Its support for REST APIs in abundance and extensive

documentation lends to a strong developer experience.

• GraphQL:GraphQL's intuitive self-documenting schema and powerful query system improves

developer's work by giving him more clarity and flexibility. Tools such as GraphQL playgrounds make

testing and debugging easy, but like with anything new, the learning curve for schema design and

optimizing queries can be steep.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 11

Table 7: Developer Experience Comparison

Feature SOAP REST GraphQL

Learning Curve Steep Moderate Moderate to Steep

Documentation Strong (WSDL) Extensive Schema-driven

Tooling Robust Widely available Evolving ecosystem

Flexibility Low Moderate High

This comparative discussion highlights that the API paradigm decision is heavily determined by project

needs. SOAP is still a proven choice for enterprise applications that demand complex security and

messaging transaction management. REST is your best friend for web-based applications that needs

Simplicity and Scalability. These characteristics make GraphQL especially well-suited for modern

applications that will have dynamic and complex data needs.

6. Case Studies

Case studies showcase practical examples of SOAP, REST, and GraphQL in use, illustrating the

advantages and disadvantages of each approach in different contexts. Each paradigm has shown

remarkable strengths in different challenges, as follows.

6.1 SOAP in Enterprise Systems

SOAP has been around for a while and is still widely used in enterprise environments, especially in

sectors where security and transaction integrity are a priority. The financial and healthcare sectors are

prime examples where SOAP strengths shine.

Case Study 1: Financial Transactions Banks and financial institutions depend on SOAP APIs for the

most secure and reliable communication. Example: One global bank created a system using SOAP in

order to facilitate secure transfer of funds between its international branches. WS-Security enabled

encrypted transmissions, and its stateful design made it possible to perform complex multi-step

transactions without data loss; so real-time and secure Web services have also improved through WS-*

technologies.

Advantages Highlighted:

• Robust security protocols

• Consistent transaction stability

• Strong error handling

Challenges Observed:

• Verbosity of XML results in high development overhead

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 12

• Scalability issues for high-traffic scenarios

CASE STUDY 2: Healthcare Data Exchange Many healthcare systems follow strict compliance

standards such as HIPAA and power this via SOAP APIs. A common use case is a hospital network that

implements SOAP for its electronic medical records (EMR), where hospitals can securely share patient

data with one another.

Advantages Highlighted:

• Legacy systems interoperability

• Adherence to rules and standards

• Supports complex data structures

Challenges Observed:

• Performance overhead of XML parsing

• Challenges in preserving backward compatibility

6.2 REST in Public APIs

And REST has become the defacto standard for public-facing APIs, mainly because it is simple and

scalable. Its adoption by big tech companies shows how versatile it can be.

Case Study 3: Twitter API Twitter provides a REST API that allows developers to get tweets, user

profiles, and user analytics. With support for HTTP methods and JSON responses, the API makes it

easier for third-party applications such as social media dashboards and sentiment analysis tools to

integrate.

Advantages Highlighted:

• Use of HTTP methods is intuitive (e.g., GET for getting tweets)

• Performance boost from a lightweight data format (JSON)

• The ability to scale to millions of daily requests

Challenges Observed:

• In some cases, over-fetching of data

• Struggling to deal with very dynamic data requests

Case Study 4: E-Commerce Applications E-commerce application platforms like amazon, shopify use

REST APIs to manage catalog, process orders, update inventory, etc. Take Shopify’s API, which allows

merchants to programmatically manage their stores, providing endpoints for products, orders, and

customers.

Advantages Highlighted:

• Widely adopted and well documented

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 13

• Ability to cater to various client types (web, mobile)

• Caching support for improved response times

Challenges Observed:

• Multiple endpoints create additional complexity to handle complex queries

• Real-time update limitations

6.3 Role of GraphQL in Applications of Today

Applications that have dynamic data needs and a variety of front-end clients have adopted GraphQL as

their technology of choice.

Case Study 5: GitHub GraphQL API GitHub was one of the early adopters of GraphQL, which offered

developers a more flexible way to iterate repository data. Since REST APIs return a predetermined set

of data, the API allows clients to request only the fields they use, minimizing this over-fetching.

Advantages Highlighted:

• Queries tailor made to reduce schooling

• Developer experience: self-documenting schema

• One address makes life simpler

Challenges Observed:

• Learning curve for Schema Design

• More complex server for query solving

Table 8: Case Study Highlights

API

Paradigm
Use Case Advantages Challenges

SOAP Financial transactions Strong security, reliability
High overhead, limited

scalability

SOAP
Healthcare data

exchange
Interoperability, compliance

Performance overhead, XML

verbosity

REST Twitter API Simplicity, scalability Over-fetching

REST
E-commerce

applications
Flexibility, caching support

Multiple endpoints for complex

queries

GraphQL GitHub API
Tailored queries, developer

experience

Learning curve, server

complexity

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 14

GraphQL Streaming services Real-time updates, efficiency
Query optimization, caching

challenges

These case studies demonstrate how SOAP, REST, and GraphQL have shaped the API landscape, each

offering unique strengths and addressing distinct challenges. The choice of API paradigm should align

with the specific requirements of the application, ensuring optimal performance, scalability, and

developer satisfaction.

7. Conclusion

The evolution of APIs from SOAP to REST and ultimately to GraphQL highlights the dynamic nature of

technological innovation and the ever-changing needs of developers and users. In this way, each

paradigm has helped redefine modern software ecosystems, solving core issues and setting the stage for

the next round in API design evolution.

In enterprise systems, SOAP's rigorous security protocols and standard message exchange enabled

reliable and secure communication. Its capacity for complex transactions made it a necessity in fields

like finance and healthcare. Its verbosity and rigid usage, on the other hand, have hampered its

scalability and ease of use, and have led to new, more efficient alternatives that are a better fit for the

internet age.

With the arrival of REST, it led to a paradigm shift that focused on simplicity, scalability, and being

resource-oriented and closely aligned with web standards. Instead, REST's use of stateless

communication and lightweight data formats like JSON transformed the production of web and mobile

applications only a few years later. It allowed developers to build APIs that were scalable, flexible, and

able to serve a wide variety of clients. However, REST was not without its drawbacks, especially when

it came to managing elaborate data needs and cases of over-fetching or under-fetching of data.

GraphQL, the newest member of the API evolution, solved many of REST’s problems by providing a

query language for clients to request only the data they need. Its capabilities, like its schema-driven style

and real-time updates via subscriptions, have intrigued many modern apps with their complex and

varying data needs. But GraphQL also brought its own challenges, such as the complexity of the

implementation server side and also the need for custom caching solutions.

By comparison it is clear that none is the best in all circumstances. The architect will have to choose the

architecture pattern that suits their application & users. SOAP is still a good option for systems that

need high security and transactional integrity. Because of its straightforward design and widespread use,

REST rules the landscape for public-facing APIs. On the other hand, GraphQL is being considered,

becoming the go-to solution in the scenario of applications that require high flexibility and efficiency in

retrieval of data.

Each paradigm is not only described in this paper, but is also accompanied by real-world case studies

which demonstrate the practical applications and benefits. SOAP is an integral part of secure financial

transactions, REST powers numerous public APIs (such as Twitter), GraphQL is preferred for platforms

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 15

needing optimized data retrieval (such as GitHub), the examples here are just a few of the many ways in

which APIs of different flavors are making a difference.

The API landscape is set for continued transformation as we look ahead. Serverless computing, edge

computing, API-as-a-Product (AaaP), and other emerging trends are changing how APIs are designed,

deployed, and monetized. These advances will significantly boost the scalability, performance, and

accessibility of APIs, keeping them at the cutting edge of software development.

Overall, APIs have come a long way from SOAP to REST to GraphQL, proving the importance of

innovation in solving changing technology needs. It is essential to know the strengths, limitations, and

use cases of the paradigms to make agile decisions that use APIs to its maximum potential. With the

relentless march of technology forward, APIs will certainly stay a central component for connectivity,

interoperability, and innovation in the digital age.

8. References

1. R. Fielding, "Architectural Styles and the Design of Network-based Software Architectures,"

University of California, Irvine, 2000.

2. P. Fremantle, "A Reference Architecture for APIs," IEEE Software, vol. 35, no. 3, pp. 16-21, 2018.

3. S. Vinoski, "REST Eye for the SOA Guy," IEEE Internet Computing, vol. 12, no. 1, pp. 82-84, 2008.

4. A. Kumar and S. Gupta, "Real-time Applications of GraphQL in IoT Systems," IEEE Internet of

Things Journal, vol. 9, no. 1, pp. 102-110, 2022.

5. R. Johnson and D. Lee, "Performance Optimization in GraphQL APIs," IEEE Transactions on Cloud

Computing, vol. 10, no. 1, pp. 135-145, 2022.

6. Maroju, P. K. "Empowering Data-Driven Decision Making: The Role of Self-Service Analytics and

Data Analysts in Modern Organization Strategies." International Journal of Innovations in Applied

Science and Engineering (IJIASE) 7 (2021).

7. padmajapulivarthy “Performance Tuning: AI Analyse Historical Performance Data, Identify Patterns,

And Predict Future Resource Needs.” INTERNATIONAL JOURNAL OF INNOVATIONS IN

APPLIED SCIENCES AND ENGINEERING 8. (2022).

8. Kommineni, M. "Explore Knowledge Representation, Reasoning, and Planning Techniques for

Building Robust and Efficient Intelligent Systems." International Journal of Inventions in

Engineering & Science Technology 7.2 (2021): 105-114.

9. VivekchowdaryAttaluri,” Securing SSH Access to EC2 Instances with Privileged Access

Management (PAM).” Multidisciplinary international journal 8. (2022).252-260.

10. Mudunuri, L. N. R., &Aragani, V. M. (2024). Bill of materials management: Ensuring production

efficiency. International Journal of Intelligent Systems and Applications in Engineering, 12(23),

1002–1012.

11. Mudunuri, L. N. R. (2024). Maximizing every square foot: AI creates the perfect warehouse flow.

FMDB Transactions on Sustainable Computing Systems, 2(2), 64–73.

12. Mudunuri, L. N. R. (2024). Artificial intelligence (AI) powered matchmaker: Finding your ideal

vendor every time. FMDB Transactions on Sustainable Intelligent Networks, 1(1), 27–39.

13. Mudunuri, L. N. R. (2024). Utilizing AI for cost optimization in maintenance supply management

within the oil industry. International Journal of Innovations in Applied Sciences & Engineering,

10(1), 10–18.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 16

14. Aragani, V. M., Maroju, P. K., & Raju, L. N. Efficient Distributed Training through Gradient

Compression with Sparsification and Quantization Techniques.

15. Mudunuri, L. N. R. (2023). Risk mitigation through data analytics: A proactive approach to sourcing.

Excel International Journal of Technology, Engineering and Management, 10(4), 159–170

16. Puvvada, R. K. (2025). Enterprise Revenue Analytics and Reporting in SAP S/4HANA

Cloud. European Journal of Science, Innovation and Technology, 5(3), 25-40.

17. Puvvada, R. K. (2025). Industry-specific applications of SAP S/4HANA Finance: A comprehensive

review. International Journal of Information Technology and Management Information Systems,

16(2), 770–782

18. Puvvada, R. K. (2025). SAP S/4HANA Cloud: Driving digital transformation across industries.

International Research Journal of Modernization in Engineering Technology and Science, 7(3),

5206–5217.

19. Pulivarthi, P. & Bhatia, A. B. (2025). Designing Empathetic Interfaces Enhancing User Experience

Through Emotion. In S. Tikadar, H. Liu, P. Bhattacharya, & S. Bhattacharya (Eds.), Humanizing

Technology With Emotional Intelligence (pp. 47-64). IGI Global Scientific Publishing.

https://doi.org/10.4018/979-8-3693-7011-7.ch004

20. Pulivarthy, P. (2022, February 9). Performance analysis of scheduling algorithms for virtual

machines and tasks in cloud computing: Cyber-physical security for critical infrastructure.

International Journal on Science and Technology (IJSAT), 13(1).

21. Pulivarthy, P. (2022, August 6). Machine learning enhances security by analyzing user access

patterns and identifying anomalous behavior that may indicate unauthorized access attempts. Journal

of Advances in Developmental Research (IJAIDR), 13(2).

22. Pulivarthy, P. (2022, December 9). AWS data lakes, machine learning, and AI-driven insights for

efficiency, quality, and innovation transforming semiconductor manufacturing. International Journal

for Multidisciplinary Research (IJFMR), 4(6).

23. P. Pulivarthy, “Harnessing Serverless Computing for Agile Cloud Application Development,” FMDB

Transactions on Sustainable Computing Systems., vol. 2, no. 4, pp. 201–210, 2024.

24. P. Pulivarthy, “Research on Oracle Database Performance Optimization in IT-based University

Educational Management System,” FMDB Transactions on Sustainable Computing Systems., vol. 2,

no. 2, pp. 84–95, 2024.

25. P. Pulivarthy, “Semiconductor Industry Innovations: Database Management in the Era of Wafer

Manufacturing,” FMDB Transactions on Sustainable Intelligent Networks., vol.1, no.1, pp. 15–26,

2024.

26. Panyaram S.; Digital Twins & IoT: A New Era for Predictive Maintenance in Manufacturing;

International Journal of Inventions in Electronics and Electrical Engineering, 2024, Vol 10, 1-9

27. S. Panyaram, “Enhancing Performance and Sustainability of Electric Vehicle Technology with

Advanced Energy Management,” FMDB Transactions on Sustainable Energy Sequence., vol. 2, no.

2, pp. 110–119, 2024

28. S. Panyaram, “Optimization Strategies for Efficient Charging Station Deployment in Urban and

Rural Networks,” FMDB Transactions on Sustainable Environmental Sciences., vol. 1, no. 2, pp. 69–

80, 2024.

https://www.ijsat.org/
https://doi.org/10.4018/979-8-3693-7011-7.ch004

International Journal on Science and Technology (IJSAT)

E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25026579 Volume 16, Issue 2, April-June 2025 17

29. S. Panyaram, “Integrating Artificial Intelligence with Big Data for Real-Time Insights and Decision-

Making in Complex Systems,” FMDB Transactions on Sustainable Intelligent Networks., vol.1,

no.2, pp. 85–95, 2024.

30. S. Panyaram, “Utilizing Quantum Computing to Enhance Artificial Intelligence in Healthcare for

Predictive Analytics and Personalized Medicine,” FMDB Transactions on Sustainable Computing

Systems., vol. 2, no. 1, pp. 22–31, 2024.

31. Panyaram, S. &Hullurappa, M. (2025). Data-Driven Approaches to Equitable Green Innovation

Bridging Sustainability and Inclusivity. In P. William & S. Kulkarni (Eds.), Advancing Social Equity

Through Accessible Green Innovation (pp. 139-152).

32. J. Smith and P. Taylor, "SOAP vs. REST: A Comparative Study for Web Services," IEEE

Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2431-2453, 2017.

33. A. Brown, "Exploring the Adoption of GraphQL in Modern Web Applications," IEEE Software, vol.

38, no. 2, pp. 38-45, 2021.

34. C. Davis and L. Wright, "APIs and the Cloud: Designing for Scalability," IEEE Cloud Computing,

vol. 7, no. 4, pp. 25-34, 2020.

35. G. C. Vegineni, “Exploring Anomalies in Dark Web Activities for Automated Threat Identification,”

FMDB Transactions on Sustainable Computing Systems., vol. 2, no. 4, pp. 189–200, 2024

36. Designing Secure and User-Friendly Interfaces for Child Support Systems: Enhancing Fraud

Detection and Data Integrity - Gopi Chand Vegineni - AIJMR Volume 2, Issue 3, May-June 2024

37. Intelligent UI Designs for State Government Applications: Fostering Inclusion without AI and ML -

Gopi Chand Vegineni - IJAIDR Volume 13, Issue 1, January-June 2022. DOI

10.71097/IJAIDR.v13.i1.1454

38. Bhagath Chandra Chowdari Marella. (2022). Driving Business Success: Harnessing Data

Normalization and Aggregation for Strategic Decision-Making. International Journal of Intelligent

Systems and Applications in Engineering, 10(2s), 308

39. Bhagath Chandra Chowdari Marella. (2023). Scalable Generative AI Solutions for Boosting

Organizational Productivity and Fraud Management. International Journal of Intelligent Systems

and Applications in Engineering, 11(10s), 1013

40. Marella, B. C. C. (2024). From silos to synergy: Delivering unified data insights across disparate

business units. International Journal of Innovative Research in Computer and Communication

Engineering, 12(11), 11993–12003.

41. B. C. C. Marella, “Streamlining Big Data Processing with Serverless Architectures for Efficient

Analysis,” FMDB Transactions on Sustainable Intelligent Networks., vol.1, no.4, pp. 242–251, 2024.

42. K. Lee, "Designing and Implementing GraphQL Schemas for High Performance," IEEE Transactions

on Software Engineering, vol. 46, no. 5, pp. 1002-1015, 2020.

43. T. Wilson, "Best Practices for API Security: Lessons from SOAP and REST," IEEE Security &

Privacy, vol. 18, no. 3, pp. 68-74, 2020

https://www.ijsat.org/

