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Abstract: Brain tumor detection and segmentation from MRI images are critical tasks for early 

diagnosis and effective treatment planning in medical imaging. This project aims to develop an 

advanced deep learning-based framework for automatic tumor classification and segmentation, 

leveraging state-of-the-art neural network architectures, namely MobileNet and DenseNet, to 

improve detection accuracy and computational efficiency. MobileNet's lightweight design facilitates 

real-time applications by reducing model complexity without sacrificing performance, while 

DenseNet's densely connected layers enhance feature propagation, leading to more robust and 

precise classification outcomes.The system is designed to classify brain MRI images into two 

categories: tumor and non-tumor. The classification networks employ MobileNet and DenseNet to 

maximize accuracy and optimize computational resources. MobileNet provides a streamlined 

approach suitable for edge computing and mobile devices, ensuring faster inference times, while 

DenseNet's improved gradient flow contributes to higher detection accuracy.For segmentation 

tasks, the framework can be extended to localize tumor regions within the brain, potentially using 

complementary segmentation techniques. The integration of these models aims to enhance 

diagnostic capabilities by providing automated, reliable, and accurate tumor detection to support 

clinical decision-making. This approach holds promise for improving early diagnosis, reducing the 

need for invasive diagnostic procedures, and potentially integrating into real-time diagnostic 

systems in healthcare settings.The project will evaluate the proposed methods using benchmark 

datasets, with performance metrics including accuracy, precision, recall, and segmentation quality 

to validate its effectiveness in real-world medical imaging scenarios. 

 

Index Terms - Brain Tumor, MRI, MobileNet, DenseNet, Deep Learning, Accuracy and Robust. 

 

I. Introduction 

Brain tumors represent one of the most critical and life-threatening health conditions, with the potential to 

significantly impact the quality of life and survival of affected individuals. Early diagnosis and accurate 

detection of brain tumors are crucial for effective treatment planning, which can substantially improve 

patient outcomes. Traditional methods of diagnosing brain tumors typically involve manual analysis of 

Magnetic Resonance Imaging (MRI) scans by radiologists. While this approach has been a standard 

practice in the medical field, it presents several limitations, such as the time-consuming nature of manual 

analysis, dependency on the radiologist’s expertise, and the potential for human error. These challenges 

highlight the need for automated, reliable, and efficient diagnostic tools that can assist medical 

professionals in making quick and accurate decisions regarding brain tumor detection and treatment. 
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Recent advancements in deep learning and medical imaging have opened new avenues for automating the 

diagnosis of complex health conditions, including brain tumors. By leveraging sophisticated neural 

network architectures, it is possible to develop systems capable of detecting and segmenting brain tumors 

from MRI images with high accuracy. This project aims to address the limitations of traditional diagnostic 

methods by developing a deep learning-based framework for brain tumor classification and segmentation 

using MobileNet and DenseNet architectures. The goal is to create a system that can automatically classify 

brain MRI images as "tumor" or "non-tumor" and, potentially, segment the tumor regions with precision, 

thus providing valuable support to radiologists and healthcare professionals. 

 

 

                                                     

 

 

 

 

 

 

                                              Fig 1.5: Architecture of Introduction 

 

The choice of MobileNet and DenseNet architectures for this project is motivated by their unique strengths 

in deep learning. MobileNet is known for its lightweight structure, making it highly suitable for real-time 

applications and resource-constrained environments, such as mobile devices or edge computing platforms. 

Its streamlined design reduces computational complexity while maintaining acceptable levels of 

classification accuracy, which is beneficial for deploying the model in clinical settings where speed and 

efficiency are crucial. On the other hand, DenseNet offers a complementary set of advantages by 

incorporating densely connected layers that facilitate better feature propagation throughout the network. 

This architecture allows the model to learn complex patterns more effectively, leading to improved 

classification performance. By integrating MobileNet and DenseNet, the project seeks to harness the best 

of both architectures to build a reliable and efficient system for brain tumor detection. 

The framework will be designed to handle various aspects of brain tumor analysis, including classification 

and, optionally, segmentation. Classification involves determining whether an MRI image shows evidence 

of a brain tumor or is normal (non-tumor), which is a critical first step in the diagnostic process. The 

segmentation component, while not the primary focus, adds significant value by identifying and 

delineating the specific regions of the tumor within the brain. This information can aid in determining the 

tumor's size, shape, and location, which are essential factors for treatment planning and prognosis. If 

included, segmentation will be achieved using complementary techniques, potentially integrating with the 

classification results to refine the detected regions. 

The project will make use of publicly available benchmark datasets containing MRI images of the brain. 

These datasets typically include labeled images with known classifications (tumor or non-tumor) and, in 

some cases, annotated segmentations of tumor regions. Such data is crucial for training, validating, and 

testing the deep learning models. The models' performance will be evaluated using established metrics for 

classification tasks, including accuracy, precision, recall, and F1-score. For segmentation tasks, metrics 

like the Dice coefficient and Intersection over Union (IoU) will be used to assess the quality of the 
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predicted tumor regions. The comprehensive evaluation will help ensure the model's robustness and 

reliability when applied to real-world medical data. 

The integration of deep learning into medical imaging for brain tumor detection is not only a technical 

challenge but also an opportunity to improve healthcare delivery. By automating the detection process, 

this project aims to reduce the workload on radiologists, allowing them to focus on complex cases that 

require more detailed analysis. Automated tools can serve as a second opinion, providing consistent 

diagnostic information and potentially catching tumors that might be missed during manual review. 

Furthermore, a real-time diagnostic system based on this framework could be deployed in remote or under-

resourced medical facilities, where access to expert radiologists is limited, thus democratizing access to 

quality healthcare. 

MobileNet’s efficiency makes it particularly appealing for implementation in point-of-care devices and 

mobile applications. For example, a mobile application integrating the trained model could enable doctors 

in remote locations to quickly screen patients for brain tumors, providing immediate feedback and 

recommendations for further medical action. Similarly, DenseNet's capability to learn intricate patterns in 

medical images could help in refining the detection process, especially in cases where the tumor 

characteristics are subtle and hard to identify. Together, these models form the foundation of a system that 

could significantly impact clinical workflows and patient care. 

In terms of future work, the project has several potential directions. First, it could be extended to support 

more advanced segmentation techniques, such as 3D tumor reconstruction from multiple MRI slices, to 

provide a volumetric analysis of the tumor. This would offer a more comprehensive view of the tumor, 

aiding in pre-surgical planning and monitoring treatment response over time.Additionally the framework 

could be adapted to accommodate other imaging modalities like CT scans. 

 

II. LITERATURE REVIEW 

 

1. B. Srikanth et al. presented [26] a 16-layer VGG-16 deep NN, which accepts improved  images 

from a prior pre-processing phase as input and moves them through the convolution layer for extracting 

the features and downsampling (Convolution, ReLU, Max-Pooling. 

2. GS Tandel et al. [27] The researcher developed five clinical multiclass datasets. They      used a 

transfer learning-based Convolutional Neural Network (CCN) to improve performance in brain tumor 

classification by employing MRI images.  

3. Pereira et al. [1] proposed a deep CNN model using small convolutional kernels for glioma 

segmentation in MRI scans. Their method demonstrated high accuracy and robustness across multiple 

datasets. 

4. Hossain et al. [2] developed a hybrid model combining CNN and Support Vector Machines 

(SVMs) to classify MRI brain scans, achieving a notable increase in classification accuracy. 

5. Myronenko (2018) integrated a variational autoencoder with U-Net for brain tumor segmentation, 

achieving competitive performance on the BRATS dataset. 

6. Isensee et al. [3] proposed nnU-Net, a self-adapting framework that configures its architecture and 

training pipeline automatically. nnU-Net outperformed most manually tuned architectures across several 

biomedical segmentation tasks 

 

 



 

 

III.MOTIVATION & APPROACH 

 

3.1 Proposed System 

The brain tumor classification and segmentation leverages deep learning models, specifically MobileNet 

and DenseNet, to automate the detection and classification of brain tumors from MRI images. This 

framework aims to address the limitations of manual analysis by providing an advanced, efficient, and 

accurate diagnostic solution. The system classifies MRI images into "tumor" and "non-tumor" categories, 

and includes optional segmentation capabilities to delineate tumor regions, which can aid in treatment 

planning by highlighting the tumor's size, shape, and location.Advantages of the proposed system are the 

integration of MobileNet and DenseNet enhances detection accuracy by leveraging advanced feature 

extraction, leading to more reliable tumor classification and segmentation, automated analysis 

significantly reduces the time required for diagnosis, providing results in real-time or near-real-time, 

which is crucial in time-sensitive medical cases , the system minimizes human error by providing 

consistent and objective results, reducing reliance on subjective interpretation by radiologists , mobileNet's 

lightweight architecture ensures computational efficiency, enabling deployment on mobile devices or edge 

computing platforms, which can support on-site screening in remote areas , the model can be deployed in 

under-resourced or remote medical settings, improving access to diagnostic tools for patients who may 

not have immediate access to expert radiologists , with the flexibility to adapt for use on mobile devicesor 

cloud-based systems, the proposed system can scale across different healthcare facilities, from urban 

hospitals to rural clinics ,  the hybrid architecture allows for scalability, enabling future enhancements and 

integration with additional deep learning models or techniques as needed. 

 

3.1.1 Mobile Net  

The methodology for brain tumor detection and segmentation using MobileNet begins with a 

comprehensive understanding of the underlying principles of this lightweight deep learning architecture. 

MobileNet is designed for mobile and edge devices, emphasizing efficiency while maintaining high 

accuracy levels. The first step involves data acquisition, where a well-curated dataset of brain MRI images 

is sourced, ensuring it includes a balanced mix of tumor and non-tumor cases. The dataset is then 

preprocessed to enhance image quality and prepare it for model training. This preprocessing may involve 

resizing images to a consistent dimension, normalizing pixel values to a range suitable for the neural 

network, and augmenting the dataset through techniques such as rotation, flipping, and scaling to increase 

its diversity and robustness. 

Once the data is prepared, the next step is to configure the MobileNet architecture, which uses depthwise 

separable convolutions to reduce the number of parameters and computations. This feature is crucial for 

facilitating real-time inference, especially on devices with limited computational 

resources. The network consists of multiple convolutional layers followed by ReLU activation functions, 

batch normalization, and dropout layers to prevent overfitting. The final layers are designed to output 

probabilities for the binary classification of brain MRI images. During the training phase, the model is 

optimized using an appropriate loss function, typically binary cross-entropy for classification tasks, 

alongside an optimizer like Adam or SGD. The training process involves feeding the preprocessed images 

into the network, allowing it to learn features indicative of tumor presence. The model's performance is 

regularly evaluated on a validation set, monitoring metrics such as accuracy, precision, and recall to ensure 

it is not overfitting and is generalizing well to unseen data. 



 

 

Following training, the model undergoes rigorous testing on a separate test dataset to assess its 

classification accuracy and robustness. This step is crucial to determine the model's ability to differentiate 

between tumor and non-tumor images effectively. The evaluation includes analyzing the confusion matrix, 

precision-recall curve, and F1-score to gain insights into the model's performance. The architecture can 

also be fine-tuned by adjusting hyperparameters, such as learning rates, batch sizes, and dropout rates, 

based on the evaluation results to further enhance its performance. Additionally, model interpretability is 

vital in a medical context, so techniques like Grad-CAM can be employed to visualize which parts of the 

MRI images influenced the model’s decisions, thereby providing clinicians with insights into the model's 

reasoning. 

 
                                               Figure 3.2.1 Architecture of Mobilenet 

 

To extend the application of MobileNet for segmentation tasks, further layers may be integrated to enable 

the model to localize tumor regions within the MRI images. This can involve implementing upsampling 

techniques and skip connections to enhance spatial information and achieve more accurate segmentations. 

Ultimately, the effectiveness of MobileNet in this framework is measured through comprehensive 

evaluations on benchmark datasets, focusing on segmentation quality and classification accuracy. The 

ultimate goal of employing MobileNet is to create an efficient, accurate, and reliable system for brain 

tumor detection and segmentation, capable of supporting clinical decision-making and potentially 

integrating into real-time diagnostic systems within healthcare settings. By leveraging MobileNet's 

strengths, the project aims to improve early diagnosis, thus enhancing patient outcomes through timely 

interventions. 

 

3.1.2 DENSENET 

The methodology for brain tumor detection and segmentation using DenseNet begins by leveraging its 

unique architecture, which is designed to improve feature propagation and reduce the number of 

parameters while maintaining accuracy. DenseNet connects each layer to every other layer in a feed-

forward manner, facilitating improved gradient flow throughout the network during training. Initially, a 

comprehensive dataset of brain MRI images is gathered, ensuring that it contains a balanced representation 

of both tumor and non-tumor cases. The dataset is then subjected to preprocessing, which includes resizing 

images to a standardized input size, normalizing pixel values for optimal model performance, and 



 

 

augmenting the data to increase its variability. This augmentation process may involve techniques such as 

rotation, zooming, and horizontal flipping, which help the model generalize better by exposing it to a 

wider range of scenarios during training. The next step involves configuring the DenseNet architecture , 

which is composed of dense blocks that allow for feature reuse and minimize redundancy. Each dense 

block is followed by transition layers that perform down-sampling, gradually reducing the spatial 

dimensions while preserving important feature information. This hierarchical structure enables DenseNet 

to learn more robust representations, especially beneficial in medical imaging tasks where subtle features 

can indicate the presence of a tumor. During the training phase, the model is trained on the preprocessed 

dataset using a suitable loss function, typically binary cross-entropy for tumor classification, and an 

optimizer such as Adam or SGD. As the model trains, it learns to identify distinguishing features of brain 

tumors, with the performance being continuously evaluated on a validation set to ensure that it is not 

overfitting. 

  

Figure 3.2.2 Architecture of Densenet 

 

After training, the DenseNet model undergoes rigorous testing on a separate test dataset to evaluate its 

performance in classifying brain MRI images. This evaluation involves measuring metrics such as 

accuracy, precision, recall, and the F1 score, alongside analyzing the confusion matrix to understand the 

model's strengths and weaknesses in classification tasks. If necessary, the model can be fine-tuned by 

adjusting hyperparameters, including learning rates, dropout rates, and batch sizes, based on performance 

results to further optimize its efficacy.                           

To extend the DenseNet architecture for segmentation tasks, additional layers can be integrated, allowing 

the model to localize tumor regions within the MRI images effectively. Techniques such as upsampling 

and the use of skip connections can enhance the spatial resolution of segmented outputs, enabling more 

precise localization of tumor boundaries. The integration of these techniques is essential for applications 

where accurate tumor segmentation is crucial for treatment planning and clinical decision-making. 



 

 

Furthermore, model interpretability is particularly important in healthcare applications, so methods like 

saliency maps or Grad-CAM can be utilized to visualize which regions of the MRI images the model 

focuses on when making predictions. This transparency can help build trust in the model's outputs among 

clinicians, ensuring that its predictions can be understood and validated in a medical context. 

The success of DenseNet in this framework is measured through comprehensive evaluations on benchmark 

datasets, focusing not only on classification accuracy but also on segmentation quality. Ultimately, by 

employing DenseNet, the project aims to create a powerful, efficient, and reliable system for brain tumor 

detection and segmentation that enhances diagnostic capabilities, supports clinical decision-making, and 

has the potential for integration into real-time healthcare applications, ultimately improving patient 

outcomes through timely and accurate diagnosis and treatment. 

 

3.1.3 UNET-2 

The methodology for brain tumor detection and segmentation using the U-Net architecture begins with 

understanding its specialized design, tailored for biomedical image segmentation tasks. U-Net features a 

symmetrical architecture that consists of a contracting path for feature extraction and an expansive path 

for precise localization. The contracting path captures contextual information through a series of 

convolutional and pooling layers, gradually reducing the spatial dimensions while increasing the  

depth of the feature maps. This allows the network to learn hierarchical representations of the input MRI 

images, crucial for identifying intricate details associated with tumor presence. 

Initially, the project commences with the acquisition of a well-annotated dataset of brain MRI images that 

includes both tumor and non-tumor cases. The dataset is preprocessed to enhance image quality and 

prepare it for the model training process. Preprocessing steps typically involve resizing images to a 

consistent dimension, normalizing pixel values to improve convergence during training, and applying data 

augmentation techniques such as rotation, scaling, and elastic transformations. These augmentations help 

increase the diversity of the training data and improve the model's ability to generalize to unseen examples. 

In constructing the U-Net model, the contracting path comprises multiple convolutional layers followed 

by max pooling operations. Each convolutional block applies a series of filters to the input images, 

enabling the model to extract rich features relevant for segmentation. After each pooling layer, the 

resolution of the feature maps is halved, allowing the model to capture increasingly abstract features while 

reducing computational complexity. The expansive path, on the other hand, uses upsampling layers and 

concatenates feature maps from the contracting path to regain spatial resolution lost during downsampling. 

This skip connection mechanism is vital, as it enables the model to leverage high-resolution features from 

earlier layers, leading to more accurate segmentations by preserving spatial information essential for 

delineating tumor boundaries. 

During the training phase, the U-Net model is trained using a suitable loss function, commonly the Dice 

coefficient loss or binary cross-entropy, which is effective for imbalanced datasets typical in medical 

imaging. The optimizer, such as Adam, helps minimize the loss by updating the mod iteratively. 

Throughout training, the model's performance is monitored using a validation set to ensure it is learning 

effectively and not overfitting. Metrics such as Dice coefficient, Intersection over Union (IoU), accuracy, 

and recall are utilized to assess the model's segmentation performance. 

After completing the training process, the U-Net model is evaluated on a separate test dataset to validate 

its effectiveness in segmenting tumor regions accurately. The evaluation involves calculating the 

aforementioned metrics to determine the quality of the segmentation and to compare the results against 



 

 

existing methods or baseline models. If necessary, hyperparameters can be adjusted to fine-tune the 

model's performance based on the test results. 

Additionally, model interpretability can be enhanced through visualization techniques such as saliency 

maps or overlaying the predicted segmentation masks on the original MRI images. This transparency 

allows healthcare professionals to understand and trust the model's predictions, facilitating its integration 

into clinical workflows. 

 

 

 

  

 

                                                

 

 

 

 

 

                                              

Figure 3.2.3: Architecture of Unet2 

 

Ultimately, the goal of utilizing U-Net for brain tumor detection and segmentation is to develop a robust, 

accurate, and reliable system capable of aiding in clinical decision-making by providing precise 

localization of tumors in MRI images. This approach promises to enhance diagnostic capabilities, support 

timely interventions, and improve patient outcomes by streamlining the diagnostic process and potentially 

reducing the need for invasive procedures. Through comprehensive evaluations on benchmark datasets, 

the project aims to validate the effectiveness of the U-Net model in real-world medical imaging scenarios, 

establishing it as a valuable tool in the healthcare landscape. These augmentations help increase the 

diversity of the training data and improve the model's ability to generalize to unseen examples. 

 

3.1.4 UNET-3:  

The methodology for brain tumor detection and segmentation using U-Net 3 involves the utilization of an 

enhanced version of the original U-Net architecture, which incorporates modifications aimed at improving 

performance in biomedical image segmentation tasks. U-Net 3 builds upon the foundational principles of 

U-Net, characterized by its encoder-decoder structure, but introduces advanced techniques to further 

enhance the model’s capabilities. The project begins with the careful selection of a well-annotated dataset 

containing a diverse range of brain MRI images, which includes both tumor and non-tumor instances. The 

dataset undergoes extensive preprocessing, which is critical for optimizing model performance. This 



 

 

preprocessing includes resizing images to ensure uniformity, normalizing pixel values to enhance training 

efficiency, and applying data augmentation methods such as random rotations, flipping, and elastic 

deformations. These augmentations serve to enrich the dataset and improve the model’s ability to 

generalize across various imaging conditions. 

In the implementation of U-Net 3, the architecture features a contracting path designed to capture 

contextual information through a series of convolutional layers, batch normalization, and downsampling 

operations. Each convolutional layer extracts features from the input MRI images, while batch 

normalization improves the stability and speed of the training process. The downsampling layers 

progressively reduce the spatial dimensions of the feature maps, allowing the network to learn high-level 

abstractions crucial for effective segmentation. The expanding path is equally important, employing 

upsampling layers that increase the spatial resolution of feature maps. Notably, U-Net 3 introduces 

residual connections between corresponding layers in the contracting and expansive paths, allowing the 

model to preserve information and improve gradient flow, which can enhance the quality of the 

segmentation output. 

During the training phase, U-Net 3 is optimized using a suitable loss function, commonly the Dice 

coefficient loss, which is particularly effective for medical segmentation tasks where the segmentation 

masks may be imbalanced. The choice of an optimizer, such as Adam, allows the model to adaptively 

learn and update its parameters to minimize the loss function over epochs. Throughout the training process, 

the model’s performance is continuously monitored on a validation set, tracking metrics such as the Dice 

coefficient, accuracy, sensitivity, and specificity to evaluate the quality of segmentation. 

                                             

 

 

 

 

 

 

 

 

 

 

Figure 3.2.4: Architecture of Unet3 

 

After the training is complete, U-Net 3 is rigorously tested on a separate test dataset to assess its 

segmentation accuracy and robustness in detecting tumor regions. The evaluation involves computing 

various performance metrics, comparing the predicted segmentation masks against ground truth 

annotations to ascertain the effectiveness of the model. Visual comparisons of the predicted segmentations 

overlaid on the original MRI images provide additional insights into the model’s performance. 

Furthermore, U-Net 3 emphasizes model interpretability, which is essential in clinical settings. Techniques 

such as visualizing attention maps or saliency maps can be applied to understand which features influence 

the model’s decisions, thereby enhancing trust in the model’s predictions among healthcare professionals. 

The goal of using U-Net 3 is to establish a robust and accurate system for brain tumor detection and 

segmentation that can be integrated into clinical workflows, ultimately aiding in timely and precise 



 

 

diagnoses. By leveraging the advanced capabilities of U-Net 3, the project seeks to improve the diagnostic 

process in medical imaging, reduce the reliance on invasive procedures, and enhance patient outcomes 

through more effective and efficient healthcare delivery. Through comprehensive evaluation on 

benchmark datasets, the effectiveness of U-Net 3 is validated, demonstrating its potential as a valuable 

tool in the field of medical imaging and oncology. 

 

3.2 PROJECT FLOW 

                   
The flow chart outlining two main components: the system and the user. On the system side, the process 

begins with data collection, which involves gathering data sources and profiling the data. This is followed 

by data preparation, including data cleaning and preprocessing. The next step is feature engineering, which 

consists of selecting the best features, label encoding, and balancing the data. Then, the model building 

phase utilizes algorithms such as MobiNet, DenseNet, and U-Net for segmentation, followed by 



 

 

classification, training, and evaluation. Finally, the system moves to deployment, where a web application 

is created.on the user side, the process starts with registration, which involves user sign-up and account 

creation, followed by login for authentication and session initiation. After logging in, users can input data 

by uploading MRI images, which undergo validation. The system then proceeds to prediction, which 

includes preprocessing the input data, performing model predictions, and displaying results. Lastly, the 

user can logout, ending the session and returning to the login screen. The flowchart effectively maps out 

both backend development and frontend user interaction for the application. 

 

3.3 ARCHITECTURE: 

The image illustrates a workflow for a brain tumor classification system integrating both user interaction 

and backend processing. It starts with the user who can either log in or register through a database-

connected interface. Upon registration, user details are stored in the database. During login, user 

credentials are verified—if invalid, access is denied; if valid, the user can proceed. Once logged in, the 

user can upload MRI images, receive prediction results, and log out. On the system side, the process 

includes data collection, preprocessing, and splitting. The model is built using MobileNet, VGG16, and 

U-Net (specifically for segmentation). Once the system receives input data, it performs 

model prediction. The result is then classified and displayed as either “Tumor” or “Non-Tumor”, shown 

in the result classification module. The diagram encapsulates the interaction between users, the system, 

and the prediction output in a structured and streamlined manner. 

 
Fig 3.4 :- Architecture 



 

 

IV.IMPLEMENTATION & RESULTS 

 

4.1 Modules 

1. System: 

4.1.1 Data Collection: In this module, the dataset containing transaction data for fraud detection is 

sourced from the PaySim1 dataset on Kaggle. The data is collected and prepared for further processing. 

4.1.2 Data Preprocessing: The collected dataset undergoes extensive preprocessing, which includes data 

cleaning, handling missing values, feature engineering, and normalization. This step ensures that the data 

is clean, consistent, and suitable for training machine learning models. 

4.1.3 Data Splitting:  

The pre-processed dataset is split into two subsets: 

4.1.3.1 Model Training: 80% of the dataset is used to train the machine learning models. During this 

phase, the models learn to identify patterns and anomalies that indicate fraudulent transactions. 

4.1.3.2 Model Testing: The remaining 20% of the dataset is used to test and evaluate the models' 

performance. The models predict fraud, and their accuracy, precision, recall, and F1-score are measured. 

4.1.4 Model Training: Various machine learning models, including MobilNet’s, DenseNet’s, U- Net for 

Segmentation are trained using the training subset of the dataset. Iterative optimization techniques, such 

as gradient descent, are used to fine-tune the model parameters and minimize prediction errors. 

4.1.5 Model Evaluation: The performance of each trained model is evaluated using the testing subset. 

Key metrics such as accuracy, precision, recall, F1-score, and AUC-ROC are used to assess the 

effectiveness of each model in brain tumor classification. 

4.1.6 Model Saving: Once trained, the best-performing models are saved in .pkl format. This preserves 

the learned weights and biases, allowing the models to be easily loaded and used for future predictions. 

4.1.7 Model Prediction: The saved models are used to input new transaction data to predict whether the 

transactions are brain tumor or non-tumor. The system provides real-time predictions, allowing financial 

institutions to take immediate action. 

 

4.2. User: 

4.2.1 Register: Users, such as Doctor or hospital administrators, register with their credentials to create 

an account in the system. Registration includes providing necessary details and setting up secure login 

credentials. 

4.2.2 Login: Registered users can log in with their credentials to access the system's features and 

functionalities. Secure authentication mechanisms are used to ensure authorized access. 

4.2.3 Input Data: Users can input new transaction data into the system. This data is processed and sent 

to the trained deep learning models for brain tumor Prediction. 

4.2.4 Viewing Results: After the models analyze the input data, the results are displayed to the user. The 

system provides detailed predictions indicating whether the Brain tumor or Non - tumor. 

4.2.5 Logout: Users can log out of the system to secure their session and protect their personal data. Proper 

session management ensures that unauthorized access is prevented once the user logs out 

 

 

 

 



 

 

4.3. RESULTS 

 

4.3.1 Homepage Overview: The homepage of Life Care introduces the urgent tumor diagnosis service 

powered by AI and advanced imaging technologies. It highlights the commitment to providing timely 

support and information regarding brain tumor diagnosis and treatment. 

 

 
Fig 4.3.1: overview of home page 

 

4.3.2 Service Overview: This page outlines the advanced brain tumor detection and segmentation services 

offered by Life Care. It emphasizes the use of AI and machine learning for early diagnosis, aiming to 

improve treatment outcomes through specialized services. 

 

              
Fig 4.3.2: overview of service 

 

4.3.3 AI Solutions Overview: The AI-Powered Solutions page showcases the deep learning models 

employed for brain tumor classification and segmentation. It details the use of advanced techniques such 

as MobileNet and DenseNet to provide accurate results for medical professionals. 



 

 

 
Fig 4.3.3:- over view AI Solutions 

 

4.3.4 Registration Overview: The registration page allows new users to create an account by providing 

essential information such as name, email address, and password. This step is crucial for accessing the 

services offered by Life Care and managing personal health data. 

 

 
Fig 4.3.4: overview of registration 

 

4.3.5 Login Overview: The login page provides an interface for registered users to access their accounts 

securely. Users can enter their credentials to log in and utilize the various services offered by the platform. 

 
Fig 4.3.5: Over View of Login 



 

 

4.3.6 Upload MRI Scan Overview: This page enables users to upload MRI scans for analysis. It serves 

as a crucial step in the diagnostic process, allowing the system to process images and provide insights 

regarding tumor detection. 

  
           

Fig 4.3.6: overview of uploaded MRI scan 

 

4.3.7 Detection Result Overview: After an MRI scan is uploaded, the system displays the input image 

alongside the predicted tumor mask. This page confirms the detection of a tumor, facilitating further 

medical evaluation. 

  
Fig   4.3.7: overview of detection  

 

4.3.8 No Tumor Detected Overview: This page provides feedback that no tumor was detected in the 

uploaded MRI image. It reassures users and assists in the decision-making process regarding their health. 



 

 

 
Fig 4.3.8: overview of no tumor detected 

 

4.3.9 Irrelevant Image Warning Overview: This page alerts users that the uploaded image is irrelevant 

for the analysis. It emphasizes the need to upload valid brain MRI images for accurate diagnosis and 

helps guide users in the correct process. 

 

 
 

Fig 4.3.9: overview of irrelevant image warning 

 

 

 

 

 

 

 

 



 

 

4.4 MobileNet Model 

 

Precision-Recall : 

Classification Report: 

 

Table 4.1: Classification Report of MobileNet 

 Precision Recall F1-score Support 

0 0.99 1.00 0.99 210 

1 1.00 0.99 0.99 219 

Accuracy   0.99 429 

Macro avg 0.99 0.99 0.99 429 

Weighted avg 0.99 0.99 0.99 429 

 

The classification report displays performance metrics for a binary classification task distinguishing 

between 'no_tumor' and 'tumor' categories. Precision, recall, and F1-score are provided for each class, with 

overall accuracy at 0.94. The model shows high precision and recall, indicating effective detection and 

classification of brain tumors in MRI images. 

 Statistical metrics were calculated with the help of equations given below. 

                            

                             Precision (pre) = Tp/Tp+F 

                             Recall (R) = Tp/Tp + Fn 

                             F1 – Score (F1 – S) = 2( R* Pre)/R + Pre 

                             Accuracy ( Acc ) = Tp + Tn/Tn + Tp + Fp + Fn 

                             Weighted Average = Σ (F1-score_i * support_i) / Σ (support_i) 

 

                                                                   Precision(classA)+Precison (class B)+…Precision (classN) 

     Precision (Macro Avg) =   

                                                              N 

    

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 4.4.1: Confusion Matrix: 

 

 
                              

                           Figure 4.4.1: Confusion Matrix of MobileNet 

 

The confusion matrix for the MobileNet model demonstrates exceptional performance, accurately 

predicting 209 instances as 'no_tumor' and 217 as 'tumor.' It only misclassified 1 'no_tumor' case as 'tumor' 

and 2 'tumor' cases as 'no_tumor,' reflecting a highly effective classification capability. 

 

5.5: DenseNet Performance 

Precision-Recall Table: 

 

Classification Report: 

 Precision Recall F1-score Support 

0 0.96 1.00 0.98 210 

1 1.00 0.96 0.98 219 

Accuracy   0.98 429 

Macro avg 0.98 0.98 0.98 429 

Weighted avg 0/98 0.98 0.98 429 

                                  

Figure 4.5: Classification Report of  DenseNet 

 

The classification report shows a precision of 0.96 and a recall of 1.00 for the 'no_tumor' category, along 

with a precision of 1.00 and a recall of 0.96 for the 'tumor' category. The overall accuracy is reported at 

0.98, indicating that the DenseNet model effectively detects and classifies brain tumors with reliable 

performance, making it a valuable tool for medical imaging applications. 

 

 



 

 

4.5.1: Confusion Matrix : 

                                     
Figure 4.5.1: Confusion Matrix of Dense Net 

 

The confusion matrix for the DenseNet model indicates strong performance, accurately identifying 210 

instances as 'no_tumor' and 211 as 'tumor.' It misclassified 8 'tumor' cases as 'no_tumor,' demonstrating a 

high level of accuracy in distinguishing between the two categories. 

 

5.6 UNET2: 

 
 

Figure 4.6: Unet2 graph representation 

 



 

 

The training and validation loss graph indicates that both losses decreased over the epochs, with training 

loss (0.3955) consistently lower than validation loss (0.4985), suggesting a good fit for the training data 

but a slight overfitting tendency. The training and validation accuracy graph shows high accuracy for both 

sets, with the final training accuracy at 0.9785 and validation accuracy at 0.9702, indicating robust model 

performance. 

The Jaccard index, representing the overlap between predicted and actual segmentations, reflects a training 

value of 0.5663 and a validation value of 0.4788. While the training Jaccard index shows reasonable 

performance, the validation Jaccard indicates room for improvement in segmentation quality on unseen 

data. Overall, the model demonstrates strong capabilities in detecting and segmenting brain tumors, though 

adjustments may be needed to  enhance generalization. 

 

4.7 UNET3: 

The training and validation loss graph indicates a downward trend in both training loss (0.4140) and 

validation loss (0.4815) over the epochs, suggesting the model is learning effectively, with slight variations 

indicating the model's performance is stabilizing. 

The training and validation accuracy graph shows high accuracy levels, with the final training accuracy at 

0.9777 and validation accuracy at 0.9735, reflecting the model's capability to classify correctly. 

 

  
Figure 5.7: Unet-3 graph representation 

 

The Jaccard index, which measures the overlap between predicted and actual segmentations, reports a 

training value of 0.5515 and a validation value of 0.4961. These values indicate satisfactory segmentation 

performance, but they also highlight potential areas for improvement in distinguishing tumor regions 

within the validation set. Overall, the model demonstrates strong performance in detecting and segmenting 

brain tumors, although continued refinement may enhance generalization. 

 

CONCLUSION 

In conclusion, this project successfully developed and evaluated deep learning-based frameworks for brain 

tumor detection and segmentation using advanced neural network architectures, including MobileNet, 

DenseNet, and U-Net variants. Each model was rigorously trained and tested on a comprehensive dataset 

of MRI images, demonstrating varying levels of accuracy and reliability. The MobileNet model exhibited 

exceptional performance with an accuracy of 99%, effectively distinguishing between tumor and non-



 

 

tumor cases while maintaining low misclassification rates. DenseNet also showed promising results, 

achieving high precision and recall, though with slightly lower accuracy than MobileNet. 

The evaluation metrics, including confusion matrices and classification reports, indicated the models’ 

ability to accurately predict tumor presence, reinforcing their potential for clinical application. However, 

the validation results highlighted the need for ongoing improvements in generalization, particularly for 

the DenseNet model, which exhibited some misclassification. 

Overall, this work emphasizes the importance of leveraging deep learning techniques in medical imaging 

to enhance diagnostic capabilities and support timely interventions for patients. The successful 

implementation of these models paves the way for future developments aimed at integrating AI-driven 

tools into healthcare systems, ultimately improving patient outcomes and advancing the field of medical 

diagnosis. 

 

FUTURE ENHANCEMENT: 

Future enhancements for the brain tumor detection and segmentation project may include integrating 

ensemble methods that combine the strengths of different models to improve accuracy and robustness. 

Incorporating additional data augmentation techniques could enhance model generalization to diverse 

MRI images. Exploring transfer learning from larger pre-trained models may further boost performance, 

especially in complex cases. Implementing real-time analysis capabilities for immediate diagnostic 

feedback can also be beneficial. Lastly, refining interpretability methods, such as advanced visualization 

techniques, can assist clinicians in understanding model predictions, thereby fostering trust and facilitating 

clinical decision-making in patient care. 
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