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Abstract 

Early and accurate detection of plant diseases is essential for improving crop health and minimizing 

yield losses. This study explores the application of hyperspectral imaging (HSI) combined with deep 

learning techniques for the early-stage detection of tomato bacterial wilt, a severe and fast-spreading 

crop disease. Spectral reflectance data collected from hyperspectral scans of tomato leaves were 

preprocessed using Savitzky-Golay smoothing, dimensionality reduction via Principal Component 

Analysis (PCA), and normalized before classification using a lightweight one-dimensional Artificial 

Neural Network (1D-ANN). The proposed model achieved a validation accuracy of 96% and a test 

accuracy of 89.77%, demonstrating high precision and robustness in distinguishing healthy and infected 

plants, even at asymptomatic stages. These findings highlight the potential of integrating HSI and deep 

learning for non-invasive, real-time plant disease diagnosis, contributing to the advancement of precision 

agriculture systems. 
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1.Introduction 

Plant diseases plaguing the agricultural sector continue to undermine food security, cut crop yields, and 

bring tremendous economic losses to the world. Staple crops such as rice and tomato are especially 

susceptible to pathogens, with timely diagnosis being central to controlling infections. Conventional 

methods of detection based on manual examination and biochemical assays are laborious, retrospective, 

and reliant upon highly trained analysts. Such weaknesses underscore the importance of developing 

automated, non-destructive, and scalable methods for timely detection of disease to act upon. 

New technologies in machine learning and computer vision have changed plant pathology in that RGB 

imaging and CNNs have provided cost-effective means to classify diseases [4], [5]. The models, though, 

identify the diseases only after symptoms are apparent, which hinders their applications to early 

intervention. In addition, use of RGB channels hinders detection of internal physiological alterations that 

are antecedent to detectable symptoms [4]. 

To overcome these shortcomings, hyperspectral imaging (HSI) is an incredibly useful alternative, which 

is able to capture over hundreds of spectral bands in the visible and near infrared range. The spectral 

resolution makes identification of biochemical markers including chlorophyll breakdown, water 
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imbalance, and breakdown in cellular structure possible even before symptoms are visibly apparent [2], 

[3], [9]. Combined with deep learning frameworks such as Artificial Neural Networks (ANNs), HSI 

systems hold great promise to achieve accurate, early, non-destructive plant disease diagnosis [1], [2]. 

This research outlines a two-phase study in plant disease identification through deep learning, as well as 

image analysis methods: Phase 1 is intended for rice plant disease classification from RGB images, 

utilizing a multi-output CNN with an EfficientNetB0 architecture. The network distinguishes plant type 

from disease class in parallel with high accuracy, making it feasible to use in applications with mobile or 

UAV platforms [5], [12]. 

Phase 2 involves the application of hyperspectral imaging to identify tomato bacterial wilt, caused by 

Ralstonia solanacearum, in early, symptomless stages. Based on preprocessed spectra, utilizing a trained 

1D ANN optimised with Principal Component Analysis (PCA), phase 2 illustrates how HSI can be 

included in precision agriculture pipelines [1], [2], [4]. 

By contrasting hyperspectral with traditional RGB-based methods, this research emphasizes the 

technological evolution from reactive to proactive plant disease surveillance. The decision to use RGB 

imaging for rice and hyperspectral imaging for tomato is based on practical and biological 

considerations. Rice leaf diseases typically manifest with visible symptoms—such as lesions, spots, and 

discoloration—that can be effectively detected through RGB images, making it suitable for low-cost, 

scalable deployment via mobile or UAV platforms. In contrast, tomato bacterial wilt, caused by 

Ralstonia solanacearum, often progresses internally before visual symptoms emerge. Therefore, 

hyperspectral imaging, which can detect subtle biochemical changes at the early stages of infection, is 

more appropriate for timely detection and intervention in tomato crops. The work highlights how deep 

learning and spectral imaging increasingly contribute to developing more sustainable agriculture with 

far-reaching consequences in real-time in-the-field deployment, food security, and environmental 

responsibility [3], [10]. 

 

2.Related Works 

Progress over the last ten years in automating plant disease detection using machine learning (ML) and 

deep learning (DL) techniques has been tremendous. Researchers have experimented with various 

imaging modalities such as RGB, thermal, multispectral, and hyperspectral to come up with reliable and 

scalable diagnostic frameworks for precision agriculture. 

 

2.1. RGB-Based Plant Disease Detection 

One of the most widely used and accessible modalities is RGB imaging as a consequence of the 

widespread availability of standard digital camera hardware and smartphone devices. Convolutional 

Neural Networks (CNN) have demonstrated very good performance in classifying plant disease 

symptoms from visible plant images. 

Li et al. [6] (2021) performed an extensive review of deep learning for plant disease diagnosis, with 

special focus placed upon how handcrafted feature-based approaches have changed to end-to-end CNNs. 

It draws attention to the role of transferring knowledge along with visualization techniques in increasing 

classification performance, although recognizing the deficiency of early detection as well as deployment 

limitations in fields. 

Islam et al. [7] in their work (2023) presented "DeepCrop," which is based on CNN, with ResNet50 used 

for classifying diseases coupled with web-based diagnosis for farmers. In addition to receiving 98.98% 
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accuracy, use of curated datasets such as PlantVillage restricts generalization under variable field 

scenarios. 

Jung et al. [8] (2023) also developed a multi-stage classification pipeline with an "unknown" class to 

learn to generalize to unseen disease types. Even though this makes classifications more robust, 

scalability to crop types as well as to environmental variation is still limited. 

These studies make CNN-based RGB-based systems reliable devices for detection of apparent diseases, 

but reactive in nature, sensing only after damage to physiology. 

 

2.2. Hyperspectral Imaging and Spectral Analysis 

Hyperspectral imaging delivers revolutionary insight by allowing detection of early plant stress through 

reflectance pattern analysis across many narrow bands. The technique detects biochemical and structural 

plant tissue changes, such as chlorophyll breakdown and water loss, that are in many cases undetectable 

by RGB-based sensors. 

Wasswa et al. [3] in their work in 2023 performed a systematic review of 176 studies conducted in plant 

disease detection based on image-based AI techniques. The increasing role of lightweight DL models, 

and standardized data sets, as well as benchmark sets for hyperspectral analysis, were highlighted by 

them. 

Jiang et al. [4] presented in 2025 that model fusion methods integrating SVM, Random Forest, and 

XGBoost classifiers over hyperspectral data enhanced black vegetable pesticide residue detection 

accuracy. The model's intricacy, however, created challenges for actual field implementation. 

Zhang et al. [1] in 2025 integrated hyperspectral imaging with 1D-ANNs and GAN-based data 

augmentation to detect rice bacterial blight symptoms. The model had greater than 97% accuracy in pure 

samples but underperformed with mixed-pathogen datasets. 

In another work, Bhargava et al. [2] (2024) wrote about different spectral preprocessing and feature 

selection methods, such as Savitzky-Golay smoothing and PCA, that are essential to hyperspectral 

classification. They highlighted the use of explainable AI (XAI) and data augmentation for 

generalizability. 

 

2.3. Integrations and Limitations 

While RGB-based models offer cost-effective and accessible solutions, they fall short in early-stage 

detection and generalization across environments. Conversely, hyperspectral systems provide detailed 

spectral insights necessary for proactive diagnosis but are hindered by high computational costs, 

specialized hardware requirements, and limited scalability. 

The reviewed literature underscores the need for integrated, multimodal systems that combine the 

scalability of RGB-based models with the precision of hyperspectral imaging. Furthermore, future 

research should focus on real-time deployment through edge computing, UAV-based monitoring, and 

Internet of Things (IoT) integration for automated agricultural disease surveillance [10]. 

 

3.Dataset Selection 

3.1. RGB Dataset – Rice Leaf Disease Detection 

In the first phase of the study, the main focus was on the classification of rice leaf diseases using 

standard RGB images. For this, a curated dataset consisting of high-resolution images of rice leaves, 

each carefully labeled with both the plant type and the disease category was utilized. The dataset 
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includes a wide range of common rice leaf diseases such as bacterial leaf blight, brown spot, leaf blast, 

leaf scald, and narrow brown spot, along with healthy leaves and some samples marked as "other 

disease." This diversity ensures that the model learns to distinguish between multiple disease conditions, 

not just binary health vs. disease. 

 
Figure 1: Sample images from the RGB dataset 

What makes this dataset especially valuable is its structure-it supports multi-output classification, 

meaning the model learns not only to recognize the disease but also to identify the plant type (i.e., rice 

vs. non-rice). This dual classification is particularly useful in mixed farming environments, where 

distinguishing between crops and their respective ailments can help optimize targeted treatments. 

The images were sourced from publicly available, research-oriented datasets widely used in plant 

pathology and AI communities. A robust evaluation pipeline by splitting the data into three distinct sets 

was ensured: 80% for training, 20% for validation, and a separate test set held out entirely during 

training. This split allows the model to learn effectively while also providing a reliable way to assess its 

generalization to new, unseen samples. 

By combining clear labeling, disease variety, and high-resolution visual data, this RGB dataset forms a 

strong foundation for building and evaluating a deep learning model tailored to rice disease detection. 

3.2  Hyperspectral Dataset – Tomato Bacterial Wilt 

In the second phase of the research, the focus shifted to a more advanced sensing technique-

hyperspectral imaging (HSI)-to detect bacterial wilt in tomato plants. Unlike RGB imaging, which 

captures just three-color channels, hyperspectral imaging collects data across hundreds of narrow 

spectral bands, including wavelengths far beyond what the human eye can see. This makes it incredibly 

powerful for detecting subtle physiological changes in plant tissues that might indicate early signs of 

disease. 
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Figure 2: Hyperspectral Dataset Split 

The dataset used consists of reflectance spectra extracted from hyperspectral scans of tomato leaves at 

various stages of infection. Each spectral sample reflects the plant's biochemical makeup-things like 

chlorophyll content, moisture levels, and cellular structure-which are all affected when the plant is under 

stress due to bacterial wilt. The disease in question, caused by Ralstonia solanacearum, is particularly 

aggressive and often progresses before any visible symptoms appear. That’s where HSI can make a real 

difference. 
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Figure 3: Average Spectral Signatures of healthy vs. infected leaves 

While the original dataset labels included multiple severity levels (from healthy to severely infected), the 

study focused on the practical and impactful task of binary classification-distinguishing between healthy 

and infected plants. This simplification not only aligns with real-world diagnostic needs (where early 

detection is key), but also helps streamline the development of a lightweight, deployable model. 

Before feeding the data into the neural network, several important preprocessing steps were applied to 

clean and standardize the spectral inputs. First, the spectral data was resampled to 180 uniformly spaced 

bands to reduce dimensionality while preserving the most informative regions. Then, Savitzky-Golay 

smoothing was applied, a well-known noise reduction technique that helps clean up minor fluctuations 

in the spectral signal caused by environmental noise or sensor artifacts. Finally, the data was normalized 

using standard scaling, ensuring that all wavelengths contribute equally to the model’s learning process. 

Altogether, this hyperspectral dataset-rich in detail and carefully preprocessed-served as the backbone of 

the efforts to build an intelligent, non-invasive system capable of detecting tomato bacterial wilt before it 

becomes visible, helping farmers act early and minimize crop losses. 

Despite substantial progress in using RGB and hyperspectral imaging techniques for plant disease 

detection, many existing approaches rely on either RGB-based models that are reactive in nature—

detecting disease only after visible symptoms appear—or computationally intensive hyperspectral 

systems that are not optimized for early-stage field deployment. Furthermore, while deep learning has 

shown promise in classification accuracy, few studies have explored lightweight architectures, such as 

1D-ANNs, tailored specifically for spectral data in early, asymptomatic stages of infection. Existing 
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works often overlook the integration of efficient preprocessing pipelines, dimensionality reduction, and 

real-time feasibility for agricultural environments. This study aims to address these limitations by 

proposing a computationally efficient, early-stage detection framework using hyperspectral reflectance 

data and a lightweight ANN, optimized for real-time implementation in precision agriculture. 

 

4.Model Design 

4.1. RGB-Based CNN Architecture for Rice Leaf Classification 

For the first phase of the project-classifying rice leaf diseases using RGB images- a custom deep 

learning model built on the EfficientNetB0 architecture was designed . The goal wasn’t just to detect 

whether a leaf was diseased or not, but to simultaneously identify the plant type (e.g., rice vs. non-rice) 

and pinpoint the specific disease affecting it. This required a model capable of handling multi-output 

classification, where two distinct but related predictions are made from the same image. 

 

EfficientNetB0 was selected due to its well-established balance between performance and computational 

efficiency. As a lightweight yet powerful convolutional neural network (CNN) pretrained on the 

ImageNet dataset, it provides a strong foundation for recognizing general image features such as 

textures, edges, and patterns. This makes it particularly suitable for learning subtle disease-related 

characteristics in rice leaves without requiring training from scratch. 

 

Here’s how the model is structured: 

 EfficientNetB0 was used as the base network, with pretrained ImageNet weights loaded and the final 

classification layers removed to allow task-specific customization. 

 A Global Average Pooling layer was added to condense the rich feature maps from the convolutional 

layers into a compact representation. 

 This was followed by a fully connected dense layer with 512 units and a ReLU activation function to 

capture complex non-linear feature relationships. 

 Two separate output branches were then attached, each terminating in a softmax layer: 

o One predicts the plant type (rice or other) 

o The other classifies the disease type across seven categories, including “healthy.” 

The study also fine-tuned the training strategy to get the best performance. Since disease detection is 

more critical for the application than plant identification, it was assigned higher importance (weight = 

0.9) to the disease classification task, while giving lesser weight (0.1) to the plant type prediction. This 

ensures that the model learns to be especially accurate when diagnosing leaf diseases. 

For training, the Adam optimizer was used, which adapts the learning rate during training for faster and 

smoother convergence. The study also implemented early stopping to halt training when the validation 

loss stopped improving, and model checkpointing to save the best-performing version of the model. This 

helped us avoid overfitting and ensured the final model could generalize well to new, unseen data. 

Overall, this architecture allowed us to build a fast, accurate, and efficient model capable of tackling two 

agricultural challenges at once-identifying the plant and diagnosing its health-making it a practical 

candidate for real-world deployment in smart farming systems. 
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Figure 4: CNN model architecture (EfficientNetB0) 

 

4.2  Hyperspectral Model Design – 1D Artificial Neural Network (ANN) 

In the second phase of the study, the focus moved from analyzing images to something a bit more 

abstract-spectral data. Instead of looking at pictures of leaves, we were now looking at how they reflect 

light across hundreds of wavelengths, some of which the human eye can’t even perceive. The goal was 

to figure out, based solely on this spectral information, whether a tomato plant is healthy or infected with 

bacterial wilt-even before the disease shows any visible signs. 

To handle this type of data, a 1D Artificial Neural Network (ANN)-a lightweight but powerful model 

specifically designed to work with numerical sequences like spectral vectors was built. But before 

feeding the data into the network, it went through a few important preprocessing steps. First, Principal 

Component Analysis (PCA) was done to reduce the complexity of the spectral data. It compressed the 

data into fewer dimensions while keeping the most important information. This not only helps the model 

train faster but also reduces the chances of it getting confused by irrelevant noise. 
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Once the spectral data was preprocessed and reduced using Principal Component Analysis (PCA), it was 

input into a custom-designed one-dimensional Artificial Neural Network (1D-ANN) architecture. The 

model was structured to efficiently process and classify the spectral signatures of tomato leaves as either 

healthy or infected with bacterial wilt. 

 

The network begins with an input layer, configured to match the dimensionality of the PCA-reduced 

spectral vectors. This layer serves as the interface between the preprocessed hyperspectral data and the 

network’s internal learning mechanism. 

Following the input layer, the network incorporates a series of hidden layers utilizing the Rectified 

Linear Unit (ReLU) activation function. ReLU was selected due to its computational simplicity and its 

effectiveness in introducing non-linearity, thereby enabling the network to learn complex patterns within 

the spectral data that may correspond to physiological changes in infected leaves.  

To improve training stability and convergence, batch normalization layers were integrated after selected 

hidden layers. These layers standardize the input to each activation function, helping to accelerate 

training and reduce sensitivity to weight initialization.  

Additionally, dropout layers were applied to prevent overfitting by randomly deactivating a subset of 

neurons during each training iteration. This regularization technique encourages the network to learn 

more robust, generalizable features. 

The architecture concludes with a single neuron output layer, equipped with a sigmoid activation 

function. This configuration outputs a probability value between 0 and 1, indicating the likelihood that a 

given input spectrum corresponds to an infected leaf. A threshold (typically 0.5) is applied to assign a 

binary classification label. 

The model was trained using the binary cross-entropy loss function, which is well-suited for two-class 

classification problems. Optimization was performed using the Adam optimizer, chosen for its adaptive 

learning rate and efficient gradient-based updates, which contribute to faster and more stable 

convergence. 
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Figure 5: 1D ANN model Architecture 

To comprehensively evaluate the model’s performance, a suite of standard classification metrics, 

including Accuracy, Precision, Recall, etc was employed. 

This ANN design achieved strong classification results while maintaining a relatively lightweight 

structure. Its computational efficiency and low input requirements make it a promising candidate for 
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deployment in real-time, resource-constrained agricultural environments, such as portable field scanners 

or embedded systems in UAVs. 

 

5.Data Augmentation 

To enhance model robustness and generalization, data augmentation techniques were applied to both 

RGB and hyperspectral data. 

5.1. RGB Image Classification 

To enhance the generalization capability of the convolutional neural network and mitigate overfitting 

during training, several image augmentation techniques were applied to the RGB rice leaf dataset. These 

augmentations artificially increased the size and diversity of the training set by introducing controlled 

variations to the original images, allowing the model to become more robust to environmental noise, 

camera inconsistencies, and variability in leaf orientation or lighting conditions. 

The specific transformations applied are as follows: 

 Random Horizontal Flipping: This technique flips images along the vertical axis with a set 

probability, effectively simulating the natural variability in how leaves might appear when 

captured from different perspectives in the field. This helps the model learn that the spatial 

orientation of a leaf does not alter its underlying disease characteristics. 

  Brightness and Contrast Adjustment: Images were randomly adjusted for brightness and contrast 

within defined ranges. Since field conditions often vary due to time of day, weather, and camera 

exposure settings, this augmentation trains the model to ignore such inconsistencies and focus on 

relevant disease features, such as lesion color or texture patterns. 

 Random Zooming: A zoom-in or zoom-out transformation was applied to replicate changes in 

the distance between the camera and the leaf surface. This helps the model learn to recognize 

disease symptoms at different scales and discourages overfitting to specific image sizes or 

framing conditions. 

 Rotation and Flipping: Random rotations and additional flips (beyond horizontal) were used to 

simulate various leaf positions. This ensures the model does not become biased toward a 

particular orientation of leaf features (e.g., lesions or vein structure) and can accurately classify 

images taken from diverse angles. 

These augmentations were implemented using TensorFlow’s built-in image processing pipelines, which 

allowed for efficient, on-the-fly transformation of image batches during training. This approach reduced 

memory overhead and ensured that each training epoch was exposed to new image variations, improving 

model generalization without requiring manual expansion of the dataset. 

Overall, these augmentation strategies played a crucial role in improving the robustness and accuracy of 

the model, particularly when evaluated on unseen test data. They also serve as a practical substitute for 

large-scale, real-world data collection efforts, which are often resource-intensive in agricultural research 

contexts. 

 

5.2. Hyperspectral Data Augmentation 

Hyperspectral imaging (HSI), while rich in information, presents unique challenges due to its high 

dimensionality and sensitivity to environmental and sensor-related noise. Each sample in a hyperspectral 

dataset typically contains reflectance values across hundreds of contiguous wavelength bands, many of 

which are highly correlated or prone to distortion due to factors such as lighting variation, sensor 
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calibration drift, or ambient conditions during data acquisition. As a result, augmenting hyperspectral 

data requires methods that preserve the physical and biological integrity of spectral signals while 

introducing enough variability to prevent overfitting. 

To address these concerns and improve the generalization ability of the 1D-ANN model, the following 

spectral-domain augmentation techniques were applied: 

 Gaussian Noise Injection: Random Gaussian noise was added to the spectral vectors to simulate 

electronic and environmental noise that naturally occurs during sensor readings. This 

augmentation helps the model learn to focus on underlying spectral patterns relevant to plant 

health, rather than overfitting to noise artifacts that might be present only in the training data. 

The standard deviation of the noise was carefully controlled to avoid corrupting meaningful 

signal components. 

 Spectral Stretching: This technique involves linearly scaling the reflectance values within a 

spectral signature, either globally or selectively within certain wavelength bands. Spectral 

stretching mimics the physiological variation that can occur due to factors like chlorophyll 

concentration, hydration levels, or leaf thickness-features which may vary naturally even among 

healthy plants. By exposing the model to stretched spectra, its ability to classify samples under 

biologically plausible variations was improved. 

 Wavelength Shifting: In this augmentation, spectral data is slightly shifted along the wavelength 

axis to emulate minor misalignments that might occur due to sensor calibration errors, 

temperature-induced drift, or inconsistent illumination during data collection. The shift is 

typically within a few spectral bands and is often implemented using interpolation methods. This 

strategy trains the model to remain invariant to small spectral distortions while still recognizing 

the core features of healthy or diseased plant tissue. 

 Random Spectral Flipping: To introduce further diversity into the training data, horizontal 

flipping of spectral signatures was applied. This technique mirrors the spectrum about its center, 

effectively creating a new but structurally similar signal. While not a physically accurate 

transformation in all cases, spectral flipping has been shown in prior studies to enhance 

robustness, especially when paired with other augmentations. It forces the model to learn more 

generalized relationships between spectral patterns and plant health labels. 

Together, these spectral augmentation strategies play a critical role in enhancing the robustness of the 

model. Unlike traditional image augmentation, hyperspectral augmentations must balance randomness 

with biological plausibility. The transformations applied in this study were carefully designed to 

preserve the spectral integrity of meaningful features-such as disease-related absorption peaks or 

reflectance troughs-while introducing sufficient variability to improve model resilience against unseen 

field conditions. 

By simulating real-world spectral distortions and biological variation, this augmentation pipeline 

enabled the ANN model to generalize more effectively, particularly when classifying individual spectral 

samples collected under different lighting, sensor configurations, or crop environments. 

 

6.Dataset Loading and Optimization 

Efficient data handling is a critical component of any machine learning pipeline, especially when 

working with high-dimensional inputs such as RGB image datasets and hyperspectral image datasets. In 

this study, two separate pipelines were implemented-one for RGB image-based disease classification, 
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and another for spectral data-based classification using hyperspectral reflectance signatures. Each 

pipeline was carefully optimized to ensure fast, reliable data loading, transformation, and model training. 

 

6.1. RGB Image Dataset Pipeline 

The RGB dataset, used for classifying rice leaf diseases, was organized in a directory-based structure 

where each subfolder represented a specific combination of plant type and disease label. The dataset was 

loaded using TensorFlow’s tf.data API, which supports parallel data loading, caching, and prefetching-

techniques that are essential for maintaining high throughput during training. 

Key optimization steps included: 

 Image Decoding and Resizing: All images were decoded from JPEG format and resized to a 

fixed resolution of 224 × 224 pixels to match the input requirements of the EfficientNetB0 

model. 

 Normalization: Pixel values were scaled to the range [0, 1] using min-max normalization to 

ensure uniform input distribution and promote stable gradient flow during training. 

 Shuffling and Batching: The training data was shuffled with a buffer size proportional to the 

dataset size and then batched into mini-batches of size 32. This reduces model bias and enhances 

convergence. 

 Caching and Prefetching: To minimize disk I/O bottlenecks, processed image batches were 

cached in memory and prefetched asynchronously. This ensured that the GPU was never idle, 

thereby reducing overall training time. 

 Label Mapping: Labels were extracted using folder name parsing, and a lookup table was 

constructed to assign integer codes to both plant types and disease classes for multi-output 

classification. 

 

6.2. Hyperspectral Image Dataset Pipeline 

The hyperspectral dataset consisted of one-dimensional spectral vectors, each corresponding to the 

average reflectance of a tomato leaf across a range of wavelengths. These vectors are stored as NumPy 

arrays for fast numerical operations. 

To optimize the hyperspectral data pipeline: 

 Spectral Resampling: Spectral data was uniformly interpolated to a fixed length of 180 bands to 

ensure consistency across samples and compatibility with the ANN model. 

 Normalization: Each spectral vector was standardized using Z-score normalization (mean = 0, 

standard deviation = 1). This prevents any individual wavelength band from disproportionately 

influencing the model's learning process. 

 Dimensionality Reduction: Principal Component Analysis (PCA) was applied to reduce 

redundancy and compress the high-dimensional spectral data while preserving essential variance. 

The number of principal components was determined based on the cumulative explained 

variance, with a target threshold of 95% retained variance. 

 Batching and Shuffling: The processed spectral data was batched into smaller sets for efficient 

training, and shuffling was applied to ensure randomness in data presentation across epochs. 
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 Caching and Prefetching: Similar to the image pipeline, spectral batches were cached in memory 

and preloaded during training to maintain a consistent training loop and eliminate CPU-GPU 

communication delays. 

These optimizations significantly reduced preprocessing overhead and enabled real-time data feeding 

during training sessions. They also allowed for seamless integration with GPU acceleration, ensuring 

that both the CNN and ANN models could be trained efficiently on modern hardware configurations, 

including TPUs and GPUs available via Google Colab. 

By designing separate but parallel data pipelines tailored to the specific requirements of image and 

spectral data, this study demonstrates a flexible and scalable approach to agricultural disease detection 

using multimodal deep learning systems. 

 

7.Data Analysis 

A thorough analysis of the dataset is essential to understand the underlying distribution of features, 

evaluate data quality, identify class imbalances, and extract meaningful patterns that inform model 

design. In this study, separate data analysis procedures were applied to the RGB image dataset and the 

hyperspectral dataset, each aligned with the characteristics of their respective modalities. 

 

7.1. RGB Image Dataset Analysis 

The RGB dataset used for rice leaf disease classification comprises high-resolution images, each labeled 

with two attributes: plant type (rice or other) and disease category (e.g., bacterial leaf blight, leaf blast, 

brown spot, healthy, etc.). To ensure balanced model training and effective evaluation, the distribution 

of samples across each label was analyzed. 

 Class Distribution: In the dataset, while some classes such as "brown spot" and "leaf blast" were 

well-represented, others like "leaf scald" and "other disease" had relatively fewer samples, 

indicating a potential class imbalance. This was addressed through data augmentation and loss-

weighted training. 

 Image Quality Assessment: Images were examined for resolution consistency, brightness 

variation, and presence of noise or artifacts. While most images were captured under controlled 

conditions, minor variations in lighting and background were present, justifying the inclusion of 

brightness and contrast augmentation during preprocessing. 

 Visual Feature Consistency: A qualitative visual inspection of each disease category revealed 

that many symptoms-such as spots, discoloration, and lesions-exhibit similar morphological 

features, especially under varied lighting. This validated the use of a deep convolutional 

architecture capable of capturing fine-grained visual patterns across multiple layers. 

 

7.2. Hyperspectral Image Data Analysis 

The hyperspectral dataset, used for classifying tomato plant health status, contains reflectance spectra 

representing hundreds of wavelengths per sample. Each spectrum is labeled as either healthy or infected 

based on the presence of bacterial wilt. 

 Spectral Profile Comparison: Initial spectral analysis involved plotting the average reflectance 

curves for healthy and infected leaves. Distinct patterns were observed-infected leaves exhibited 

subtle shifts in reflectance intensity, particularly in the red-edge and near-infrared (NIR) regions, 

which are known to correlate with chlorophyll content and leaf water stress. 
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 Normalized Difference Spectral Index (NDSI): To quantify differences between classes, the 

Normalized Difference Spectral Index (NDSI) was calculated using specific band pairs sensitive 

to plant stress. 

 Principal Component Analysis (PCA): PCA was applied not only for dimensionality reduction 

but also as an analytical tool to examine variance distribution across bands. The number of 

retained components was chosen based on the cumulative explained variance, ensuring that over 

95% of the total variance was preserved. The first few principal components captured a 

significant portion of the variance (over 95%), and visualizing the first two components showed 

clear clustering between healthy and infected classes. This indicated strong separability in the 

spectral domain and justified the use of ANN for binary classification. 

 Outlier Detection: PCA and Mahalanobis distance were used to identify outlier spectra. A small 

subset of samples was flagged and manually reviewed. Most anomalies were due to partial 

occlusion, soil contamination, or sensor noise during data acquisition. These were removed to 

maintain dataset integrity. 
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Figure 6: PCA of Hyperspectral Data 

By conducting this dual-modality data analysis, it was confirmed that both the RGB and hyperspectral 

datasets provided sufficient, discriminative features for machine learning models. The RGB dataset 

benefited from visual inspection and class balancing techniques, while the hyperspectral dataset 

exhibited strong physiological indicators of disease, suitable for early-stage classification. These insights 

guided the choice of architecture and preprocessing techniques in subsequent stages of the study. 
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8.Performance Evaluation 

The performance of the proposed models was rigorously evaluated through a series of quantitative 

metrics and controlled experiments. This section details the evaluation criteria, presents the results 

obtained for both RGB and hyperspectral models, and discusses the impact of optimization strategies on 

overall performance. 

 

8.1. Experimental Results 

Phase 1: RGB Image Classification (Rice Plant Disease Detection) 

The EfficientNetB0-based multi-output CNN model demonstrated strong performance across both 

classification tasks: 

 Plant Type Classification Accuracy: 100% 

 Disease Classification Accuracy: 87.5% on the test set 

 ROC - AUC: Area Under the Curve (AUC) values ranged from 0.98 to 1.00, with leaf scald 

achieving perfect separation. This highlights the model's high sensitivity and specificity across 

all classes.  

 
Figure 7: ROC Curve showing True Positive Rate vs. False Positive Rate for each disease class 
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 Confusion Matrix Analysis: Most confusion occurred between visually similar classes, such as 

brown spot and narrow brown spot, while classes like healthy and leaf scald were predicted with 

high precision. 

 
Figure 8: RGB Disease Classification Confusion Matrix 

These results indicate that the model successfully learned to distinguish between nuanced disease 

patterns while maintaining generalization to unseen data. 

 

Phase 2: Hyperspectral Classification (Tomato Bacterial Wilt Detection) 

 

The 1D-ANN model achieved high accuracy in detecting bacterial wilt based on spectral reflectance: 

 Validation Accuracy: 96% 

 Test Accuracy: 89.77% 

 Precision (Infected): 100% 

 Recall (Infected): 82.69% 

 F1-Score (Infected): 90.57% 

 Confusion Matrix: 
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Figure 9: Hyperspectral Dataset Confusion Matrix 

These metrics confirm the model’s ability to accurately differentiate between healthy and infected 

leaves, even in the early, asymptomatic stages of the disease. The high precision indicates minimal false 

positives, while the high recall underscores the model’s capacity to detect a majority of infected 

samples. 

8.2. Model Optimization Impact 

Multiple optimization techniques were implemented during model development, each contributing 

significantly to performance and training stability. 

For RGB Model 

 Loss Weighting: Assigning higher importance to disease classification (weight = 0.9) and lower 

to plant classification (weight = 0.1) resulted in improved learning focus on the more critical 

disease detection task.  

 Data Augmentation: Application of random flipping, brightness/contrast adjustments, and 

zooming led to an observable increase in generalization, especially for underrepresented disease 

classes. 
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 Early Stopping and Checkpointing: Prevented overfitting by halting training at optimal validation 

performance and preserving the best model. 

 

For Hyperspectral Model 

 Dimensionality Reduction (PCA): Reduced training time and memory consumption while 

preserving over 95% of spectral variance, significantly improving model efficiency. 

 Spectral Data Augmentation: Techniques like Gaussian noise injection and wavelength shifting 

made the model more resilient to real-world variability and measurement noise. 

 Dropout and Batch Normalization: These regularization strategies effectively reduced overfitting 

and stabilized training, especially in the presence of limited spectral data samples. 

 Adaptive Learning Rate (Adam Optimizer): Enabled faster convergence and smoother loss 

minimization across epochs, contributing to the high final accuracy. 

Overall, the performance evaluation validates the reliability, accuracy, and practical applicability of both 

models in their respective domains. The RGB model offers a scalable solution for visual disease 

detection, while the hyperspectral model introduces a powerful method for early, non-invasive diagnosis 

using spectral patterns-demonstrating clear potential for integration into real-time precision agriculture 

systems. 

 

9.Future Works  

While the current study demonstrates promising results in plant disease detection using both RGB 

imaging and hyperspectral data, there remain several opportunities for further research and development. 

These future directions aim to enhance model scalability, improve robustness under real-world 

conditions, and expand the scope of agricultural applications. 

 

9.1. Real-Time Field Deployment 

One of the most important next steps is the deployment of these models in real-world agricultural 

environments. This involves integrating the trained models into edge devices such as mobile phones, 

drones (UAVs), or portable hyperspectral scanners. Real-time deployment will require further model 

optimization, including conversion to lightweight formats (e.g., TensorFlow Lite) and reducing 

inference latency. Field trials should also be conducted to evaluate performance under uncontrolled 

conditions such as variable lighting, occlusion, and background noise. 

9.2. Multimodal Data Fusion 

Future systems can benefit significantly from fusing multiple sensing modalities, such as combining 

hyperspectral data with thermal imaging, RGB video feeds, LiDAR, or fluorescence spectroscopy. By 

integrating multimodal information, models can capture both surface-level and internal stress indicators, 

improving the reliability and precision of diagnosis. Multimodal architectures, including attention-based 

fusion networks, could be explored to enhance feature learning. 

9.3. Generalization Across Crops and Conditions 

The current models are trained and validated on specific crops (rice and tomato) and diseases. However, 

crop-specific and condition-specific tuning limits the scalability of such systems. Future work should 

focus on developing generalized frameworks capable of detecting a wider range of plant diseases across 

different crops, varieties, soil types, and environmental conditions. This may involve using domain 

adaptation and transfer learning techniques to enable cross-crop applicability. 
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9.4. Explainable AI (XAI) 

While deep learning models often achieve high accuracy, they are typically treated as "black boxes." For 

agricultural adoption, especially by domain experts and farmers, interpretability is essential. 

Implementing explainable AI methods such as SHAP (Shapley Additive Explanations), LIME (Local 

Interpretable Model-Agnostic Explanations), or Grad-CAM (Gradient-weighted Class Activation 

Mapping) can provide insights into which spectral bands or image features are influencing predictions, 

thereby increasing user trust and model transparency. 

9.5. Robustness to Environmental Variability 

Variations in lighting, temperature, humidity, and plant age can significantly affect spectral and visual 

data. Developing adaptive preprocessing algorithms that can dynamically adjust to changing field 

conditions is crucial for ensuring consistent performance. Future studies should also investigate training 

models using augmented datasets that simulate real-world noise and variability. 

9.6. Data Collection and Label Expansion 

Improving the diversity and size of the training datasets is another key area of future work. This includes 

collecting more labeled data from different geographical regions, capturing early-stage infections, and 

including rare or co-occurring diseases. Additionally, introducing disease severity scoring (e.g., mild, 

moderate, severe) rather than binary labels could enable more granular diagnosis and better guide 

treatment recommendations. 

9.7. IoT and Smart Farming Integration 

To realize the full potential of intelligent plant disease detection, future systems should be integrated 

with Internet of Things (IoT) infrastructures. Sensors placed in the field can continuously monitor plant 

health, feeding data to edge or cloud-based models for real-time inference. Combining this with 

automated irrigation, fertilization, or pesticide delivery systems can create closed-loop precision 

agriculture systems that respond proactively to disease outbreaks. 

 

In summary, while this study lays a strong foundation for AI-assisted plant disease detection using RGB 

and hyperspectral imaging, continued research and innovation are required to scale these solutions for 

real-world deployment. Advancements in model generalization, interpretability, multimodal integration, 

and smart device deployment will be key to making early, accurate, and automated plant disease 

diagnosis a standard part of modern agriculture. 

 

10. Conclusion 

This study explored the use of deep learning techniques combined with both RGB imaging and 

hyperspectral sensing for accurate and early-stage plant disease detection in rice and tomato crops. By 

leveraging multimodal datasets and carefully optimized machine learning models, the research 

demonstrates the feasibility and effectiveness of integrating artificial intelligence into precision 

agriculture. 

In the first phase, a multi-output Convolutional Neural Network (CNN) based on the EfficientNetB0 

architecture was developed to classify rice leaf diseases using RGB images. The model achieved high 

classification accuracy across both plant type and disease categories, demonstrating robustness in 

handling visual variability and class imbalance. Data augmentation and efficient training strategies 

contributed significantly to its performance. 
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In the second phase, a 1D Artificial Neural Network (ANN) was employed to detect bacterial wilt in 

tomato plants using hyperspectral reflectance data. Through preprocessing techniques such as Savitzky-

Golay filtering and Principal Component Analysis (PCA), the spectral data was refined and reduced for 

efficient model training. The hyperspectral model achieved strong results in binary classification, with 

particularly high precision and recall, highlighting its potential for early, non-invasive disease detection. 

The integration of both traditional RGB imaging and advanced hyperspectral analysis allowed for a 

comparative and complementary approach to plant disease identification. While RGB methods are 

accessible and effective for detecting visible symptoms, hyperspectral imaging offers unique advantages 

in identifying biochemical changes before symptoms appear-an essential capability for proactive crop 

management. 

Overall, the findings underscore the transformative role of artificial intelligence and spectral sensing in 

agriculture. These technologies can significantly enhance disease surveillance, reduce crop loss, and 

support sustainable farming practices. Moving forward, expanding these models to operate in real-world 

environments, across different crops, and in real-time systems will be critical for achieving their full 

potential. With continued research and technological advancement, AI-driven plant disease detection can 

play a vital role in ensuring global food security and promoting smarter, data-informed agricultural 

practices. 
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