

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Computation of Geometric-Arithmetic Uphill and Modified First Uphill Indices of Graphs

Kulli V R

Professor, Department of Mathematics, Gulbarga University, Kalaburgi, India vrkulli@gmail.com

Abstract

In this paper, we introduce the geometric-arithmetic uphill and the modified first uphill indices of a graph. Furthermore, we compute these newly defined uphill indices for some standard graphs, wheel graphs, gear graphs, helm graphs.

Keywords: geometric-arithmetic uphill index, modified first uphill index, graph.

1. Introduction

The simple graphs which are finite, undirected, connected graphs without loops and multiple edges are considered. Let G be such a graph with vertex set V(G) and edge set E(G). The degree $d_G(u)$ of a vertex u is the number of vertices adjacent to u.

A *u-v* path *P* in *G* is a sequence of vertices in *G*, starting with *u* and ending at *v*, such that consecutive vertices in *P* are adjacent, and no vertex is repeated. A path $\pi = v_1, v_2, ... v_{k+1}$ in *G* is a uphill path if for every *i*, $1 \le i \le k$, $d_G(v_i) \le d_G(v_{i+1})$.

A vertex v is uphill dominates a vertex u if there exists an uphill path originated from u to v. The uphill neighborhood of a vertex v is denoted by $N_{up}(v)$ and defined as: $N_{up}(v) = \{u: v \text{ uphill dominates } u\}$. The uphill degree $d_{up}(v)$ of a vertex v is the number of uphill neighbors of v, see [1,2].

In [3], Vukičević et al. introduced the geometric-arithmetic index and this index is defined as

$$GA(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_G(u)d_G(v)}}{d_G(u) + d_G(v)}.$$

Motivated by the geometric-arithmetic index, the geometric-arithmetic uphill index of a graph G is defined as

$$GAU(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_{up}(u)d_{up}(v)}}{d_{up}(u) + d_{up}(v)}.$$

The first uphill index was introduced in [3] and it is defined as

$$UM_{1}(G) = \sum_{uv \in E(G)} (d_{up}(u) + d_{up}(v)).$$

We define the modified first uphill index of a graph G as

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

$$^{m}UM_{1}(G) = \sum_{uv \in E(G)} \frac{1}{d_{up}(u) + d_{up}(v)}.$$

Recently, some uphill indices were studied such as the Nirmala uphill index [4], F-hill index [5], Sombor uphill [6], inverse sum indeg uphill index [7].

In this paper, the geometric-arithmetic uphill and the modified first uphill indices for some graphs are determined.

2. Results for Some Standard Graphs

Proposition 1. Let G be r-regular with n vertices and $r \ge 2$. Then

$$GAU(G) = \frac{nr}{2}$$
.

Proof: Let G be an r-regular graph with n vertices and $r \ge 2$ and $\frac{nr}{2}$ edges. Then $d_{dn}(v) = n-1$ for every v in G.

From definition,

$$GAU(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_{up}(u)d_{up}(v)}}{d_{up}(u) + d_{up}(v)} = \frac{nr}{2} \frac{2\sqrt{(n-1)(n-1)}}{(n-1) + (n-1)} = \frac{nr}{2}.$$

Corollary 1.1. Let C_n be a cycle with $n \ge 3$ vertices. Then

$$GAU(C_n) = n$$
.

Corollary 1.2. Let K_n be a complete graph with $n \ge 3$ vertices. Then

$$GAU(K_n) = \frac{n(n-1)}{2}.$$

Proposition 2. Let G be r-regular with n vertices and $r \ge 2$. Then

$$^{m}UM_{1}(G) = \frac{nr}{4(n-1)}.$$

Proof: Let G be an r-regular graph with n vertices and $r \ge 2$ and $\frac{nr}{2}$ edges. Then $d_{up}(v) = n-1$ for every v in G.

$${}^{m}UM_{1}(G) = \sum_{uv \in E(G)} \frac{1}{d_{up}(u) + d_{up}(v)}$$

$$= \frac{nr}{2} \frac{1}{(n-1) + (n-1)}$$

$$= \frac{nr}{4(n-1)}.$$

Corollary 2.1. Let C_n be a cycle with $n \ge 3$ vertices. Then

$$^{m}UM_{1}(C_{n})=\frac{n}{2(n-1)}.$$

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Corollary 2.2. Let K_n be a complete graph with $n \ge 3$ vertices. Then

$$^{m}UM_{1}(K_{n})=\frac{n}{4}.$$

Proposition 3. Let P_n be a path with $n \square 3$ vertices. Then

$$GAU(P_n) = \frac{4\sqrt{(n-2)(n-3)}}{2n-5} + (n-3).$$

Proof: Let P_n be a path with $n \square 3$ vertices. Clearly, P_n has two types of edges based on the uphill degree of end vertices of each edge as follows:

$$E_1 = \{uv \square E(P_n) \mid d_{up}(u) = n-2, d_{up}(v) = n-3\}, \mid E_1 \mid = 2.$$

 $E_2 = \{uv \square E(P_n) \mid d_{up}(u) = d_{up}(v) = n-3\}, \mid E_2 \mid = n-3.$

$$GAU(P_n) = \sum_{uv \in E(P_n)} \frac{2\sqrt{d_{up}(u)d_{up}(v)}}{d_{up}(u) + d_{up}(v)}$$

$$= 2\frac{2\sqrt{(n-2)(n-3)}}{(n-2) + (n-3)} + (n-3)\frac{2\sqrt{(n-3)(n-3)}}{(n-3) + (n-3)}$$

$$= \frac{4\sqrt{(n-2)(n-3)}}{2n-5} + (n-3).$$

Proposition 4. Let P_n be a path with $n \square 3$ vertices. Then

$$^{m}UM_{1}(P_{n}) = \frac{2}{2n-5} + \frac{1}{2}.$$

Proof: We obtain

$${}^{m}UM_{1}(P_{n}) = \sum_{uv \in E(P_{n})} \frac{1}{d_{up}(u) + d_{up}(v)}$$

$$= \frac{2}{(n-2) + (n-3)} + \frac{(n-3)}{(n-3) + (n-3)}$$

$$= \frac{2}{2n-5} + \frac{1}{2}.$$

3. Results for Wheel Graphs

Let W_n be a wheel with n+1 vertices and 2n edges, $n \square 4$. Then there are two types of edges based on the uphill degree of end vertices of each edge as follows:

$$E_1 = \{uv \ \Box \ E(W_n) \mid d_{up}(u) = 0, \ d_{up}(v) = n \}, \qquad |E_1| = n.$$

 $E_2 = \{uv \ \Box \ E(W_n) \mid d_{up}(u) = d_{up}(v) = n \}, \qquad |E_2| = n.$

Theorem 1. Let W_n be a wheel with n+1 vertices and 2n edges, $n \square 4$. Then $UGA(W_n) = n$.

Proof. We deduce

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

$$GAU(W_n) = \sum_{uv \in E(W_n)} \frac{2\sqrt{d_{up}(u)d_{up}(v)}}{d_{up}(u) + d_{up}(v)}$$
$$= n\frac{2\sqrt{0' n}}{0+n} + n\frac{2\sqrt{n' n}}{n+n}$$
$$= n.$$

Theorem 2. Let W_n be a wheel with n+1 vertices and 2n edges, $n \square 4$. Then

$$^m UM_1(W_n) = \frac{3}{2}.$$

Proof. We obtain

$${}^{m}UM_{1}(W_{n}) = \sum_{uv \in E(W_{n})} \frac{1}{d_{up}(u) + d_{up}(v)}$$

$$= \frac{n}{0+n} + \frac{n}{n+n}$$

$$= \frac{3}{2}.$$

4. Results for Gear Graphs

A bipartite wheel graph is a graph obtained from W_n with n+1 vertices adding a vertex between each pair of adjacent rim vertices and this graph is denoted by G_n and also called as a gear graph. Clearly, $|V(G_n)| = 2n+1$ and $|E(G_n)| = 3n$. A gear graph G_n is depicted in Figure 1.

Figure 1. Gear graph G_n

Let G_n be a gear graph with 3n edges, $n \square 4$. Then there are two types of edges based on the uphill degree of end vertices of each edge as follows:

$$E_1 = \{ u \square \square E(G_n) \mid d_{up}(u) = 1, d_{up}(v) = 0 \},$$
 $\mid E_1 \mid = n.$
 $E_2 = \{ u \square \square E(G_n) \mid d_{up}(u) = 1, d_{up}(v) = 3 \},$ $\mid E_2 \mid = 2n.$

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Theorem 3. Let G_n be a gear graph with 2n+1 vertices, $n \square 3$. Then $GAU(G_n) = \sqrt{3}n$..

Proof: We deduce

$$GAU(G_n) = \sum_{uv \in E(G_n)} \frac{2\sqrt{d_{up}(u)d_{up}(v)}}{d_{up}(u) + d_{up}(v)}$$
$$= n\frac{2\sqrt{1'\ 0}}{1+\ 0} + 2n\frac{2\sqrt{1'\ 3}}{1+\ 3}$$
$$= \sqrt{3}n.$$

Theorem 4. Let G_n be a gear graph with 2n+1 vertices, $n \square 3$. Then

$$^{m}UM_{1}(G_{n})=\frac{3n}{2}.$$

Proof: We deduce

$${}^{m}UM_{1}(G_{n}) = \sum_{uv \in E(G_{n})} \frac{1}{d_{up}(u) + d_{up}(v)}$$
$$= \frac{n}{1+0} + \frac{2n}{1+3}$$
$$= \frac{3n}{2}.$$

5. Results for Helm Graphs

The helm graph H_n is a graph obtained from W_n (with n+1 vertices) by attaching an end edge to each rim vertex of W_n . Clearly, $|V(H_n)| = 2n+1$ and $|E(H_n)| = 3n$. A graph H_n is shown in Figure 2.

Figure 2. Helm graph H_n

Let H_n be a helm graph with 3n edges, $n \square 3$. Then H_n has three types of the uphill degree of edges as follows:

$$E_1 = \{uv \ \Box \ E(H_n) \mid d_{up}(u) = n+1, \ d_{up}(v) = n\}.$$
 $|E_1| = n.$

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

$$E_2 = \{uv \square \square E(H_n) \mid d_{up}(u) = d_{up}(v) = n \}.$$
 $|E_2| = n.$
 $E_3 = \{uv \square \square E(H_n) \mid d_{up}(u) = n, d_{up}(v) = 0\}.$ $|E_3| = n.$

Theorem 5. Let H_n be a helm graph with 2n+1 vertices, $n \square 3$. Then

$$GAU(H_n) = \frac{2n\sqrt{n(n+1)}}{2n+1} + n.$$

Proof: We obtain

$$GAU(H_n) = \sum_{uv \in E(H_n)} \frac{2\sqrt{d_{up}(u)d_{up}(v)}}{d_{up}(u) + d_{up}(v)}$$

$$= n\frac{2\sqrt{(n+1)' n}}{(n+1) + n} + n\frac{2\sqrt{n' n}}{n+n} + n\frac{2\sqrt{n' 0}}{n+0}$$

$$= \frac{2n\sqrt{n(n+1)}}{2n+1} + n.$$

Theorem 6. Let H_n be a helm graph with 2n+1 vertices, $n \square 3$. Then

$$^{m}UM_{1}(H_{n})=\frac{n}{2n+1}+\frac{3}{2}.$$

Proof: We deduce

$${}^{m}UM_{1}(H_{n}) = \sum_{uv \in E(H_{n})} \frac{1}{d_{up}(u) + d_{up}(v)}$$

$$= \frac{n}{(n+1) + n} + \frac{n}{n+n} + \frac{n}{n+0}$$

$$= \frac{n}{2n+1} + \frac{3}{2}.$$

7. Conclusion

In this paper, the geometric-arithmetic uphill and modified first uphill indices of some standard graphs, wheel graphs, gear graphs and helm graphs are determined.

REFERENCES

- 1. Saleh A, Bazhear S, Muthana N, (2022).On the uphill Zagreb indices of graphs, International Journal of Analysis and Applications, 20:6. https://doi.org/10.28924/2291-8639-20-2022-6.
- 2. Kulli VR, (2025). Harmonic uphill index of graphs, International Journal of Mathematical Archive; 16(6): 1-7.
- 3. Vukičević D., Furtula B., (2009). Topological index based on the ratios of geometrical and arithmetical means of end vertex degrees of edges, J.Math. Chem., 46, 1369-1376.
- 4. Kulli VR, (2025). Nirmala uphill indices of graphs, International Journal of Innovative Research in Technology, 12(1): 3801-3806.
- 5. Kulli VR, (2025). F-uphill index of graphs, Int. J. Math. And Appl. to appear.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

- 6. Kulli VR, (2025). Sombor uphill index of graphs, International Journal of Mathematics and Statistics Invention, 13(3): 42-51.
- 7. Kulli VR, (2025). Computation of inverse sum indeg uphill index and its polynomial of certain graphs, International Journal of Mathematics and Computer Research, 13(6): 5346-5350.