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Abstract 

           In this paper, we introduce the geometric-arithmetic uphill and the modified first uphill indices of 

a graph. Furthermore, we compute these newly defined uphill indices for some standard graphs, wheel 

graphs, gear graphs, helm graphs.  
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1. Introduction 

 The simple graphs which are finite, undirected, connected graphs without loops and multiple edg-

es are considered. Let G be such a graph with vertex set V(G) and edge set E(G). The degree dG(u) of a 

vertex u is the number of vertices adjacent to u.  

 

          A u-v path P in G is a sequence of vertices in G, starting with u and ending at v, such that consecu-

tive vertices in P are adjacent, and no vertex is repeated. A path 1 2 1  , ,... kv v v   in G is a uphill path if 

for every i, 1 ≤ i ≤ k,    1 .G i G id v d v 
 

 

         A vertex v is uphill dominates a vertex u if there exists an uphill path originated from u to v. The 

uphill neighborhood of a vertex v is denoted by  
upN v and defined as:  

upN v  = {u: v uphill dominates 

u}.  The uphill degree  
upd v of a vertex v is the number of uphill neighbors of v, see [1,2].    

             

 In [3], Vukičević et al. introduced the geometric-arithmetic index and this index is defined as 

                  
   

    

2
.

G G

G Guv E G

d u d v
GA G

d u d v




  

 Motivated by the geometric-arithmetic index, the geometric-arithmetic uphill index of a graph G 

is defined as 

                 
   

    

2
.

up up

uv E G up up

d u d v
GAU G

d u d v





 

          The first uphill index was introduced in [3] and it is defined as 

                        

      
 

1 .up up

uv E G

UM G d u d v


 
 

            

We define the modified first uphill index of a graph G as 
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 
    

1

1
.m

uv E G up up

UM G
d u d v





 

  

 Recently, some uphill indices were studied such as the Nirmala uphill index [4], F-hill index [5], 

Sombor uphill [6], inverse sum indeg uphill index [7]. 

 

 In this paper, the geometric-arithmetic uphill and the modified first uphill indices for some graphs 

are determined. 

 

2. Results for Some Standard Graphs 

 

Proposition 1.  Let G   be r-regular with n vertices and r≥ 2. Then      

                                       .
2

nr
GAU G 

 

Proof: Let G be an r-regular graph with n vertices and r ≥ 2 and  
2

nr
 edges. Then   1dnd v n   for every 

v in G.  

From definition, 

                        
   

    

  

   

2 2 1 1
.

2 1 1 2

up up

up upuv E G

d u d v nr n n nr
GAU G

d u d v n n

 
  

   
   

               
               

Corollary 1.1.  Let Cn   be a cycle with n≥ 3 vertices. Then      

                                      .nGAU C n

 Corollary 1.2.  Let Kn    be a complete graph with n≥ 3 vertices. Then      

                                    
 

 

1
.

2
n

n n
G KAU




 

 

Proposition 2.  Let G   be r-regular with n vertices and r≥ 2. Then      

                                   
 1 .

4 1

m nr
UM G

n



 

Proof: Let G be an r-regular graph with n vertices and r ≥ 2 and  
2

nr
 edges. Then    1upd v n   for 

every v in G. 

                      
    

1

1m

up upuv E G

UM G
d u d v




      

                                   
   

1

2 1 1

nr

n n


  
 

 
                                  

 
.

4 1

nr

n


                        
           

 
Corollary 2.1.  Let Cn   be a cycle with n≥ 3 vertices. Then      

                                 
 1 .

2 1

m
n

n
UM C

n


  
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Corollary 2.2.  Let Kn    be a complete graph with n≥ 3 vertices. Then      

                                  1 .
4

n
m K

n
UM 

 

Proposition 3.  Let Pn be a path with n 3 vertices. Then    

                                 
  

 
4 2 3

3 .
2 5

n

n n
GAU P n

n

 
  

  

Proof: Let Pn be a path with n 3 vertices. Clearly, Pn has two types of edges based on the uphill degree 

of end vertices of each edge as follows: 

 

       E1 = {uv  E(Pn) | dup(u)=n –2,  dup(v)=n– 3}, | E1| = 2. 

       E2 = {uv  E(Pn) | dup(u)= dup(v)=n– 3},      | E2| = n – 3.

   

                             

 
   

   
 

2

n

up up

n
up upuv E P

d u d v
GAU P

d u d v





        

                                                  

  

   
 

  

   

2 2 3 2 3 3
2 3

2 3 3 3

n n n n
n

n n n n

   
  

     
 

                                                 

  
 

4 2 3
3 .

2 5

n n
n

n

 
  

  

 

Proposition 4.  Let Pn be a path with n 3 vertices. Then    

                           1

2 1
.

2 5 2

m
nUM P

n
 

  

Proof: We obtain 

                        

 
   

 
1

1

n

m
n

up upuv E P

UM P
d u d v





        

                                             
   

 

   

2 3

2 3 3 3

n

n n n n


 

     
 

                                           

2 1
.

2 5 2n
 

  

 

3. Results for Wheel Graphs 

 

        Let Wn be a wheel with n+1vertices and 2n edges, n 4. Then there are two types of edges based on 

the uphill degree of end vertices of each edge as follows: 

 

 E1 = {uv E(Wn) | dup(u) = 0, dup(v) = n }, | E1 | = n. 

 E2 = {uv E(Wn) | dup(u) =  dup(v) = n }, | E2 | = n. 

 

Theorem 1.   Let Wn be a wheel with n+1vertices and 2n edges, n 4.  Then     

             .nUGA W n            

 

Proof. We deduce 
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 
   

   
 

2

n

up up

n
up upuv E W

d u d v
GAU W

d u d v




  

          
2 0 2

0

n n n
n n

n n n

´ ´
= +

+ +
 

                      .n=  
 

Theorem 2.   Let Wn be a wheel with n+1vertices and 2n edges, n 4.  Then     

             1

3
.

2

m
nUM W             

Proof. We obtain 

         

 
   

 
1

1

n

m
n

up upuv E W

UM W
d u d v




            

                            
0

n n

n n n
= +

+ +
 

                            
3

.
2

=
 

 

4. Results for Gear Graphs 

 

 A bipartite wheel graph is a graph obtained from Wn with n+1 vertices adding a vertex between 

each pair of adjacent rim vertices and this graph is denoted by Gn and also called as a gear graph. 

Clearly, |V(Gn)| = 2n+1 and |E(Gn)| = 3n. A gear graph Gn is depicted in Figure 1. 

 

 

 

 

Figure 1. Gear graph Gn 

 

Let Gn be a gear graph with 3n edges, n 4. Then there are two types of edges based on the uphill degree 

of end vertices of each edge as follows: 

 

 E1 = {u E(Gn) | dup(u) =1, dup(v) = 0}, | E1 | = n. 

 E2 = {u E(Gn) | dup(u) = 1, , dup(v) = 3}, | E2 | = 2n. 
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Theorem 3. Let Gn be a gear graph with 2n+1vertices, n 3. Then  

 ( ) 3 ..nGAU G n=
 

 

Proof: We deduce 

 
   

   
 

2

n

up up

n
up upuv E G

d u d v
GAU G

d u d v




  

  
2 1 0 2 1 3

2
1 0 1 3

n n
´ ´

= +
+ +

 

                              3 .n=  
 

Theorem 4.  Let Gn be a gear graph with 2n+1vertices, n 3. Then   

 ( )1

3
.

2

m

n

n
UM G =

 

Proof: We deduce 

 
   

 
1

1

n

m
n

up upuv E G

UM G
d u d v




  

    
2

1 0 1 3

n n
= +

+ +
 

                              
3

.
2

n
=  

 

5. Results for Helm Graphs 

 

 The helm graph Hn is a graph obtained from Wn (with n+1 vertices) by attaching an end edge to 

each rim vertex of Wn. Clearly, |V(Hn)| = 2n+1 and |E(Hn)| = 3n. A graph Hn is shown in Figure 2. 

 
Figure 2. Helm graph Hn 

 

Let Hn be a helm graph with 3n edges, n 3. Then Hn has three types of the uphill degree of edges as 

follows: 

    E1 = {uv E(Hn) | dup(u) = n+1, dup(v) = n}. | E1 | = n. 
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   E2 = {uv E(Hn) | dup(u) = dup(v) =n }. | E2 | = n. 

   E3 = {uv E(Hn) | dup(u) =n , dup(v) = 0}. | E3 | = n. 

 

Theorem 5. Let Hn be a helm graph with 2n+1 vertices, n 3. Then     

      ( )
( )2 1

.
2 1

n

n n n
GAU H n

n

+
= +

+  

Proof: We obtain 

      

 
   

   
 

2

n

up up

n
up upuv E H

d u d v
GAU H

d u d v





 

                        

( )

( )

2 1 2 2 0

1 0

n n n n n
n n n

n n n n n

+ ´ ´ ´
= + +

+ + + +
 

                        

( )2 1
.

2 1

n n n
n

n

+
= +

+
        

  

 

Theorem 6. Let Hn be a helm graph with 2n+1vertices, n 3. Then  

 ( )1

3
.

2 1 2

m

n

n
UM H

n
= +

+  

Proof: We deduce 

 
   

 
1

1

n

m
n

up upuv E H

UM H
d u d v




  

     
( )1 0

n n n

n n n n n
= + +

+ + + +
 

                                
3

.
2 1 2

n

n
= +

+
                                                                                              

 

 

7. Conclusion       

               

          In this paper, the geometric-arithmetic uphill and modified first uphill indices of some standard 

graphs, wheel graphs, gear graphs and helm graphs are determined. 
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