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Abstratct-  

Colour management in print production has traditionally relied on static ICC profiles, manual calibration, 

and operator heuristics—approaches that struggle to meet the demands of today’s high-speed, short-run, 

and substrate-diverse printing environments. This chapter explores how Artificial Intelligence (AI) and 

Machine Learning (ML) are transforming colour management from a deterministic process into an 

adaptive, data-driven system. Focusing on paper-based printing, it reviews key AI capabilities—such as 

supervised learning, reinforcement learning, and neural networks—and their application in dynamic 

calibration, real-time gamut mapping, defect detection, proof simulation, and ink optimization. 

Through practical examples and empirical studies, the chapter illustrates how AI enhances print fidelity, 

reduces waste, and automates quality control. It also examines barriers to adoption, including data quality, 

integration with legacy systems, and operator retraining. Finally, the chapter projects future developments 

such as federated learning, hybrid CMS-AI models, and sustainable ink usage optimization. This shift 

toward intelligent, self-correcting, and environmentally conscious printing systems positions AI not just 

as a technical enhancer, but as a strategic driver of innovation and efficiency in print colour management. 

Keywords: Artificial Intelligence, Colour Management, Machine Learning, Print Quality, Gamut 

Mapping, Ink Optimization, Neural Networks, Predictive Calibration, Paper-Based Printing, Printing 

Industry 4.0 

1. Introduction 

In the print production ecosystem, colour is more than a visual attribute—it is a benchmark of quality, a 

brand identity marker, and often a contractual specification. As such, colour management is not merely 

a supporting function in printing workflows but a central concern that spans design, prepress, printing, 

and quality assurance. Traditionally, colour management has relied on static profiling systems, manual 

calibration, and rule-based decision-making to ensure consistency across devices and substrates. However, 

these approaches are increasingly strained by the demands of today’s print environments, which are 

characterized by shorter runs, variable substrates, rapid turnaround times, and heightened 

expectations for visual fidelity. 
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Against this backdrop, Artificial Intelligence (AI) and Machine Learning (ML) are emerging as 

powerful enablers of a new generation of colour management systems. These technologies are capable of 

analyzing vast quantities of data, learning from complex patterns, and dynamically responding to 

variations in printing conditions—tasks that conventional colour management systems (CMS) struggle to 

perform efficiently. The transition from deterministic models to adaptive intelligence represents more than 

a technological upgrade; it constitutes a paradigm shift in how the printing industry understands, 

executes, and controls colour. 

This chapter explores the evolution of colour management through the lens of AI and ML, with a specific 

focus on paper-based printing—the most widespread and foundational segment of the industry. 

Beginning with a foundational review of traditional colour management practices (Section 2), the chapter 

moves on to unpack the specific AI capabilities that transform these practices, including supervised 

learning, reinforcement learning, neural networks, and computer vision (Section 3). Subsequent sections 

(Sections 4 to 11) delve into a range of operational domains where AI’s impact is most pronounced: from 

real-time calibration, dynamic profiling, and automated gamut mapping to proof simulation, defect 

detection, ink optimization, and substrate-specific tuning. 

These developments are not without challenges. Section 12 examines the practical barriers to AI adoption, 

including data dependency, integration with legacy systems, workforce retraining, and the opacity of 

complex algorithms. Finally, Section 13 charts the future outlook, highlighting emerging trends such as 

federated learning, AI-as-a-Service, and hybrid systems that combine traditional CMS protocols with 

adaptive AI feedback. These innovations signal a transition toward intelligent, autonomous, and 

sustainable printing systems capable of meeting both the technical and ecological demands of the future. 

By weaving together theory, current practices, empirical findings, and emerging trends, this chapter aims 

to offer a comprehensive roadmap for academics, engineers, and industry professionals seeking to 

understand the transformative role of AI in colour management. It not only contextualizes why this 

transformation is necessary but also illustrates how it can be implemented and what its future implications 

may be for precision printing on paper substrates (bin Masod & Zakaria, 2024). 

2. Colour Management Fundamentals 

Colour management refers to the techniques and systems used to control colour reproduction across 

devices and materials. It is rooted in ensuring that what the designer sees on screen is accurately replicated 

in the final printed product. This typically involves the use of International Color Consortium (ICC) 

profiles, which describe the colour characteristics of devices (monitors, scanners, printers), as well as 

calibration tools to standardize device behaviour. 

However, these systems have limitations. ICC profiles are static, meaning they do not automatically adjust 

to changing variables such as humidity, ink temperature, or paper texture. Additionally, every time a 

different substrate is used or a printer is serviced, profiles often need to be recalibrated manually. These 

limitations introduce delays, inconsistencies, and significant material wastage, especially in high-speed or 

short-run print environments. 
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3. Capabilities of AI and Machine Learning 

AI and ML shift the paradigm from static colour management to dynamic, data-driven control systems. 

AI systems excel at tasks involving non-linear relationships—such as ink behaviour on various substrates 

or subtle visual differences in colour—where rule-based models typically fail. 

Supervised learning, one form of ML, allows models to be trained using large datasets where the outcome 

(e.g., the ΔE colour difference between intended and actual output) is known. These models can then 

predict outcomes in new print jobs and recommend adjustments in real-time. Unsupervised learning, on 

the other hand, is used to uncover hidden patterns in print defects or quality variations without pre-labelled 

data. Meanwhile, reinforcement learning can optimize colour management settings through trial and 

error—learning over time what adjustments yield the best results. 

Neural networks, particularly deep learning architectures, have proven especially powerful in visual tasks 

such as detecting subtle print defects or simulating colour appearance under various lighting conditions 

(Villalba-Diez et al., 2019a). 

 

4. Dynamic Calibration and Real-Time Profiling 

Traditional calibration workflows require operators to print a test chart, measure results using a 

spectrophotometer, and create or update ICC profiles accordingly. This process is time-intensive, error-

prone, and needs to be repeated frequently for different materials or environmental settings. 

AI-enabled calibration systems replace this static method with dynamic profiling. These systems ingest 

live sensor data from the printer—such as temperature, humidity, paper moisture, and ink flow rate—and 

Figure Error! Use the Home tab to apply 0 to the text that you 

want to appear here.1:1-  AL/ML Driven CMS Architecture 
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adjust calibration settings on the fly. By continuously learning from historical print data, the system 

becomes more precise over time. 

For example, (Ataeefard & Tilebon, 2022) showed that AI can optimize the selection of paper based on 

ink absorption, roughness, and brightness characteristics, ensuring the widest possible colour gamut and 

most consistent reproduction. 

Feature 
Traditional Colour 

Management (ICC-Based) 
AI-Based Dynamic Profiling 

Calibration Frequency Manual, periodic Continuous, real-time 

Response to Environmental 

Changes 
Requires manual recalibration 

Auto-adjusts based on sensor 

feedback 

Substrate Adaptation Fixed profiles for each substrate 
Learns substrate properties 

dynamically 

Operator Involvement High Minimal – mostly monitoring 

Speed of Adjustment Slow (minutes to hours) 
Instantaneous (milliseconds to 

seconds) 

Data Utilization Limited (profile data only) 
Extensive (historical + real-time 

sensor data) 

Accuracy in Colour 

Reproduction (ΔE) 
Moderate 

High – AI minimizes ΔE through 

constant optimization 

Cost of Calibration Errors High (waste, reprints, downtime) Low – predictive error correction 

Scalability Across Devices Complex 
Scalable across fleets with model 

generalization 

Learning Capability None Adaptive – improves over time 

Table 4:1- Traditional vs AI-Based Colour Management in Print Calibration 

5. Machine Learning for Gamut Mapping 

In colour management, gamut mapping is the process of translating colours from one device’s capabilities 

to another’s—such as from a computer monitor to a printer—while maintaining perceptual consistency. 

Traditional methods often involve linear transformations or basic clipping techniques that do not account 

for human visual perception. 

Machine learning offers a more nuanced approach. Instead of simply applying predetermined algorithms, 

ML models learn the best mappings based on how humans perceive colour changes. These models use 
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non-linear transformations, trained on datasets of printed images and viewer feedback, to produce more 

visually pleasing and accurate prints. 

Advanced ML models such as Generative Adversarial Networks (GANs) can even synthesize how a 

colour will appear on various paper types, accounting for factors like reflectance, ink absorption, and 

ambient lighting. As highlighted by (Ingle & Jasper, 2025), deep learning models reduced average colour 

error (ΔE) from over 20 to just over 5—a significant leap in quality and consistency. 

6. Smart Proofing and Colour Simulation 

Digital proofing—previewing print output before actual production—is a crucial step in avoiding costly 

reprints and quality issues. Yet soft-proofing systems often fail to capture the true appearance of the 

printed result due to differences in substrate and lighting conditions. 

AI addresses this by simulating not just the colour but the material interaction. It models how ink bleeds 

into paper fibres, how dot gain affects tone reproduction, and how optical brighteners in paper influence 

perceived brightness. By comparing proof images to a large dataset of real print outputs, ML algorithms 

refine the simulation, improving soft-proof fidelity. 

Some systems even use neural networks to predict how a print will look under different lighting conditions 

or after drying—factors traditionally ignored by software. This enables designers and print buyers to 

preview results more accurately and make informed decisions early in the process. 

7. Automated Quality Control and Defect Detection 

In large-scale printing operations, inspecting each print manually is neither feasible nor reliable. AI-

powered quality control systems solve this by using high-resolution cameras to capture every printed sheet 

and compare it with reference images. 

These systems rely on deep learning, especially convolutional neural networks (CNNs), to detect subtle 

defects such as banding, misregistration, mottling, and unwanted colour shifts. Unlike human inspectors, 

AI systems are consistent, fast, and capable of learning new defect types over time. 

For instance, (Villalba-Diez et al., 2019b) developed a vision-based AI system that operates in real-time 

on production lines, achieving accuracy on par with trained human operators and reducing inspection 

times to milliseconds. 

8. Ink Consumption Optimization and Waste Reduction 

Ink cost is a significant operational factor in printing. Overuse results not only in waste but also in colour 

inaccuracy due to oversaturation or bleed-through. Traditional ink estimation methods rely on simple 

models that don’t account for the complex interactions between image content, substrate, and 

environmental variables. 

AI addresses this by learning from previous jobs. It analyzes image density, dot patterns, substrate 

absorption, and even operator behaviour to predict the exact amount of ink required for a job. It also 

suggests optimal ink sequences and density settings to minimize usage without sacrificing quality. 
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Research by (Karlovits, 2017) demonstrated that AI-based ink optimization systems can reduce ink 

consumption by up to 20%, while also reducing drying times and improving adhesion. 

9. Environmental Adaptation through Sensor Feedback 

Pressroom conditions such as humidity, temperature, and airflow significantly affect ink drying, dot gain, 

and colour appearance. In traditional systems, these variables are either ignored or corrected manually. 

AI systems integrate data from environmental sensors directly into the control loop. For example, if 

humidity rises unexpectedly, the AI might increase head temperature, slow down the feed rate, or change 

drying settings—all without operator input. 

These systems are trained on historical environmental and print performance data, enabling them to 

anticipate problems before they occur. This adaptability ensures that colour quality remains consistent 

across shifts, seasons, and geographies. 

10. Substrate-Specific Optimization 

Different papers absorb and reflect ink differently. Glossy paper may enhance colour vibrancy but reduce 

legibility, while matte stock may absorb more ink and alter tonal values. Conventional CMS systems treat 

paper type as a static variable, using predefined profiles. 

AI enables a far more dynamic approach. By analyzing substrate properties such as texture, brightness, 

fibre density, and surface coatings, ML models can adjust print parameters—like ink density, print speed, 

and drying temperature—to optimize results in real time. 

In one study, (Lundström & Verikas, 2013) showed that AI systems could detect paper variability across 

batches and compensate accordingly, improving colour consistency and reducing test runs. 

11. AI in Prepress Automation 

Prepress tasks such as layout, trapping, colour correction, and imposition are time-consuming and require 

expertise. Errors in this phase often result in costly reprints. 

AI automates many of these tasks. It can adjust trapping automatically based on press and ink data, 

optimize layout for minimal waste, and even suggest image corrections like contrast enhancement or 

background removal. 

As demonstrated by (Dedijer et al., 2025), AI in prepress not only accelerates production but also reduces 

the number of errors caused by human oversight, particularly in complex variable data printing 

environments. 

12. Challenges and Barriers 

While artificial intelligence holds tremendous promise for revolutionizing colour management in the 

printing industry, its widespread adoption is not without significant challenges. These obstacles range 

from technical limitations and infrastructural demands to human-centric issues such as skill gaps and trust. 

The following are the key hurdles currently limiting full-scale implementation: 
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1.1. Data Dependency and Quality Constraints 

AI systems are fundamentally data-driven. Their learning capabilities, accuracy, and adaptability are 

entirely dependent on the quality, volume, and diversity of data they are trained on. In colour management, 

this data includes spectral measurements, ΔE values, print sensor readings, humidity and temperature logs, 

substrate characteristics, and more. 

However, the collection of such datasets is not always straightforward: 

 Historical print data may be fragmented or stored in proprietary formats that are incompatible with 

modern AI platforms. 

 Inconsistent labeling of colour defects or quality outcomes makes supervised learning difficult. 

 Underrepresented scenarios—such as rare substrate types or extreme environmental conditions—

lead to biased models that perform poorly outside the training domain. 

For example, a machine learning model trained primarily on coated gloss papers may fail to produce 

accurate predictions when applied to uncoated textured substrates. This problem of generalizability is 

common in AI applications across manufacturing sectors, and without rigorous data governance, 

predictive accuracy can be compromised. 

Furthermore, the cost of collecting, cleaning, and curating high-quality datasets can be prohibitive for 

small and medium-sized printing enterprises (SMEs), thereby reinforcing a digital divide in AI readiness. 

1.2. Integration Complexity with Legacy Systems 

Another critical barrier is the complexity of integrating AI solutions with existing printing infrastructure. 

Many printing companies rely on legacy systems that were not designed with digital connectivity or sensor 

integration in mind. Retrofitting these systems to accommodate AI involves: 

 Installing new sensors (e.g., spectrophotometers, environmental monitors) capable of real-time 

data acquisition. 

 Upgrading or interfacing old RIP (Raster Image Processor) software with modern AI modules. 

 Ensuring compatibility between hardware controllers and machine learning decision engines. 

This integration is rarely seamless. For instance, colour management modules embedded in traditional 

prepress software may not offer APIs or SDKs for AI interfacing, requiring custom middleware or 

firmware alterations. This, in turn, escalates costs and extends implementation timelines. 

In addition, integration efforts often demand collaboration between cross-disciplinary teams—IT, data 

scientists, press technicians, and equipment manufacturers—which adds complexity in terms of project 

management and communication. 

1.3. Workforce Readiness and Operator Training 

AI adoption introduces a substantial shift in workforce skill requirements. Traditional print operators, who 

are accustomed to deterministic workflows and manual calibration, are now expected to: 

 Understand how AI models generate recommendations (e.g., changes in ink density or calibration). 
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 Interpret real-time data dashboards displaying sensor analytics and performance metrics. 

 Respond appropriately when AI predictions fail or behave unexpectedly. 

This transition requires retraining or upskilling of staff—a task that is neither fast nor uniformly effective. 

There is often resistance to change, particularly when experienced technicians perceive AI as a threat to 

their craftsmanship or job security. 

Moreover, even trained staff may lack confidence in AI decision-making, particularly when the 

recommendations conflict with established heuristics or lack transparency. Without widespread 

understanding and acceptance, even the most advanced AI systems may face underutilization or be 

bypassed in favour of manual overrides. 

1.4. Transparency and Explainability of AI Models 

Many AI systems—especially those built on deep learning—operate as “black boxes.” This means that 

while the system might deliver accurate predictions, it often cannot provide an interpretable rationale for 

its decisions. In a highly regulated or quality-sensitive industry like printing, this poses serious issues. 

For example: 

 During an internal audit, a QA officer might ask why the AI reduced ink density for a particular 

job. Without explainability, the justification is inaccessible. 

 In customer-facing scenarios, being unable to explain a deviation in colour reproduction can 

damage client trust or lead to contractual disputes. 

To overcome this, there is growing interest in Explainable AI (XAI), which aims to make model decisions 

traceable and understandable. However, such models are often more complex to build and can sacrifice 

some level of predictive accuracy for transparency—a trade-off that print businesses must carefully 

evaluate. 

In sum, while these challenges are not insurmountable, they require strategic planning, stakeholder 

engagement, and a robust roadmap to ensure successful AI integration. 

13. Future Outlook 

Despite the challenges outlined above, the future of AI in colour management is profoundly optimistic. 

As the technology matures and ecosystems evolve, AI is expected to transition from a niche experimental 

tool to a standard component of professional print workflows. Several emerging trends and innovations 

are set to redefine the landscape over the coming decade: 

1.5. Federated Learning for Collaborative AI Model Training 

One of the most exciting frontiers in machine learning is federated learning, a paradigm that allows 

multiple organizations to train a shared AI model without exchanging sensitive data. In the context of 

printing: 

 Multiple print shops can contribute to a shared model trained on colour management data without 

ever transmitting actual customer files or internal operational logs. 
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 The global model learns diverse substrate types, environmental conditions, and machine profiles, 

enhancing its generalizability. 

This decentralized training approach has significant implications for privacy, data security, and industry-

wide collaboration. It particularly benefits SMEs that may not have large datasets of their own but can 

benefit from a pooled intelligence system. 

1.6. Reinforcement Learning for Dynamic Colour Strategy Optimization 

Reinforcement learning (RL) is a form of machine learning where an agent learns to take actions in an 

environment to maximize a reward. Applied to colour management, RL can be used to: 

 Optimize printing parameters (ink density, speed, head height) based on feedback from real-time 

sensor data. 

 Learn new calibration strategies by “experimenting” in a virtual simulation of the press 

environment before applying changes to actual production. 

 Continuously improve over time as more jobs are processed, refining decision policies based on 

success metrics like reduced ΔE values or customer satisfaction scores. 

Because RL systems self-improve through trial and feedback, they are well-suited for highly variable 

printing contexts such as packaging, where every job may have unique materials or design constraints. 

1.7. Hybrid Systems Combining Traditional CMS with AI Feedback 

A pragmatic and likely future direction is the fusion of existing colour management systems (CMS) with 

AI-driven adaptive feedback loops. Rather than replacing ICC profiles and colour workflows, AI systems 

will enhance them by: 

 Monitoring live output and adjusting calibration parameters within the bounds of an existing 

profile. 

 Providing “confidence scores” or “deviation warnings” that prompt human operators when outputs 

begin to drift. 

 Generating smart alerts for predictive maintenance (e.g., head misalignment) based on colour 

consistency metrics. 

This hybrid model preserves the reliability of traditional workflows while introducing AI's flexibility and 

intelligence. It also eases the transition for organizations wary of a full technological overhaul. 

1.8. Increased Adoption of AI-as-a-Service (AIaaS) Platforms 

As cloud infrastructure becomes more accessible, many vendors are beginning to offer AI-as-a-Service 

platforms for printing. These platforms provide: 

 Remote access to pre-trained AI models for colour calibration, quality assurance, and defect 

detection. 

 Integration plugins for popular prepress software and RIPs. 

 Subscription-based models that reduce upfront capital investment. 
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Such platforms democratize access to sophisticated AI tools, especially for smaller print houses or 

emerging markets, thereby accelerating global adoption. 

1.9. Integration with Sustainable Printing Initiatives 

AI systems are increasingly aligned with environmental and regulatory goals. For example, they support: 

 Ink reduction strategies that maintain visual quality while lowering VOC emissions. 

 Predictive energy management for curing and drying units. 

 Optimized material usage to reduce paper waste. 

In this way, AI not only improves operational efficiency but also contributes to sustainable and eco-

friendly printing practices—an area of growing importance in the face of tightening environmental 

regulations. 

In Summary, the future of AI in colour management is not just a matter of technological progress—it’s a 

shift in how the printing industry approaches quality, sustainability, collaboration, and innovation. With 

continuous improvements in model architecture, computing power, and industry standards, AI is poised 

to become the cornerstone of intelligent, adaptive, and sustainable printing systems. 

14. Conclusion 

The integration of artificial intelligence and machine learning into colour management systems represents 

a profound transformation in the field of paper-based printing. What was once a rigid, manual, and 

resource-intensive domain is now evolving into an intelligent, adaptive, and predictive ecosystem. 

Through the application of AI-driven tools—ranging from dynamic calibration and real-time gamut 

mapping to defect detection and substrate-aware optimization—print service providers can now achieve 

unprecedented levels of accuracy, efficiency, and consistency in colour reproduction. 

Traditional methods, while foundational, are increasingly challenged by the variability of modern print 

environments. Fixed ICC profiles and static calibration processes are insufficient to respond to the 

dynamic interplay of substrate properties, environmental conditions, ink behaviour, and customer 

expectations. AI bridges this gap by introducing systems that learn from historical and real-time data, self-

correct through feedback, and adapt to changing production variables with minimal human intervention. 

Each section of this chapter has illustrated a key dimension of this evolution: 

 Dynamic profiling systems that optimize printer behaviour in real time; 

 Neural networks that surpass human capabilities in defect recognition and quality control; 

 Predictive algorithms that minimize ink waste while maintaining colour fidelity; 

 And sensor-integrated feedback loops that maintain colour consistency despite fluctuating 

environmental conditions. 

Equally important is the recognition of the barriers to adoption—data availability, integration 

complexity, operator training, and model transparency—which must be addressed with strategic foresight 
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and cross-disciplinary collaboration. Without careful implementation and workforce alignment, the 

benefits of AI risk being underutilized or misapplied. 

Yet the outlook remains highly optimistic. Emerging technologies such as federated learning, AI-as-a-

Service (AIaaS), and reinforcement learning promise to further decentralize, democratize, and personalize 

colour management systems. These innovations not only enhance operational resilience but also align with 

global trends toward sustainable, low-waste, and energy-efficient printing practices. 

In conclusion, AI does not merely enhance colour management—it redefines it. It turns colour fidelity 

from a fragile outcome into a controllable process, and it elevates print production from reactive correction 

to proactive optimization. As the printing industry moves forward, those who embrace AI-driven colour 

management will be better positioned to deliver quality, efficiency, and innovation in a highly competitive 

and quality-conscious marketplace. 
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