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Abstract 

Accurate solar power prediction is critical for the efficient operation and integration of photovoltaic 

(PV) systems into modern power grids. The inherent uncertainty in weather conditions and sensor data 

presents major challenges for forecasting accuracy. While recent advances in deep learning, particularly 

using LSTM and its variants, have significantly improved performance, these models often ignore 

uncertainty in input data. This literature review critically analyzes state-of-the-art techniques for solar 

power forecasting, highlighting the role of metaheuristic optimization, hybrid neural models, and deep 

learning algorithms. Special attention is given to recent studies utilizing Bi-LSTM networks and the 

incorporation (or lack thereof) of uncertainty models. The review identifies key limitations in current 

approaches and underscores the need for a framework that explicitly integrates uncertainty distributions 

with Bi-LSTM for enhanced prediction accuracy. 

1. Introduction 

The rapid growth of renewable energy systems, especially solar PV installations, demands accurate 

short-term and long-term forecasting of solar power output. However, fluctuations in solar irradiance, 

weather variability, and sensor imperfections introduce nonlinearities and uncertainties that traditional 

models struggle to handle. 
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Deep learning approaches, particularly LSTM and Bi-LSTM, offer promising capabilities in modeling 

temporal dependencies and nonlinear relationships. However, most deep learning models assume 

deterministic input and do not account for real-world uncertainties such as measurement noise, system 

disturbances, and environmental variability. Recent research shows increasing interest in integrating 

metaheuristic optimization, hybrid neural architectures, and uncertainty quantification to improve the 

reliability and accuracy of predictions. 

2. Review of Existing Methods 

2.1 Optimization-Based Neural Forecasting 

Several models integrate neural networks with metaheuristic algorithms for parameter tuning: 

 EMA-DNN (Sulaiman and Mustaffa, 2024): Combines Evolutionary Mating Algorithm with 

DNN to optimize weights. Strong global search capability, but is computationally intensive and 

slow to converge. 

 GRNN-GWO (Tu et al., 2022): Employs Grey Wolf Optimization with General Regression 

Neural Network. Offers fast convergence but may suffer from premature convergence. 

 MFFNN-MVO (Talaat et al., 2022): Uses Multiverse Optimization to tune Feedforward Neural 

Networks. Good flexibility and multimodal problem-solving ability, but convergence is slow and 

expensive. 

2.2 Hybrid Deep Learning Models 

Advanced architectures integrate multiple neural components for improved performance: 

 Bayesian Optimization with Attention-Dilated LSTM (Molu et al., 2024): Enhances accuracy 

by tuning hyperparameters and filtering noise. Highly accurate but computationally expensive. 

 CNN-LSTM (Lim et al., 2022): Combines CNN for feature extraction and LSTM for temporal 

prediction. High prediction accuracy but results in complex and large models. 

 JAYA-SMC+ANN (Jlidi et al., 2023): Integrates control optimization with ANN for prediction 

and maximum power point tracking. Cost-effective but prone to local optima. 

2.3 Uncertainty-Aware and Sequential Models 

Limited research explicitly incorporates uncertainty modeling: 

 GVSAO-Bi-LSTM (Wu et al., 2024): Uses a Snow Ablation Optimization algorithm to improve 

Bi-LSTM performance. Considers some optimization issues, but lacks detailed modeling of 

uncertainty distributions and suffers from premature convergence. 

 LSTM-Based Forecasting (Dhaked et al., 2023): Uses LSTM and BPNN to predict PV output 

based on weather features. While good at capturing temporal patterns, LSTM models risk 

overfitting in fluctuating conditions. 
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3. Summary of Literature 

The following Table 1 summarizes key features, advantages, and drawbacks of reviewed approaches: 

Author Model 
Uncertainty 

Considered 
Key Advantages Limitations 

[1] Sulaiman & 

Mustaffa (2024) 
EMA + DNN Yes 

Strong search 

capability 
Slow convergence 

[2] Tu et al. (2022) GRNN + GWO Yes Fast convergence Premature convergence 

[3] Talaat et al. 

(2022) 

MFFNN + 

MVO 
No 

Flexible and 

simple 

Computationally 

expensive 

[4] Molu et al. 

(2024) 

BO + Attention-

LSTM 
No High accuracy High complexity 

[5] Jlidi et al. 

(2023) 

JAYA-SMC + 

ANN 
Yes 

Real-world 

applicability 
Risk of local optima 

[6] Lim et al. (2022) CNN + LSTM Yes 
Accurate and 

robust 
Complex architecture 

[7] Dhaked et al. 

(2023) 
LSTM No 

Sequential 

modeling 
Overfitting risk 

[8] Wu et al. (2024) 
GVSAO + Bi-

LSTM 
No Low cost 

Low accuracy, premature 

convergence 

4. Identified Research Gaps 

From the literature, the following key research gaps are identified: 

 Lack of Multi-Uncertainty Modeling: Most models consider only noise or weather variability 

but not a comprehensive set of uncertainty distributions. 

 Limited Use of Bi-LSTM: While Bi-LSTM models are powerful for capturing bidirectional 

temporal dependencies, their application in uncertainty-aware forecasting is limited. 

 Overfitting and Poor Generalization: Existing deep learning models often suffer from 

overfitting due to lack of uncertainty handling. 

 Complex and Costly Architectures: Highly accurate models often require significant 

computational resources, which limit their real-time usability. 

5. Proposed Direction 

To address these limitations, a Bi-LSTM forecasting model integrated with five distinct uncertainty 

models (Poisson, Bernoulli, Weibull, Exponential, Multinomial) is proposed. This combination aims to: 

 Model real-world variabilities more accurately 

 Reduce overfitting and improve generalization 
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 Enhance forecast accuracy under uncertain conditions 

 Maintain computational feasibility for real-time systems 

6. Conclusion 

This review highlights the evolution of solar power forecasting techniques with a focus on deep learning 

and optimization. While various hybrid models have demonstrated success, the explicit integration of 

diverse uncertainty models with Bi-LSTM is still underexplored. The proposed direction aims to bridge 

this gap and enhance the robustness of PV power prediction systems in real-world, uncertain 

environments. 
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