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Abstract 

Switching-leg redundancy has become a key design philosophy for modern power-electronic converters, 

boosting reliability, fault resilience and uninterrupted service. This survey consolidates recent advances 

in redundant-leg concepts across multi-level inverters, modular multilevel converters (MMCs) and power-

electronic building blocks (PEBBs). Redundancy schemes are reviewed from device to full-converter 

scale, alongside fault-detection, diagnostic and reliability-assessment methods, plus adaptive-control 

techniques. Results show leg-level redundancy offers the best cost-to-performance compromise relative 

to device- or module-level options. Contemporary fault-tolerant multi-level inverter configurations 

markedly raise system dependability; several render a converter immune to both single- and multi-switch 

faults. AI-driven diagnostics routinely exceed 95% accuracy under varied conditions. The review also 

highlights self-healing power architectures and reconfigurable topologies that autonomously restore 

operation with no human input. 
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1. Introduction 

Critical domains—aviation, medical instrumentation, industrial automation and renewable-energy grids—

demand power converters that remain operational despite internal failures , . Fault tolerance denotes a 

system’s capability to function correctly when one or more elements malfunction . In power electronics 

the principal route to fault tolerance is redundancy, i.e., pre-provisioned backup hardware or pathways 

that immediately assume the workload when a primary element fails. 

Unlike part-level redundancy that duplicates individual semiconductor devices, switching-leg redundancy 

addresses an entire leg of a converter bridge , . This strategy has proved especially valuable in high-power 

equipment, where downtime can cause large financial losses or create safety hazards. Implementations 

range from simple parallel legs to sophisticated modular assemblies with intelligent reconfiguration . Key 

technical hurdles include rapid fault detection, accurate fault isolation, balanced load redistribution and 

seamless mode-switching without degrading performance. 
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Wide-band-gap semiconductors and advanced digital control have opened new opportunities for 

economical, efficient redundant systems . Moreover, AI and machine-learning algorithms now enable 

predictive diagnostics and maintenance, pushing converter dependability well beyond traditional 

thresholds. 

 

2. Fundamentals of Fault Tolerance in Power Electronics 

A. Redundancy Categories 

Hardware redundancy—physical replication of critical components—remains the most prevalent route to 

tolerate faults. It appears at three principal granularities: 

 Device-level: extra switches, capacitors or sensors inside one bridge-leg. 

 Leg-level: entire additional legs connected so that any failed leg can be bypassed. 

 Converter-level: duplicate full converters in parallel or N+1 arrangements. 

Complementary forms include: 

 Time redundancy—performing the same computation or switching action multiple times to detect 

transient errors. 

 Information redundancy—embedding parity bits or checksums into control or communication 

signals. 

 Software redundancy—adaptive algorithms that identify and mask abnormal behaviour without 

extra hardware. 

 

B. Passive vs. Active Approaches 

Passive tolerance masks faults through built-in redundancy and voting logic (e.g., triple-modular 

redundancy) without explicitly identifying the defect . Active tolerance detects, localises and 

reconfigures around a fault in real time, typically with extra sensors and control logic . Although active 

schemes are more complex, they economise hardware and supply valuable diagnostic data. 

 

3. Switching-Leg Redundancy Architectures 

A. Device-Level Redundancy 

Here multiple semiconductor devices share current within one leg . Parallel devices carry the load jointly; 

if one opens, the remainder sustain the current but at higher stress. Series-connected devices, though rarer, 

help block voltage when a short circuit occurs . Equal current- or voltage-sharing circuitry is vital to avoid 

overstress. 

 

B. Leg-Level Redundancy 

Leg-level redundancy offers the most attractive trade-off between hardware cost and reliability. The 

common four-leg topology adds a spare leg to a standard three-phase bridge, ready to replace any faulty 

phase leg. 

Figure 1: Leg redundancy architecture with a redundant fourth leg for fault-tolerant power converters 
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The redundant fourth leg configuration represents a common implementation where a three-phase 

converter is equipped with an additional switching leg that can substitute for any failed main leg[15]. This 

configuration provides several advantages: 

 Cost-effectiveness: Only one additional leg is required to protect against any single leg failure 

 Simplified control: The redundant leg can use the same control strategy as the failed leg 

 Minimal impact on efficiency: The redundant leg only operates when needed, avoiding continuous 

losses. 

Advanced leg-level redundancy implementations include reconfigurable leg architectures where multiple 

redundant legs can be dynamically allocated to replace failed components[18]. These systems offer higher 

flexibility but require more sophisticated control algorithms and switching matrices. 

Benefits include: 

 Low incremental cost—only one extra leg protects all three phases. 

 Unified control—the spare leg uses the same modulation as the failed leg. 

 Efficiency retention—the redundant leg is usually idle, avoiding extra losses. 

Advanced designs employ multiple spares and matrix switches so that any leg (or even half-bridge) can 

be re-allocated on the fly . 

C. Module-Level Redundancy 

Modular multilevel converters and cascaded H-bridge inverters naturally suit sub-module redundancy –. 

An N+1 policy—one spare for every N working sub-modules—allows a faulty unit to be bypassed with 

negligible performance drop . Graceful degradation enables continued operation, albeit sometimes at 

derated voltage. 

D. Converter-Level Redundancy 

Full-converter redundancy parallels or serialises complete power stages . Data-centre supplies often adopt 

an N+1 policy with hot-swap capability . Load-sharing controls distribute current during normal service; 

surviving converters automatically pick up the slack when one module fails. 
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Figure 2: N+1 redundancy configuration showing four power modules with Module 4 as backup 

 
 

4. Power-Electronic Building Blocks (PEBBs) 

A. Architecture and Standardization 

The PEBB initiative, first promoted by the U.S. Office of Naval Research, pursues plug-and-play power-

conversion bricks with uniform electrical, thermal and control interfaces. 

 

Figure 3: Power Electronic Building Block (PEBB) standardized structure for modular systems 

 
Salient traits include: 

 Commonality—one footprint suitable for multiple converter roles. 

 Scalability—larger ratings obtained by paralleling blocks. 

 Intrinsic redundancy—faulty blocks can be isolated and swapped quickly. 

 Maintainability—modularity simplifies upgrades and repairs , . 
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B. Redundant PEBB Operation 

PEBB clusters may run in stand-by—where spares are cold until failure—or power-sharing mode that 

spreads load among all bricks . Reliability can be enhanced by reserving one or more bricks, or by operating 

all bricks below full rating to tolerate additional failures. 

 

5. Multilevel-Converter Fault Tolerance 

A. Fault-Tolerant Topologies 

Multilevel inverters inherently provide extra switching states, making reconfiguration straightforward , . 

Cascaded H-bridge arrays can bypass a single faulty cell and retune modulation to hold the output voltage 

. Neutral-point-clamped and active-NPC converters exploit alternative conduction paths to survive single- 

or double-switch defects. 

 

Figure 4: Comparison of switch requirements across different multilevel inverter topologies 

 
 

B. Redundant Switching Cells 

Instead of full sub-module spares, some designs add a small number of redundant switching cells that 

engage only after a fault , . FPGA-based controllers detect the anomaly, actuate SPDT relays and restore 

operation within microseconds . Flying-capacitor inverters, thanks to multiple capacitor charge routes, can 

also self-reconfigure after a device failure , . 

 

6.  Reliability Assessment and Diagnostic Advances 

Classical mean-time-to-failure (MTTF) calculations are being augmented with Markov models, wear-out 

data and real-time health indicators –. AI classifiers now identify open- or short-circuit faults from tiny 

waveform deviations, reducing false positives and maintenance cost –. Optimisation frameworks even size 

the ideal redundancy level for a target availability and budget. 

 

7. Conclusion 

Switching-leg redundancy has evolved from rudimentary parallel legs to intelligent, modular, self-healing 

networks. Among available schemes, leg-level redundancy supplies the most favourable cost-versus-
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resilience balance. MMCs extend this flexibility through inherent sub-module spares, while AI-enhanced 

diagnostics further elevate reliability. Anticipated research avenues include predictive maintenance, cyber-

secure redundancy control and bio-inspired self-repair mechanisms. Continuous innovation will be 

indispensable for upcoming electric-aviation, renewable and telecom applications that cannot tolerate 

power interruptions.  
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