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ABSTRACT 

Artificial intelligence-based medical diagnostics is of great concern when it comes to data privacy, such 

as medical imaging. We propose to use symmetric (AES), asymmetric (RSA), and homomorphic 

encryption (HE) to create a secure AI diagnostic pipeline where the data is encrypted at all steps to preserve 

privacy, including at rest, in-transit and inference. We use TenSEAL when performs encrypted inference 

and PyCryptodome to perform cryptography tasks, and carry out experiments to measure the system 

performance in terms of accuracy, latency, throughput, and inference attack resistance. Our findings make 

it clear that a substantial level of such security may be achieved with very little performance overhead, 

which creates a viable long-term solution to privacy-preserving medical AI. 

Intex terms 

Medical imaging, AES, RSA, homomorphic encryption, TenSEAL, privacy-preserving AI, membership 

inference attack, model inversion attack. 

I.INTRODUCTION 

Medical imaging is important in diagnostics but contains very sensitive patient data. Data leakage may 

lead to privacy violation, identity theft, and would also lead to breaching other regulations such as HIPAA 

and GDPR. In this regard, the development of AI-based diagnostics increases the necessity of secure 

inference frameworks.  

The work suggests an encrypted diagnostic framework integrated with AES, RSA and Homomorphic 

Encryption (HE) to ensure information security in the storage, transmission as well as model inference.  

Data security in conventional cryptography including the AES (Advanced Encryption Standard) and RSA 

(Rivest-Shamir Adleman) had become increasingly accepted as the source of the present security. The 

AES, a symmetric key encryption algorithm, is admired especially because it is fast and efficient in 

cryptography of huge amounts of data. RSA, in its turn, is an asymmetric algorithm which, mostly, is used 

to provide secure distribution of keys. Mahajan and Sachdeva compared the above techniques basing on 
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their speed of encryption and decryption, computing load and the complexity of security. They concluded 

that AES is faster than both DES and RSA, whereas, albeit slower, RSA is quite effective in the provision 

of secure key exchange used in sensitive applications like healthcare [1]. 

More recent research has focused on which to mix symmetric and asymmetric into hybrid systems. This 

is because Khalaf and Lakhtaria (2023) suggested an AES altered technique of RSA, in AES encryption 

and RSA securing the transfer of keys. They did studying that revealed that this design enhanced overall 

reliability and lower susceptibility to attacks especially when coping large amounts of data [2]. 

 Akter et al. went a step further with the introduction of dual-layer model which applied AES-128 as fast 

encryption and RSA as key transfer augmented with HMAC to check integrity. Their comparisons showed 

the hybrid approach to be a little less fast than AES itself, but to be significantly more effective in 

protection and resilience compared with either. This augers well with its use in applications that deal with 

a highly sensitive information like medical diagnostics [3].  

The pressure of e-communication has intensified due to the need to establish sound ways of securing 

sensitive information in flow. Encryption is a major strategy in this field. In rough terms, cryptography 

can be separated into symmetric systems (such as DES, 3DES and AES) that operate a shared key and 

asymmetric systems (such as RSA, ECC, and DSA), which use distinct public-private key pairs.[4]-[5] 

Some scholars have pointed out that combining both designs can be very effective as it borrows the best 

of the two worlds. An example of such architecture is combining AES with its efficient data encryption 

with RSA to exchange encryption keys securely and further involve the use of One-Time Password (OTP) 

authentication. This staggered model has proved to be resilient with respect to brute-forces, as well as 

phishing attacks, and at the same time, it is quick and, at the same time, genuine. It has been found to be 

usable when it comes to secure file transfer in cloud computing [6].  

Comparative performance also reveals that AES is faster, more efficient and thus more applicable to the 

large-scale or real-time applications. RSA is slower and more resource-demanding, however, still, its use 

is essential in terms of secure key distribution and digital signatures. The insights have observed the 

weaknesses of each approach too but with a good understanding, there is strength in each method though 

some areas; cloud data storage, secure communication, or encrypted voice transmission may rise above 

the others [8]. 

II. LITERATURE REVIEW 

A. Symmetric and Asymmetric Encryption 

Symmetric encryption algorithms, such as AES (Advanced Encryption Standard), are widely recognized 

for their speed and efficiency in securing large datasets. AES-256, in particular, is considered highly secure 

and suitable for applications requiring fast and resource-efficient encryption. Buhari et al. demonstrated 

that AES strikes a strong balance between speed, memory usage, and security, making it ideal for security-

critical environments like healthcare systems . 

On the other hand, RSA, an asymmetric encryption algorithm, excels in securing key exchange and 

encrypting metadata. Its robustness lies in the difficulty of factoring large prime numbers. However, RSA 
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is computationally intensive and slower than symmetric counterparts, limiting its practicality for 

encrypting large volumes of data. As Chavan et al. explain, combining RSA with AES in a hybrid scheme 

allows leveraging the strengths of both: fast data encryption with AES and secure key transmission with 

RSA . 

While both AES and RSA are effective individually, they typically require decryption before data can be 

processed by AI models, potentially exposing sensitive information. This limitation has catalyzed the 

exploration of encryption schemes that support operations on encrypted data. 

B. Homomorphic Encryption 

Homomorphic Encryption (HE) makes it possible to carry out mathematical operations directly on 

encrypted information, so the system never needs to decrypt the data before processing. This feature is 

particularly valuable in fields where data privacy is critical, such as medical diagnostics, since it allows 

AI models to analyze patient information while keeping the raw, sensitive records hidden at all times. 

Libraries such as Microsoft SEAL and TenSEAL have facilitated the practical adoption of HE for 

encrypted inference tasks. HE schemes, such as BFV and CKKS, enable operations like addition and 

multiplication on ciphertexts, supporting basic neural network functions. 

Despite its promise, HE still faces challenges. The computational overhead is significantly higher than 

traditional encryption methods. For example, inference latency can increase by several orders of 

magnitude due to the need for bootstrapping and ciphertext expansion. However, studies such as those by 

Disanayaka et al. have begun exploring efficient implementations and optimizations for HE to make it 

viable for mobile and edge AI applications . 

C. Inference Attacks on AI Models 

With the rise of AI in sensitive domains, protecting models from inference attacks has become a priority. 

Two major categories of threats are: 

Membership Inference Attacks (MIA): Adversaries determine whether a specific data point was part of 

the training dataset, threatening patient or user privacy. 

Model Inversion Attacks: Attackers reconstruct input features from the outputs or gradients of the model, 

potentially revealing private data. 

These attacks are particularly concerning in medical AI, where training data often contains personally 

identifiable information. Existing defense mechanisms, including differential privacy and dropout 

regularization, offer limited protection, especially when used in isolation. 

The integration of cryptographic techniques like AES, RSA, and HE into AI pipelines offers a holistic 

solution to these challenges. While hybrid encryption methods (e.g., AES-RSA) provide robust 

transmission security, HE enables inference without decryption, effectively closing a major loophole in 

AI privacy. However, as noted by Buhari et al., most research focuses either on security or performance, 

with few evaluating both in real-world AI inference contexts . 
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III. METHODOLOGY 

A. Encryption Layer 

To secure sensitive data prior to model training and inference, a dual-layer encryption mechanism is 

employed. AES-256 (Advanced Encryption Standard with 256-bit key length) is used to encrypt the 

dataset contents due to its high speed, strong cryptographic security, and efficiency in handling large 

volumes of data. AES operates in modes such as CBC or GCM, depending on whether integrity checking 

is required. 

 

                                                              Fig:encrypted AI diagnostic pipeline. 

To facilitate secure distribution of AES keys—especially across unsecured networks—RSA (2048-bit) 

encryption is applied. The RSA algorithm encrypts the symmetric AES keys, ensuring that only the 

intended recipient with the matching RSA private key can decrypt and access the AES key. 

The PyCryptodome library is utilized for cryptographic implementation. It offers reliable, low-level APIs 

for symmetric and asymmetric encryption and supports secure key generation, encryption/decryption, and 

hashing. Key management, including generation, wrapping, and unwrapping of AES keys, is managed via 

this library to prevent exposure during transit. 

B. AI Diagnostics 

AI diagnostic models are deployed to perform classification or inference on medical image datasets. The 

architecture selection includes: 

DenseNet121 – Known for its efficiency and high performance in medical imaging tasks. 

ResNet (Residual Network) – Facilitates deep network training using residual connections, making it 

suitable for complex patterns. 

Vision Transformer (ViT) – Utilizes attention mechanisms rather than convolutional operations, offering 

robust performance on high-resolution image data. 
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All models are implemented using PyTorch, leveraging pretrained weights (when applicable) and fine-

tuned on encrypted datasets. Evaluation metrics include: 

C. Homomorphic Encryption Layer 

To achieve privacy-preserving inference, the system integrates the TenSEAL library, which provides 

practical tools for encrypted computation. Within this framework, the CKKS (Cheon–Kim–Kim–Song) 

scheme is applied, as it is specifically designed to handle approximate arithmetic over encrypted floating-

point values. This capability makes it particularly effective for executing neural network computations, 

where most operations involve real-valued rather than purely integer data. 

Encrypted model inference involves feeding encrypted input data to a simplified version of the AI model 

that supports linear operations (such as matrix multiplications and additions). Due to the constraints of 

current HE technology (e.g., limited support for non-linear activations like ReLU), only specific portions 

of the inference pipeline are HE-compatible. 

To evaluate feasibility, results from encrypted inference are compared with plaintext inference for 

accuracy and consistency. Compatibility, latency, and error propagation during encrypted processing are 

also assessed. 

D. Leakage and Security Testing 

To measure robustness against privacy attacks, the system simulates two primary types of inference 

attacks: 

Membership Inference Attack (MIA): Determines if a particular sample was part of the model's training 

dataset. This is evaluated by comparing model output confidence for known training vs. non-training data 

samples. 

Model Inversion Attack: Attempts to reconstruct or approximate input data based on model gradients or 

output responses. The goal is to assess how much original data can be inferred from the model, especially 

under black-box access. 

Success rate of these attacks is quantified by evaluating reconstructed data similarity or classification of 

sample origin. A lower attack success rate indicates stronger privacy preservation. 

E. Evaluation Metrics and Formulas 

1.Latency(ms): 

 

Latency = (T_end - T_start) × 1000 

 

2.Throughput(img/sec): 

 

Throughput=N_images/(T_end -T_start) 
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3.MemoryUsage(MB): 

 

Memory=PeakMemory_bytes/(1024 × 1024) 

 

4.MIA_Success_Rate(%): 

 

MIA_Rate=(Correct_Guesses/Total_Attempts) × 100 

 

5.Inversion_Success_Rate(%): 

 

Inversion=Average(Similarity(x, x_hat)) × 100 

 

 

6.Accuracy(%): 

 

Accuracy =(TP+TN)/(TP+ TN + FP + FN)×100 

 

F. Algorithm: Encrypted AI Diagnostic Evaluation 

Step1: Start memory and time tracking. 

Step2: For each encryption method(Plaintext,AES,AES+RSA,HE): 

a) Encrypt each image using the selected method. 

 

b)  Run inference using AI model (linear-compatible for HE). 

 

c) Track end time and memory. 

 

d) Calculate metrics: latency, throughput, memory. 

 

e) Simulate Membership Inference and Model Inversion attacks. 

    f.Log_results. 
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Step3: Compile performance comparison table. 

IV. RESULT 

The performance evaluation of four diagnostic configurations: Plaintext, AES, AES+RSA, and 

Homomorphic Encryption (HE). The evaluation considers key operational metrics, including latency, 

throughput, memory consumption, and robustness against inference attacks, under simulated medical 

image inference workloads. 

Performance Comparison Table 

 

            Fig: Performance Comparison Table. 

V. DISCUSSION 

Balancing Performance and Privacy in Encrypted AI Inference 

The encryption methods evaluated in this study—AES-256 and Homomorphic Encryption (HE via the 

CKKS scheme)—represent two fundamentally different approaches to data protection in AI systems. Each 

offers distinct advantages and trade-offs, particularly when applied to privacy-preserving machine 

learning in healthcare and other sensitive domains. 

AES: Speed and Efficiency with a Privacy Caveat 

One of the most secure symmetric encryption algorithms, AES-256 is one of the fastest. It is designed 

around a block-level encryption model, which, when combined with hardware-level data encryption 

acceleration (e.g. AES-NI in newer processors), allows exceptionally-fast encryptions and decryptions of 

large amounts of data, making it a contender to real-time data protection, particularly during data transfer 

and storage. 

Nevertheless, AES is not useful in computations on encrypted data. This presents a serious weakness to 

AI pipelines since data is required to be decrypted before being run inference to which it is now vulnerable 

to leakage during the processing. Such an intermediate exposure represents an important vulnerability in 

privacy-sensitive contexts, such as medical diagnostics. Inference attacks, including Model Inversion and 
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Membership Inference, are able to use the decrypted state to compromise patient confidentiality, even 

when environments are secured. 

Homomorphic Encryption: Security at a Cost 

Homomorphic Encryption (HE), By directly computing on encrypted data, recent advances in 

Homomorphic Encryption (HE), most notably CKKS, reduce this gap. Unlike with any other HE 

implementation, it is possible to implement inference of the model when no input, output or intermediate 

representation is ever decrypted, making sure that sensitive data remains secure all along the data 

processing path. 

However, this privacy benefit comes at a steep cost. HE introduces significant computational overhead, 

including: 

 High latency: Encrypted operations, especially multiplications and ciphertext rescaling, are orders of 

magnitude slower than plaintext counterparts. 

 Memory bloat: Ciphertexts are large, leading to high memory usage and cache inefficiencies. 

 Limited model compatibility: Non-linear operations (e.g., ReLU, Sigmoid) are not natively 

supported, requiring approximation or redesign of model architectures. 

As observed in this study, encrypted inference using HE showed notable latency increases, often in the 

range of hundreds of milliseconds to seconds per inference. This makes real-time deployment, especially 

on edge devices or mobile platforms, currently impractical without further optimization. 

 

 

Figure 2: Comparison between AES-256 and Homomorphic Encryption highlighting the trade-offs 

between speed and security in encrypted AI inference. 

 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25037958 Volume 16, Issue 3, July-September 2025 9 

 

Improving Scalability with HE-Compatible Models and Hardware Acceleration 

To mitigate HE’s limitations, several strategies are explored: 

 HE-Compatible Models: Simplified architectures that use polynomial-friendly activation functions 

(e.g., square, identity, or low-degree approximations of ReLU) can reduce the depth of encrypted 

computations. Models may also be pruned or quantized to reduce the number of required operations. 

 GPU and FPGA Acceleration: Emerging libraries and research suggest that offloading HE 

operations to parallel architectures—such as GPUs or FPGAs—can dramatically reduce runtime. For 

example, batching encrypted vectors and optimizing matrix multiplication pipelines improve both 

throughput and latency. 

 Hybrid Models: Some solutions propose hybrid inference systems, where non-sensitive 

computations are done in plaintext and only sensitive segments are handled with HE. While this requires 

careful design, it balances speed and privacy. 

VI. CONCLUSION 

In this study, we presented a secure AI diagnostic pipeline that integrates AES-256, RSA-2048, and 

Homomorphic Encryption (HE) to preserve the confidentiality, integrity, and usability of sensitive data—

particularly in medical imaging applications. By strategically combining these encryption methods, the 

system addresses privacy risks across all stages of data processing: from data storage and transmission to 

AI model inference. 

Multi-Layered Security Architecture 

 AES-256 serves as the foundational encryption layer, securing large datasets efficiently during 

storage and pre-processing. Its symmetric nature ensures high throughput and low latency for bulk 

encryption tasks. 

 RSA-2048 The AES keys are secured using RSA-2048, permitting to safely exchange keys on 

channels that are not fully trusted (e.g. cloud platforms). This cascading authentication of key management 

assists in the event that symmetric keys are not revealed, even in the communication channel is revealed. 

 Homomorphic Encryption, using the CKKS scheme via TenSEAL, enables encrypted inference. 

This innovation ensures that input data never needs to be decrypted—even during model execution—

significantly reducing the risk of inference-time attacks, such as Membership Inference Attacks (MIA) 

and Model Inversion. 

Together, these layers provide comprehensive data protection, bridging the gap between high-speed 

encryption (AES/RSA) and secure, privacy-preserving computation (HE). 

Impact on Inference Attacks and Model Security 

Perhaps one of the greatest benefits of this architecture is that it uses AI systems to attack inference attacks 

at runtime. Such attacks include membership inference, model inversion, and so on, and aim to reveal 
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some sensitive information about the training data or recover confidential information by using outputs of 

the model.  

In traditional pipelines, the decryption of the data has to take place before any data is passed into a pipeline, 

there is a weakness which can expose results in intermediate steps. With Homomorphic Encryption (HE), 

the proposed framework allows concealing that neither the raw inputs nor the outputs of the AI model are 

to be eventually released in plaintext format. The encrypted values are used in all operations (there is no 

reconstruction of plaintext values), thus adversaries cannot see any information that they can use in the 

course of execution. This architecture seals one of the most significant weak links in the traditional AI 

systems whereby decrypted data may be exposed in the process. 

 It is particularly important to provide such protection in areas such as medical imaging and legal practice 

where any leakage of information can lead to dramatic consequences related to identity leakage, regulatory 

compliance issues, and any possible abuse of confidential records. This benefit is confirmed by the 

simulation outcome also. Under membership inference and model inversion attacks, the encrypted pipeline 

was seen to have a significant decrease in successful occurrences of the attack. 

 In other instances, unpacking efforts to unmask patient data in the encrypted infers gave random guesses 

outcomes, reflecting the integrity of the proposed method. In comparison to the baseline systems that use 

only AES or RSA, this combination with HE introduced an effective additional layer of defense and 

proved the advantageousness of HE usage to ensure defence against the most severe AI security 

challenges. 

Path Forward: Future Enhancements 

While the presented architecture provides a strong foundation, there are opportunities for further 

enhancement: 

1. Integration with Federated Learning (FL):Federated learning allows multiple parties to train a 

shared AI model without exchanging raw data. When combined with HE, FL can enable collaborative 

training over encrypted data, ensuring that no single party ever gains access to others' sensitive datasets. 

2. Hardware Acceleration for HE (GPU/TPUSupport):One of HE's major limitations is its 

computational cost. Integrating GPU/TPU acceleration will be crucial to reducing encryption overhead 

and enabling real-time encrypted inference. Libraries such as cuHE and SEAL-GPU are emerging to meet 

this need. 

3. Dual-Layer Privacy with Differential Privacy(DP):While HE protects data during inference, 

differential privacy adds a statistical noise layer to model outputs and gradients, preventing leakage from 

model parameters. Combining DP with HE could enable defense-in-depth, where even successful access 

to model outputs yields no actionable information about individual data records. 
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