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Abstract: The present paper deals with the hereditary property on different algebraic structures and give 

some example of algebraic structures which has hereditary property. I discuss the proof and definition of 

some algebraic structures whose substructure has the same character of the structure.  
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1. Introduction 

We are all aware of the basic concepts of different types groups in group theory and different types ring 

theory, vector space in linear algebra,  first countable space, second countable space, Hausdorff space, 

𝑇0 −space, 𝑇1 −space, 𝑇2 −space, regular space, normal space in the study of topology and their 

properties. We already know about some properties of the substructure of the algebraic structure.  

2. Definitions 

Definition 2.1 Algebraic Structure: Algebraic structure is representation of non-set S equipped with 

one or more binary operations, the binary operations satisfy certain axioms viz. Associativity, 

commutativity, identity, inverses, meet, join, union, intersections, subset etc. These are some examples 

of algebraic structure viz.  Group, Ring, Field, Vector space, Monoid, Semigroup, subgroup, Module, 

Lattice, Boolean Algebra, Topological spaces, Graph etc. 

Definition 2.2 Hereditary Property: Let S be an algebraic structure with a property P if H is a 

substructure of S has the same property P then this property P is called hereditary property on the 

structure S. If the substructure H has fails to preserved the property P then it has no hereditary property. 

3. Theorems  

Theorem 3.1: Every abelian group preserve the hereditary property. 

Proof: Let (𝐺, ∗) be an abelian group then its binary operation ∗  satisfy the property of commutativity 

i.e. 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎,   ∀ 𝑎, 𝑏 ∈ 𝐺  

 Now let (𝐻, ∗) be a subgroup of (𝐺, ∗) then for all 𝑥, 𝑦 ∈ 𝐻 ⊆ 𝐺 

𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥  

Hence (𝐻, ∗) is an abelian group and Abelian group has hereditary property.  

Theorem 3.2: Cyclic group has hereditary property. 
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Proof: Let (𝐺,∗) be a cyclic group then every element of G can be expressed as  there exists an element 

𝑎 ∈ 𝐺 such that each element of G can be expressed as a power of 𝑎. i.e. 𝐺 =< 𝑎 > 

Let H be a subgroup of G. If H is trivial subgroup then the  H is cyclic. If H is non-trivial subgroup of G 

then let m be the least positive integer such that 𝑎𝑚 ∈ 𝐻, we claim 𝐻 =< 𝑎𝑚 > 

Let 𝑥 ∈ 𝐻 ⇒ 𝑥 ∈ 𝐺 𝑡ℎ𝑒𝑛 𝑥 = 𝑎𝑘 

By division algorithm 𝑘 = 𝑚𝑞 + 𝑟,   0 ≤ 𝑟 < 𝑚 

⇒ 𝑎𝑟 = 𝑎𝑘𝑎−𝑚𝑞 = 𝑥(𝑎𝑚)−𝑞 ∈ 𝐻 ⇒ 𝑟 = 0  

⇒ 𝑘 = 𝑚𝑞, 𝑥 = 𝑎𝑘(𝑎𝑚)𝑞  

All members of H is a power of 𝑎𝑚 

𝐻 =< 𝑎𝑚 >  

Hence H is cyclic group and cyclic group has hereditary property. 

Theorem 3.3: Commutative ring preserve the hereditary property. 

Proof: Let (𝑅, ⨁, ⨂) be a commutative ring then 𝑎⨂𝑏 = 𝑏⨂𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ 𝑅 and let (𝑆, ⨁, ⨂) is 

closed under same binary operation and satisfy the property of subring of the commutative ring (𝑅, ⨁,

⨂). 

Let 𝑥, 𝑦 ∈ 𝑆 ⊆ 𝑅 then  𝑥⨂𝑦 = 𝑦⨂𝑥  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝑆 

Hence (𝑆, ⨁, ⨂) is a commutative ring and commutative ring (𝑅, ⨁, ⨂) has hereditary property. 

Theorem 3.4: Finite dimensional vector space V over the field F preserve the hereditary property. 

Proof: Let V be a finite dimensional vector over the field F and W be its subspace then we suppose 𝑆𝑒 is 

a linearly independent subset of W. If S is a linearly independent subset of W containing 𝑆𝑒 then S is 

also linearly independent subset of V. Thus S contains no more than the numbers elements of dimension 

of V. 

We extend 𝑆𝑒 to a basis for W. If 𝑆𝑒 spans W then 𝑆𝑒 is a basis for W and we get W is a finite 

dimensional vector space. If 𝑆𝑒 does not span W then we find a vector 𝛼1 in W such that the set 𝑆1 =

𝑆𝑒 ∪ {𝛼1} is linearly independent and we get W is a finite dimensional vector space. If 𝑆1 does not span 

W then we continue this process to find 𝑆𝑚 = 𝑆𝑒 ∪ {𝛼1, 𝛼2, … , 𝛼𝑚} which is a basis for W. Thus there is 

a basis of W containing 𝛼 which contains no more than dim V elements. Thus W is a finite dimensional 

vector space. Hence finite dimensional vector space preserve the hereditary property. 

Theorem 3.5: First countable space has hereditary property. 

Proof: Let (𝑋, 𝜏) be a first countable space and let (𝑌, 𝜏1) is a subspace of (𝑋, 𝜏). Now let y be any 

arbitrary point of Y than 𝑦 ∈ 𝑋. There exists a countable 𝜏 −local base 𝐵(𝑦) at y. The collection 
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𝐵1(𝑦) = {𝑌 ∩ 𝐵: 𝐵 ∈ 𝐵(𝑦)} forms a countable 𝜏1 −local base at y. Thus  (𝑌, 𝜏1) is a first countable 

space. Hence First countable space has hereditary property. 

Theorem 3.6: Second countable space is the hereditary property 

Proof: Let (𝑋, 𝜏) be a second countable with countable base B and let  (𝑌, 𝜏𝑌) is a subspace of (𝑋,

𝜏)then 𝐵𝑌 = {𝐵 ∩ 𝑌: 𝐵 ∈ 𝐵} is a base for 𝜏𝑌. 

As we know  𝐵𝑌 is countable. Thus there exists a countable base for 𝜏𝑌. Finally we see that subspace of 

second countable space is second countable space. Hence Second countable space has hereditary 

property.  

Theorem 3.7: The 𝑇0 –space has the hereditary property. 

Proof: A space (𝑋, 𝜏) is said to be 𝑇0 –space if and only if for given any pair of distinct points of X 

there exists a neighbourhood N of one of them not containing other. 

Let (𝑋, 𝜏) is a 𝑇0 –space and let  (𝑌, 𝜏𝑌) be a subspace of (𝑋, 𝜏). Let 𝑥 𝑎𝑛𝑑 𝑦 be two distinct points of 

Y then 𝑥 𝑎𝑛𝑑 𝑦 are also two distinct points of X then there exists 𝜏 − 𝑜𝑝𝑒𝑛 neighbourhood 𝑁𝑥 of x such 

that 𝑦 ∈ 𝑁𝑥  

Then 𝑁𝑥 ∩ 𝑌 is a 𝜏𝑌 − 𝑜𝑝𝑒𝑛 neighbourhood of x not containing y.  

Hence  (𝑌, 𝜏𝑌) is a 𝑇0 − 𝑠𝑝𝑎𝑐𝑒 and 𝑇0 − 𝑠𝑝𝑎𝑐𝑒 (𝑋, 𝜏)  has hereditary property.  

Theorem 3.8: The 𝑇1 –space has the hereditary property. 

Proof: A space (𝑋, 𝜏) is said to be 𝑇1 –space if and only if for given any pair of distinct points x and y 

of X there exist two open sets 𝑂1 𝑎𝑛𝑑 𝑂2 such that  

𝑥 ∈ 𝑂1 𝑏𝑢𝑡 𝑦 ∉ 𝑂1  𝑎𝑛𝑑 𝑦 ∈ 𝑂2  𝑏𝑢𝑡 𝑥 ∉ 𝑂2   

Let (𝑋, 𝜏) is a 𝑇1 –space and let  (𝑌, 𝜏𝑌) be a subspace of (𝑋, 𝜏). Let 𝑥 𝑎𝑛𝑑 𝑦 be two distinct points of 

Y then 𝑥 𝑎𝑛𝑑 𝑦 are also two distinct points of X then there exist two open sets 𝑂1 𝑎𝑛𝑑 𝑂2 such that  

𝑥 ∈ 𝑂1 𝑏𝑢𝑡 𝑦 ∉ 𝑂1  𝑎𝑛𝑑 𝑦 ∈ 𝑂2  𝑏𝑢𝑡 𝑥 ∉ 𝑂2   

Then 𝐺𝑌 = 𝑂1 ∩ 𝑌  𝑎𝑛𝑑  𝐻𝑌 = 𝑂1 ∩ 𝑌  are 𝜏𝑌 −open sets such that 

 𝑥 ∈ 𝐺𝑌 𝑏𝑢𝑡 𝑦 ∉ 𝐺𝑌  𝑎𝑛𝑑 𝑦 ∈ 𝐻𝑌 𝑏𝑢𝑡 𝑥 ∉ 𝐻𝑌   

Thus (𝑌, 𝜏𝑌) is a  𝑇1 –space. 

Hence  𝑇1 –space has hereditary property. 

Theorem 3.9: Hausdorff space has hereditary property. 

Proof: A space (𝑋, 𝜏) is said to be Hausdorff space if and only if for every pair of distinct points x and 

y of X, there exist disjoint neighbourhoods 𝑁𝑥 𝑎𝑛𝑑 𝑁𝑦 𝑜𝑓 𝑥 𝑎𝑛𝑑 𝑦  respectively such that 𝑁𝑥 ∩ 𝑁𝑦 = ∅ 
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Let (𝑋, 𝜏) is a Hausdorff space and let  (𝑌, 𝜏𝑌) be a subspace of (𝑋, 𝜏). Let 𝑥 𝑎𝑛𝑑 𝑦 be two distinct 

points of Y then 𝑥 𝑎𝑛𝑑 𝑦 are also two distinct points of X then there exist two open neighbourhood 

𝑁𝑥 𝑎𝑛𝑑 𝑁𝑦 𝑜𝑓 𝑥 𝑎𝑛𝑑 𝑦  respectively. Now 𝑁𝑥 ∩ 𝑌 𝑎𝑛𝑑 𝑁𝑦 ∩ 𝑌 are  𝜏𝑌 − 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡𝑠. 

𝑥 ∈ 𝑁𝑥 𝑎𝑛𝑑 𝑥 ∈ 𝑌 ⟹ 𝑥 ∈ 𝑁𝑥 ∩ 𝑌    

 and 𝑦 ∈ 𝑁𝑦 𝑎𝑛𝑑 𝑦 ∈ 𝑌 ⟹ 𝑦 ∈ 𝑁𝑦 ∩ 𝑌  and 𝑁𝑥 ∩ 𝑁𝑦 = ∅ 

Thus (𝑌 ∩ 𝑁𝑥) ∩ (𝑌 ∩ 𝑁𝑦) = 𝑌 ∩ (𝑁𝑥 ∩ 𝑁𝑦) = 𝑌 ∩ ∅ = ∅ 

We see that 𝑁𝑥 ∩ 𝑌 𝑎𝑛𝑑 𝑁𝑥 ∩ 𝑌 are disjoint 𝜏𝑌 − 𝑜𝑝𝑒𝑛 neighbourhoods of x and y respectively. 

Hence  (𝑌, 𝜏𝑌) is a Hausdorff space and Hausdorff space  (𝑋, 𝜏) has hereditary property. 

Theorem 3.10: Every regular space has hereditary property. 

Proof: A space (𝑋, 𝜏) is said to be regular space if and only if for every 𝜏 − 𝑐𝑙𝑜𝑠𝑒𝑑 set M and every 

point 𝑥 ∉ 𝑀, there exist 𝜏 − 𝑜𝑝𝑒𝑛 sets 𝑂𝑀 𝑎𝑛𝑑 𝑂𝑥 such that 

𝑀 ⊂ 𝑂𝑀 , 𝑥 ∈ 𝑂𝑥 𝑎𝑛𝑑  𝑂𝑀 ∩ 𝑂𝑥 = ∅  

Let (𝑋, 𝜏) is a regular space and let  (𝑌, 𝜏𝑌) be a subspace of (𝑋, 𝜏). Let M 𝜏𝑌 − 𝑐𝑙𝑜𝑠𝑒𝑑 subset of Y 

and 𝑥 ∉ 𝑀 be a point of Y then 

 𝐶𝑙𝑌(𝑀) = 𝐶𝑙𝑋(𝑀) ∩ 𝑌  

We have 𝐶𝑙𝑌(𝑀) = 𝑀 𝑎𝑠 𝑀 = 𝐶𝑙𝑋(𝑀) ∩ 𝑋 

Thus 𝑥 ∉ 𝑀 ⟹ 𝑥 ∉ 𝐶𝑙𝑋(𝑀) ∩ 𝑌 

⟹ 𝑥 ∉ 𝐶𝑙𝑋(𝑀)  

𝐶𝑙𝑋(𝑀) 𝑖𝑠 𝑎 𝜏 − 𝑐𝑙𝑜𝑠𝑒𝑑   subset of X such that 𝑥 ∉ 𝐶𝑙𝑋(𝑀) 

There exist 𝜏 − 𝑜𝑝𝑒𝑛 sets 𝑂𝑀 𝑎𝑛𝑑 𝑂𝑥 such that 

𝐶𝑙𝑋(𝑀) ⊂ 𝑂𝑀 , 𝑥 ∈ 𝑂𝑥 𝑎𝑛𝑑  𝑂𝑀 ∩ 𝑂𝑥 = ∅  

Now 𝑥 ∈ 𝑂𝑥 𝑎𝑛𝑑 𝑥 ∈ 𝑌 ⟹ 𝑥 ∈ 𝑂𝑥 ∩ 𝑌 

𝐶𝑙𝑋(𝑀) ⊂ 𝑂𝑀 ⟹ 𝐶𝑙𝑋(𝑀) ∩ 𝑌 ⊂ 𝑂𝑀 ∩ 𝑌 ⟹ 𝑀 ⊂ 𝑂𝑀 ∩ 𝑌 and 𝑂𝑥 ∩ 𝑌 𝑎𝑛𝑑 𝑂𝑀 ∩ 𝑌 are  𝜏𝑌 −open 

subsets of Y such that  

𝑥 ∈ 𝑂𝑥 ∩ 𝑌 𝑎𝑛𝑑 𝑀 ⊂ 𝑂𝑀 ∩ 𝑌 𝑎𝑛𝑑 (𝑂𝑥 ∩ 𝑌) ∩ (𝑂𝑀 ∩ 𝑌) = ∅  

Thus (𝑌, 𝜏𝑌) is a regular space and regular space  (𝑋, 𝜏) has hereditary property. 

4. Corollary: 𝑇3 −space has hereditary property since 𝑇3 −space is a regular space as well as 

𝑇1 −space.  

5. Conclusion: The above study leads to conclude that some algebraic structures have hereditary 

property some algebraic structures need not have hereditary property. There are some algebraic 
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structures viz. Non-abelian group, normal space, compact space etc. Does not preserve hereditary 

property. 
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