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1. Introduction and Statement of the Problem 

Random differential equations (RDEs) have gained substantial importance due to their applicability in 

diverse disciplines such as physics, biology, engineering, and finance, where systems are influenced by 

randomness or noise. In practical models, uncertainties in initial conditions, system parameters, or 

forcing terms are better described by incorporating random variables or stochastic processes into the 

model formulation. This motivates the need for a theoretical framework to analyze such equations, 

particularly in terms of existence and uniqueness of solutions. 

Traditional deterministic methods fall short when randomness is introduced. A new class of analytical 

tools involving random fixed point theorems has been developed to prove the solvability of such 

equations under compactness, continuity, and measurability conditions . 

In this paper, we consider the following second-order random differential equation: 

d2x(t, ω)

dt2
= f(t, x(t, ω), ω),  t ∈ [a, b],  ω ∈ Ω, … … … … … … … … . (1) 
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subject to the initial/boundary conditions: 

x(a, ω) = x0(ω), 
dx

dt
(a, ω) = x1(ω),…………………………………….. (2) 

where: 

 (Ω, ℱ, ℙ) is a complete probability space, 

 x(t, ω) is a real-valued function (random process), 

 f: [a, b] × ℝ × Ω → ℝ is jointly measurable and satisfies certain growth and Lipschitz-type 

conditions . 

Our goal is to establish the existence and uniqueness of a random solution x(t, ω) satisfying the above 

second-order differential equation using random fixed point theorems in a suitably defined function 

space. 

The contribution of this work lies in: 

1. Converting the second-order random differential equation into an equivalent random integral 

equation; 

2. Reformulating it as an operator equation; 

3. Applying an appropriate random fixed point theorem to prove existence and uniqueness; 

4. Demonstrating the applicability through a concrete example. 

2. Preliminaries 

Definition 1 (Probability Space).  A probability space is a triple (Ω, ℱ, ℙ) where: 

 Ω is a sample space, 

 ℱ is a σ-algebra of subsets of Ω, 

 ℙ: ℱ → [0,1] is a probability measure with ℙ(Ω) = 1.  

Definition 2 (Random Variable).  A function X: Ω → ℝ is a random variable if it is ℱ-measurable, i.e., 

for every Borel set  B ⊆ ℝ, we have X−1(B) ∈ ℱ. 

Definition 3 (Random Function).  A function f: [a, b] × Ω → ℝ is a random function if: 

 for each fixed t ∈ [a, b], the function ω ↦ f(t, ω) is measurable, 

 for each fixed ω ∈ Ω, the function t ↦ f(t, ω) is continuous.  

Definition 4 (Random Operator).  Let (X, d) be a metric space. A function T: X × Ω → X is a random 

operator if: 

https://www.ijsat.org/
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 for each fixed x ∈ X, the mapping ω ↦ T(x, ω) is measurable, 

 for each fixed ω ∈ Ω, the mapping x ↦ T(x, ω) is continuous. 

3. Lemma – Integral and Operator Form 

We consider the second-order random differential equation: 

d2x(t, ω)

dt2
= f(t, x(t, ω), ω),  t ∈ [a, b] … … … … … … … … … … (3) 

with initial conditions: 

x(a, ω) = x0(ω), 
dx

dt
(a, ω) = x1(ω),…………………………………(4) 

where f: [a, b] × ℝ × Ω → ℝ is jointly measurable and satisfies suitable Lipschitz-type conditions. 

The initial value problem [3]–[4] is equivalent to the integral equation: 

x(t, ω) = x0(ω) + x1(ω)(t − a) + ∫ ∫ f
s

a

t

a

(r, x(r, ω), ω) dr ds. 

Proof: 

Step 1: Integrate equation [3] with respect to t: 

dx

dt
(t, ω) = x1(ω) + ∫ f

t

a

(s, x(s, ω), ω) ds 

Step 2: Integrate again: 

x(t, ω) = x(a, ω) + ∫
dx

dt

t

a

(s, ω) ds

= x0(ω) + ∫ [x1(ω) + ∫ f
s

a

(r, x(r, ω), ω) dr]
t

a

ds

= x0(ω) + x1(ω)(t − a) + ∫ ∫ f
s

a

t

a

(r, x(r, ω), ω) dr ds

 

Hence, the solution to [3]–[4] is equivalent to equation [5]. ▫ 

Operator Formulation 

Let 𝐶([𝑎, 𝑏] × 𝛺) denote the space of all continuous random functions. Define: 

Operator A: 

(𝐴𝑥)(𝑠, 𝜔) = ∫ 𝑓
𝑠

𝑎

(𝑟, 𝑥(𝑟, 𝜔), 𝜔) 𝑑𝑟 

 

https://www.ijsat.org/


 

International Journal on Science and Technology (IJSAT) 

E-ISSN: 2229-7677   ●   Website: www.ijsat.org   ●   Email: editor@ijsat.org 

 

IJSAT25038139 Volume 16, Issue 3, July-September 2025 4 

 

Operator B: 

(𝐵𝑥)(𝑡, 𝜔) = 𝑥0(𝜔) + 𝑥1(𝜔)(𝑡 − 𝑎) + ∫ 𝑥
𝑡

𝑎

(𝑠, 𝜔) 𝑑𝑠 

Then, the integral equation becomes: 

𝑥(𝑡, 𝜔) = (𝐵 ∘ 𝐴)(𝑥)(𝑡, 𝜔) 

That is, the solution is a fixed point of the operator 𝑇 = 𝐵 ∘ 𝐴, i.e., 𝑇(𝑥) = 𝑥. 

4. Theorem–Branciari-type Two-Operator Fixed Point Theorem 

Let (𝑋, 𝑑) be a complete metric space. Let 𝐴: 𝑋 → 𝑌 and 𝐵: 𝑌 → 𝑋 be two mappings such that the 

composition 𝑇 = 𝐵 ∘ 𝐴: 𝑋 → 𝑋 is a contraction. That is, there exists a constant 0 < 𝑘 < 1 such that: 

𝑑(𝑇𝑥, 𝑇𝑦) = 𝑑(𝐵(𝐴𝑥), 𝐵(𝐴𝑦)) ≤ 𝑘 ⋅ 𝑑(𝑥, 𝑦)  for all 𝑥, 𝑦 ∈ 𝑋 

Then, 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋. That is: 

𝑇(𝑥∗) = 𝑥∗ ⇒ 𝐵(𝐴(𝑥∗)) = 𝑥∗ 

This implies that the original second-order random differential equation has a unique random 

solution.(5) 

4.1 Hypotheses 

Let (𝛺, ℱ, ℙ) be a complete probability space and let 𝐶([𝑎, 𝑏] × 𝛺) be the space of all real-valued 

functions 𝑥: [𝑎, 𝑏] × 𝛺 → ℝ such that for each 𝜔 ∈ 𝛺, the function 𝑡 ↦ 𝑥(𝑡, 𝜔) is continuous. Define the 

metric 𝑑 on this space as: 

𝑑(𝑥, 𝑦) = 𝑠𝑢𝑝
𝑡∈[𝑎,𝑏]

𝔼[|𝑥(𝑡, 𝜔) − 𝑦(𝑡, 𝜔)|] 

 Joint Measurability: 

For each 𝑡 ∈ [𝑎, 𝑏] and 𝑥 ∈ ℝ, the function 𝜔 ↦ 𝑓(𝑡, 𝑥, 𝜔) is measurable. For each 𝜔 ∈ 𝛺, the 

function (𝑡, 𝑥) ↦ 𝑓(𝑡, 𝑥, 𝜔) is continuous. 

 Lipschitz Condition: 

There exists a constant 𝐿 > 0 such that for all 𝑥1, 𝑥2 ∈ ℝ,  𝑡 ∈ [𝑎, 𝑏],  𝜔 ∈ 𝛺: 

|𝑓(𝑡, 𝑥1, 𝜔) − 𝑓(𝑡, 𝑥2, 𝜔)| ≤ 𝐿|𝑥1 − 𝑥2| 

 Continuity of Initial Conditions: 

The initial conditions 𝑥0(𝜔) and 𝑥1(𝜔) are continuous random variables. 

 Space Completeness: 

The function space 𝐶([𝑎, 𝑏] × 𝛺) with metric 𝑑 is complete. 

https://www.ijsat.org/
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 Contraction Condition: 

Let 𝑇 = 𝐵 ∘ 𝐴, and assume 𝐿(𝑏 − 𝑎)2/2 < 1 so that 𝑇 is a contraction. 

4.2 Main Theorem Statement 

(Existence and Uniqueness via Two-Operator Fixed Point Theorem): 

Let the hypotheses (H1)–(H5) hold. Then, the operator 𝑇 = 𝐵 ∘ 𝐴, defined by: 

𝑇(𝑥)(𝑡, 𝜔) = 𝑥0(𝜔) + 𝑥1(𝜔)(𝑡 − 𝑎) + ∫ ∫ 𝑓
𝑠

𝑎

𝑡

𝑎

(𝑟, 𝑥(𝑟, 𝜔), 𝜔) 𝑑𝑟 𝑑𝑠 

has a unique fixed point in the space 𝐶([𝑎, 𝑏] × 𝛺). That is, there exists a unique function 𝑥(𝑡, 𝜔) such 

that: 

𝑇(𝑥)(𝑡, 𝜔) = 𝑥(𝑡, 𝜔) 

This fixed point is the unique random solution to the second-order differential equation: 

𝑑2𝑥(𝑡, 𝜔)

𝑑𝑡2
= 𝑓(𝑡, 𝑥(𝑡, 𝜔), 𝜔), 

with initial conditions: 

𝑥(𝑎, 𝜔) = 𝑥0(𝜔), 
𝑑𝑥

𝑑𝑡
(𝑎, 𝜔) = 𝑥1(𝜔) 

4.3 Proof: 

Step 1: Define the Operators 

We define the operators as follows: 

Operator A: 

(𝐴𝑥)(𝑠, 𝜔) = ∫ 𝑓
𝑠

𝑎

(𝑟, 𝑥(𝑟, 𝜔), 𝜔) 𝑑𝑟 

Operator B: 

(𝐵𝑥)(𝑡, 𝜔) = 𝑥0(𝜔) + 𝑥1(𝜔)(𝑡 − 𝑎) + ∫ 𝑥
𝑡

𝑎

(𝑠, 𝜔) 𝑑𝑠 

Then, the composite operator 𝑇 = 𝐵 ∘ 𝐴 is given by: 

(𝑇𝑥)(𝑡, 𝜔) = 𝑥0(𝜔) + 𝑥1(𝜔)(𝑡 − 𝑎) + ∫ ∫ 𝑓
𝑠

𝑎

𝑡

𝑎

(𝑟, 𝑥(𝑟, 𝜔), 𝜔) 𝑑𝑟 𝑑𝑠 

Step 2: Show that T Maps into the Space 

We want to show that 𝑇(𝑥) ∈ 𝐶([𝑎, 𝑏] × 𝛺) for every 𝑥 ∈ 𝐶([𝑎, 𝑏] × 𝛺). 

https://www.ijsat.org/
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From Hypothesis (H1), 𝑓 is jointly measurable and continuous in 𝑡 for fixed  𝜔, and measurable in 𝜔 for 

fixed 𝑡. Since 𝑥(𝑡, 𝜔) is continuous in 𝑡, it follows that 𝑓(𝑡, 𝑥(𝑡, 𝜔), 𝜔) is integrable on [𝑎, 𝑏] for each 

𝜔 ∈ 𝛺. 

Thus: 

 The inner integral ∫ 𝑓
𝑠

𝑎
(𝑟, 𝑥(𝑟, 𝜔), 𝜔) 𝑑𝑟 is continuous in 𝑠, 

 The outer integral over 𝑠 is continuous in 𝑡, 

 (𝑇𝑥)(𝑡, 𝜔) is jointly measurable and continuous in 𝑡. 

Hence, 𝑇(𝑥) ∈ 𝐶([𝑎, 𝑏] × 𝛺). 

Step 3: Prove that T is a Contraction 

Let 𝑥, 𝑦 ∈ 𝐶([𝑎, 𝑏] × 𝛺). Then: 

|𝑇(𝑥)(𝑡, 𝜔) − 𝑇(𝑦)(𝑡, 𝜔)| = |∫ ∫ [𝑓(𝑟, 𝑥(𝑟, 𝜔), 𝜔) − 𝑓(𝑟, 𝑦(𝑟, 𝜔), 𝜔)]
𝑠

𝑎

𝑡

𝑎

𝑑𝑟 𝑑𝑠| 

Using the Lipschitz condition (H2): 

≤ ∫ ∫ 𝐿
𝑠

𝑎

𝑡

𝑎

|𝑥(𝑟, 𝜔) − 𝑦(𝑟, 𝜔)|𝑑𝑟 𝑑𝑠 

≤ 𝐿 ⋅ 𝑠𝑢𝑝
𝑟∈[𝑎,𝑏]

|𝑥(𝑟, 𝜔) − 𝑦(𝑟, 𝜔)| ⋅ ∫ ∫ 1
𝑠

𝑎

𝑡

𝑎

 𝑑𝑟 𝑑𝑠 = 𝐿 ⋅∥ 𝑥 − 𝑦 ∥∞⋅
(𝑡 − 𝑎)2

2
 

Taking supremum over 𝑡 ∈ [𝑎, 𝑏]: 

∥ 𝑇(𝑥) − 𝑇(𝑦) ∥≤
𝐿(𝑏 − 𝑎)2

2
⋅∥ 𝑥 − 𝑦 ∥ 

Let 𝑘 =
𝐿(𝑏−𝑎)2

2
. By Hypothesis (H5), 𝑘 < 1, so 𝑇 is a contraction. 

Step 4: Apply the Banach Fixed Point Theorem 

Since 𝑇 is a contraction on the complete metric space (𝐶([𝑎, 𝑏] × 𝛺), 𝑑), by the Banach Fixed Point 

Theorem, 𝑇 has a unique fixed point 𝑥∗ ∈ 𝐶([𝑎, 𝑏] × 𝛺) such that: 

𝑇(𝑥∗)(𝑡, 𝜔) = 𝑥∗(𝑡, 𝜔) 

This function 𝑥∗(𝑡, 𝜔) is the unique solution to the original second-order random differential equation: 

𝑑2𝑥(𝑡, 𝜔)

𝑑𝑡2
= 𝑓(𝑡, 𝑥(𝑡, 𝜔), 𝜔), 

with initial conditions: 

𝑥(𝑎, 𝜔) = 𝑥0(𝜔), 
𝑑𝑥

𝑑𝑡
(𝑎, 𝜔) = 𝑥1(𝜔) 

https://www.ijsat.org/
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4. Verified Example with Explicit Hypothesis 

Example 4.1 

Consider the second-order random differential equation: 

𝑑2𝑥(𝑡, 𝜔)

𝑑𝑡2
= −𝑥(𝑡, 𝜔) + 𝜔𝑠𝑖𝑛(𝑡),  𝑡 ∈ [0,1],  𝜔 ∈ 𝛺 

with initial conditions: 

𝑥(0, 𝜔) = 𝜔, 
𝑑𝑥

𝑑𝑡
(0, 𝜔) = 0 

Here, 𝜔 is a random variable uniformly distributed over [0,1]. 

Step 1: Explicit Check of Hypotheses (H1 to H5) 

H1: Joint Measurability and Continuity 

 𝑓(𝑡, 𝑥, 𝜔) = −𝑥 + 𝜔𝑠𝑖𝑛(𝑡) 

 Continuous in 𝑡 for fixed 𝜔 (since 𝑠𝑖𝑛(𝑡) is continuous) 

 Linear in 𝑥 ⇒ continuous in 𝑥 

 Measurable in 𝜔 ⇒ valid by composition rules 

H1 is satisfied. 

H2: Lipschitz Condition 

|𝑓(𝑡, 𝑥1, 𝜔) − 𝑓(𝑡, 𝑥2, 𝜔)| = | − 𝑥1 + 𝑥2| = |𝑥1 − 𝑥2| 

Lipschitz constant: 𝐿 = 1 

H2 is satisfied. 

H3: Initial Conditions 

𝑥0(𝜔) = 𝜔, 𝑥1(𝜔) = 0 

𝜔 is uniformly distributed on [0,1] ⇒ measurable. 

H3 is satisfied. 

H4: Function Space Completeness 

𝐶([0,1] × 𝛺) with sup-metric is a standard complete space of continuous functions. 

H4 is satisfied. 

H5: Contraction Condition 

𝐿 = 1, (𝑏 − 𝑎)2 = 1 

https://www.ijsat.org/
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𝑘 =
𝐿(𝑏 − 𝑎)2

2
=

1

2
= 0.5 < 1 

H5 is satisfied. 

Step 2: Convert to Integral Equation 

From Lemma 2.5, we convert the differential equation to an integral form: 

𝑥(𝑡, 𝜔) = 𝜔 + ∫ ∫ [
𝑠

0

𝑡

0

− 𝑥(𝑟, 𝜔) + 𝜔𝑠𝑖𝑛(𝑟)] 𝑑𝑟 𝑑𝑠 

Step 3: Picard Iteration 

Let initial guess: 𝑥0(𝑡, 𝜔) = 𝜔 

Then: 

𝑥1(𝑡, 𝜔) = 𝜔 + ∫ ∫ [
𝑠

0

𝑡

0

− 𝑥0(𝑟, 𝜔) + 𝜔𝑠𝑖𝑛(𝑟)] 𝑑𝑟 𝑑𝑠 = 𝜔 + ∫ ∫ [
𝑠

0

𝑡

0

− 𝜔 + 𝜔𝑠𝑖𝑛(𝑟)] 𝑑𝑟 𝑑𝑠

= 𝜔 + 𝜔 ∫ ∫ (
𝑠

0

𝑡

0

𝑠𝑖𝑛(𝑟) − 1) 𝑑𝑟 𝑑𝑠 

Now: 

∫ (
𝑠

0

𝑠𝑖𝑛(𝑟) − 1) 𝑑𝑟 = −𝑠 + 1 − 𝑐𝑜𝑠(𝑠) 

Then: 

∫ (
𝑡

0

− 𝑠 + 1 − 𝑐𝑜𝑠(𝑠)) 𝑑𝑠 = 𝐼(𝑡) 

⇒ 𝑥1(𝑡, 𝜔) = 𝜔(1 + 𝐼(𝑡)) 

Step 4: 

All assumptions (H1–H5) are satisfied. 

The integral form is valid. The first iteration gives a bounded measurable function. 

Since 𝑇 is a contraction, Picard iteration converges to a unique fixed point. 

Therefore, this example is valid and satisfies the main theorem. 

5. Conclusion 

In this study, we rigorously established existence and uniqueness results for a class of second-order 

random differential equations using a fixed point approach. We systematically transformed the given 

differential equation into an equivalent integral form and used a contraction-type operator mapping 

within an appropriate function space. A key contribution of this work is the use of detailed hypothesis 

verification through a complete and validated example that adheres to all fixed point criteria. This 

approach not only guarantees theoretical soundness but also demonstrates its applicability in stochastic 

dynamic systems. Future research may extend this method to fractional or coupled systems. 
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