E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org # Adsorption and Activation of CO₂ on the Surface of Ni_n Clusters (n=2 to 6, 8): An Insight from DFT study # Maksuda Khatun¹, Tanusree Ray², Debadrita Roy¹, Nitish Roy⁴, and Mahendra Nath Roy⁵ ^{1,3,4,5}Department of Chemistry, University of North Bengal, Raja Rammahunpur, Darjeeling, W. B., 734013, India; ²Department of Chemistry, Siliguri College, Darjeeling, W. B., 734001, India; ¹maksuda170391@gmail.com; ²tanusreerayray@gmail.com; ³debadrita2015@gmail.com; #### **Abstract:** Here, we have conducted a thorough investigation of the CO₂ activation process on Ni_n clusters (n=2 to 6, 8) using density functional theory. The activation processes and CO₂ adsorption energies are significantly influenced by the clusters that are selected. The number of Ni clusters, the HOMO–LUMO gap, and the charge transfer from cluster to CO₂ molecule all affect the CO₂ activation efficiency. According to our findings, the Ni₄ cluster has a high adsorption energy and, by transferring the charge that can be identified by Mulliken charge analysis, it also considerably alters the bond length and bond angle of the CO₂ molecule. Therefore, Ni₄ and Ni₅ in particular may be useful catalysts for the CO₂ molecule's activation. **Keywords:** DFT, CO₂ activation & reduction, Ni_n clusters (n=2 to 6, 8). #### **Graphical Abstract:** E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org #### **Introduction:** The rapid increase in atmospheric carbon dioxide (CO₂), primarily resulting from the combustion of fossil fuels such as coal, oil, and natural gas, as well as large-scale deforestation, has emerged as one of the most critical challenges of our time [1]. This escalation in CO₂ concentration is a principal driver of climate change and environmental instability, thereby demanding urgent mitigation strategies [2]. One of the most promising approaches lies in the capture, storage, and catalytic conversion of CO₂ into value-added fuels and chemicals. Such a strategy not only addresses greenhouse gas accumulation but also establishes CO₂ as a renewable carbon feedstock for the chemical industry[3, 4]. In this regard, adsorption-based technologies have been extensively explored, employing materials such as metal oxides, zeolites, carbon nanotubes (CNTs), and graphene as adsorbent systems [5]. Both experimental and theoretical studies have demonstrated their potential in efficiently binding CO₂, thereby facilitating subsequent transformation steps. Beyond capture, the catalytic conversion of CO₂ to hydrocarbons is an attractive pathway, with the Sabatier reaction ($CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$, $\Delta H = -252$ kJ mol⁻¹) serving as a classical example [6]. This route provides not only a sustainable approach to mitigate greenhouse gases but also a practical solution to the global energy crisis, as methane can be directly used as a fuel or feedstock [7]. A crucial step in this conversion process is the adsorption and activation of CO₂. However, the chemical inertness and thermodynamic stability of the linear CO₂ molecule make its activation highly challenging, necessitating the design of efficient catalytic systems [8]. Activation typically requires altering the linear geometry of CO₂ into a bent structure, which substantially lowers the activation energy barrier. It is widely accepted that CO₂ activation on transition metal surfaces is structure-sensitive, with distinct surface geometries influencing reactivity to different extents [9]. Over the years, the catalytic activity of CO₂ on transition metals such as Co, Ni, Cu, Pt, Pd, Fe, and CeO₂ has been extensively studied [10-12]. Results consistently highlight that activation is facilitated through elongation of the C–O bond and increased bending of the O–C–O angle, processes driven by significant electron transfer from the metal surface to the CO₂ molecule [13]. Among these, nickel (Ni) has emerged as one of the most effective catalysts, owing to its ability to stabilize a bent CO₂ intermediate, thereby significantly lowering the reaction barrier [14]. Consequently, Ni-based catalysts have been widely adopted as model systems for unraveling the mechanistic pathways of CO₂ activation and reduction. In this regard, transition metal clusters have attracted considerable attention due to their unique size-dependent electronic, structural, and catalytic properties [15]. Among them, nickel (Ni) clusters are of particular interest because of their moderate cost, abundance, and established role in heterogeneous catalysis, especially in CO₂ hydrogenation and reforming reactions [16]. Unlike bulk Ni surfaces, small Ni_n clusters exhibit distinct geometrical arrangements and discrete energy levels, which often result in enhanced reactivity and tunable catalytic behavior [17]. Density Functional Theory (DFT) has emerged as a powerful computational tool to unravel the adsorption, activation, and conversion mechanisms of CO₂ on metal clusters at the atomic scale [18]. Systematic studies on Ni clusters of varying nuclearity can provide valuable insights into the structure—reactivity relationship, the preferred adsorption geometries, the degree of CO₂ activation, and the underlying electronic factors controlling the process [13]. In this work, we present a comprehensive DFT investigation of CO_2 adsorption and activation on Ni_n clusters (n = 2–6, 8). The chosen cluster sizes represent both small and medium-sized aggregates which exhibits enhanced stability. By analyzing adsorption energies, charge transfer processes, geometrical distortions, and frontier orbital characteristics, this study aims to uncover the role of cluster size in E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org governing the efficiency of CO₂ activation. The findings provide a fundamental understanding of Ni-based nano-catalysts and may guide the rational design of cluster-supported catalytic systems for CO₂ conversion to value-added products. #### 2. Methodology: By using PBEPBE functional analysis, the geometry optimisation of Ni_n clusters (n=2 to 6, 8) and the adsorption of CO₂ molecules on these clusters have been calculated [19]. The Gaussian 09 software suite uses a DFT-based approach [20]. Both metals and non-metals were analysed using the lan2dz basis set [21]. The following formula was used to calculate the adsorption energies (Eads) of CO₂@Ni_n clusters [22]. $$E_{ads} = E_{CO2@Ni} - E_{Ni} - E_{CO2} \dots (1)$$ Where $E_{CO2@Ni}$ represents the total energy of the CO_2 adsorbed on the Ni_n and E_{Ni} , respectively, and E_{CO2} represents the total energy of the Ni_n and free CO_2 . HOMO-LUMO and adsorption energy were among the electro-chemical properties that were evaluated using the same theoretical framework. Furthermore, to understand the magnitude of electron transfer from the Ni_n cluster to CO_2 , Mulliken charge & the dipole moment was determined. #### Result and Discussion: #### 1. Geometry and electronic structure of Ni_n (n = 2 to 6, 8) bare clusters In figure 1, we optimized the structure of Ni_n clusters (n=2 to 6, 8) with the help of PBEPBE functional and lan2dz basis set. Our present work and the previous work are corelated and in table 1, we found that there are similar properties in bond length, bond angle, binding energy and HOMO LUMO band gap [23]. **Table 1:** Electronic properties of Ni_n clusters | Structure | Ni-Ni | Binding | НОМО | LUMO | Band | Dipole | Symmetry | |-----------------|-----------|---------|--------|--------|-------|------------|----------| | | bond | energy | | | gap | Moment | | | | length | per | | | (eV) | (D) | | | | (A°) | atom | | | | | | | | | (eV) | | | | | | | Ni ₂ | Ni1-Ni2= | -1.500 | -0.177 | -0.098 | - | 0.000 | DH | | | 2.06257 | | | | 2.529 | | | | Ni ₃ | Ni1-Ni2= | -2.108 | -0.170 | -0.069 | - | 0.0004 | CS | | | 2.217 | | | | 2.750 | | | | | Ni2- | | | | | | | | | Ni3=2.216 | | | | | | | | | Ni1- | | | | | | | | | Ni3=2.216 | | | | | | | | Ni ₄ | Ni1- | -2.268 | -0.145 | -0.068 | - | 0.0002 | C1 | | | Ni3=2.249 | | | | 2.099 | | | | | Ni1- | | | | | | | | | Ni4=2.249 | | | | | | | | | Ni2- | | | | | | | | | Ni4=2.249 | | | | | | | E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org | | Ni2- | | | | | | | |-----------------|-------------------|--------|--------|--------|----------|-------|----| | | Ni3=2.490 | | | | | | | | | | | | | | | | | Ni ₅ | Nil- | -2.418 | -0.162 | -0.089 | - | 0.442 | C1 | | | Ni2=2.309 | | | | 1.962 | | | | | Nil- | | | | | | | | | Ni3=2.252 | | | | | | | | | Ni2- | | | | | | | | | Ni3=2.302 | | | | | | | | | Ni2- | | | | | | | | | Ni4=2.304 | | | | | | | | | Ni2- | | | | | | | | | Ni5=2.310 | | | | | | | | | Ni4- | | | | | | | | NI: | Ni5=2.252 | 2.521 | 0.170 | 0.002 | | 0.438 | C1 | | Ni ₆ | Ni1-
Ni2=2.308 | -2.531 | -0.170 | -0.093 | 2.100 | 0.438 | CI | | | Ni1- | | | | 2.100 | | | | | Ni3=2.197 | | | | | | | | | Ni2- | | | | | | | | | Ni5=2.235 | | | | | | | | | Ni2- | | | | | | | | | Ni4=2.306 | | | | | | | | | Ni3- | | | | | | | | | Ni5=2.315 | | | | | | | | Ni ₈ | Ni1- | -2.761 | -0.171 | -0.103 | - | 0.006 | C1 | | | Ni2=2.397 | | | | 1.867 | | | | | Ni1- | | | | | | | | | Ni5=2.388 | | | | | | | | | Ni1- | | | | | | | | | Ni3=2.167 | | | | | | | | | Ni1- | | | | | | | | | Ni6=2.410 | | | | | | | | | Ni2- | | | | | | | | | Ni7=2.317 | | | | | | | | | Ni4- | | | | | | | | | Ni5=2.393 | | | | | | | | | Ni5- | | | | | | | | | Ni7=2.408 | | | | | | | | | Ni5- | | | | | | | | | Ni8=2.169 | | | | | | | | | Ni3- | | | | | | | | | Ni6=2.388 | | | | <u> </u> | | | E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org | Ni3- | | | | |-------------------|--|--|--| | Ni3-
Ni8=2.389 | The geometrical parameters of nickel clusters (Ni₂ to Ni₈) reveal interesting size-dependent features. For the dimer Ni₂, the Ni–Ni bond length is found to be 2.06 Å, which is close to reported experimental values. With the growth of cluster size, the Ni–Ni distances increase slightly, lying in the range of 2.21 Å in Ni₃ to around 2.39–2.41 Å in Ni₈, showing structural expansion and relaxation effects in larger aggregates. Particularly, Ni₄ and Ni₅ show bond variations from 2.25 Å to 2.49 Å, highlighting distorted geometries in intermediate sizes. Figure 1. Optimized structures of Ni_n clusters (n=2 to 6, 8) with DFT Furthermore, to investigate the thermodynamic stability we calculated the binding energy per atom (ΔE_b) by using Equation (2). $$\Delta E_b = \frac{[E_{(Ni_n)} - n E_{Ni}]}{n}....(2)$$ where, n is the number of Ni atoms; $E_{(Ni_n)}$ is the total energy of Ni clusters and E_{Ni} is the energy of an isolated Ni atom, respectively [24]. The negative binding energy estimates show that the Ni_n clusters are thermally stable. The binding energy per atom increases steadily with cluster size, reflecting enhanced stability. Ni₂ has the least stable configuration with a binding energy of -1.500 eV, while stability improves significantly for larger clusters, reaching -2.761 eV for Ni₈. This trend suggests that nickel clusters become thermodynamically more stable as the nuclearity increases, in line with the general trend observed for transition metal clusters. In figure 2, the energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) indicate the electronic properties of the clusters. Ni₂ shows a HOMO energy E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org of –0.177 eV and a LUMO energy of –0.098 eV. As cluster size increases, the LUMO shifts gradually, while HOMO values remain in a narrow energy window. These changes reflect the redistribution of electronic density with increasing cluster size. The HOMO–LUMO gap exhibits notable variations across the clusters. For Ni₂, the gap is –2.529 eV, which slightly increases to –2.750 eV in Ni₃, indicating greater electronic stability. However, from Ni₄ onwards, the band gap decreases, reaching as low as –1.867 eV in Ni₈. This reduction points to increasing metallic character and improved electronic conductivity with higher cluster sizes, which is crucial for catalytic applications. The dipole moment provides further insight into the polarity and charge distribution of the clusters. Ni₂ and Ni₃, with higher symmetry (DH and CS), show negligible dipole values (~0.000 D). In contrast, distorted geometries such as Ni₅ and Ni₆ exhibit significant dipole moments around 0.44 D, signifying asymmetric charge distributions. Interestingly, Ni₈ returns to near-zero dipole values, consistent with its more compact and stable structure. Cluster symmetry evolves as the size increases. Ni₂ shows DH symmetry, while Ni₃ exhibits CS symmetry, both representing relatively ordered structures. From Ni₄ onwards, clusters primarily adopt C₁ symmetry, which is associated with distortions and asymmetry, reflecting the structural flexibility required to minimize overall energy. This reduction in symmetry often correlates with increased reactivity. Figure 2. Band gap and HOMO LUMO levels of the Ni_n clusters #### 3.2. Adsorption and Activation of CO₂ on Ni_n Clusters (n=2 to 6, 8): Our main objective is to examine the adsorption and activation of CO₂ molecules on various sized Ni clusters following the optimisation of Ni_n clusters (n=2 to 6, 8). In order to do this, we consider the lowest energy structure of bare Ni clusters (as illustrated in Figure 1). The adsorption energy (E_{ads}), which measures the interaction between the CO₂ molecule and the clusters, is found using equation 1. With the exception of Ni₂, all systems are deemed acceptable for CO₂ adsorption based on the negative adsorption energy. Figure 3 depicts the adsorption energy diagram. Remarkably, the majority of the Ni clusters exhibited CO₂ activation, as seen in figure 4. Ni₄ has the highest Eads, whereas Ni₃ has the lowest. E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org **Figure 3.** Variation of adsorption energy (E_{ads}) of CO₂ on Ni_n Clusters (n=2 to 6, 8) The optimized lowest energy structures of Ni_n clusters (n = 2–6, 8) interacting with CO_2 molecules, obtained using the PBEPBE functional, are presented in Figure 4. It can be clearly observed that the CO_2 molecule preferentially adsorbs at the triangular face of these nickel clusters. This adsorption geometry remains consistent across the different cluster sizes studied. The interaction results in the formation of Ni–C bonds, which serve as key indicators of CO_2 activation. Interestingly, the bond lengths of Ni–C vary depending on the cluster size and geometry, reflecting the size-dependent reactivity of the clusters. Thus, the adsorption pattern highlights the unique structural and electronic features of small Ni clusters in promoting CO_2 activation. **Figure 4.** Optimized structures of CO₂@Ti_n clusters E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org Further analysis of Table 2 revealed that all the clusters are able to adsorb and activate the CO_2 molecule strongly with the very large change or elongation of the C-O bond lengths (d_{C-O}) in comparison to the corresponding length in a free CO_2 molecule. There is an increase of around 0.08Å in the C-O bond length for most of the clusters as compared to that of bare CO_2 (1.16 Å). The maximum elongation of C-O bond length of 0.17 Å is observed when the CO_2 molecule gets adsorbed on $Ni_8@CO_2$ cluster. During this activation process of CO_2 on the Ni clusters, there is a formation of Ni-C bond with the average bond length of 1.8 Å. A detailed examination of Table 2 clearly demonstrates that all the investigated nickel clusters exhibit a strong ability to adsorb and activate the CO₂ molecule. This activation is evident from the significant elongation of the C-O bond lengths (d_{C-O}) compared to the corresponding values in free CO₂. In its isolated state, the C–O bond length of CO₂ is about 1.16 Å, serving as the reference for comparison. Upon adsorption onto the Ni clusters, the C-O bonds undergo noticeable changes, confirming the weakening of the intramolecular bonds and the onset of activation. For most of the clusters studied, an elongation of approximately 0.08 Å in the C–O bond length is observed relative to free CO₂. This elongation highlights the influence of the Ni surface in destabilizing the linear CO₂ structure. The effect becomes even more pronounced for larger clusters, particularly the Ni₈@CO₂ complex, where the maximum C-O bond elongation of 0.17 Å is recorded. Such a considerable bond extension indicates a stronger interaction between CO₂ and the Ni cluster surface, thereby facilitating the activation process. Alongside this elongation, the adsorption process also induces the formation of a Ni–C bond, further stabilizing the CO₂ molecule on the cluster. The average bond length of this newly formed Ni-C interaction is calculated to be around 1.8 Å. This dual feature of C-O bond elongation and Ni-C bond formation strongly supports the conclusion that nickel clusters can efficiently promote CO₂ activation. Thus, the structural changes observed provide direct evidence of the potential of Nin clusters as effective nanocatalysts for CO2 activation. **Table 2:** Calculation of C-O and Ni-C Bond length of CO₂ on Ni_n Clusters (n=2 to 6, 8) clusters | Cluster Systems | C-O Bond length (Å) in CO ₂ | Ni-C Bond length (Å) in CO2@Nin | |----------------------------------|--|---------------------------------| | Ni ₃ @CO ₂ | 1.242 | 1.880 | | Ni ₄ @CO ₂ | 1.232 | 1.779 | | Ni ₅ @CO ₂ | 1.250 | 1.790 | | Ni ₆ @CO ₂ | 1.235 | 1.780 | | Ni ₈ @CO ₂ | 1.337 | 1.792 | A crucial observation from the structural analysis is the variation in the O–C–O bond angles of CO₂ upon adsorption onto the Ni_n clusters, as depicted in Figure 5. In its free state, the CO₂ molecule possesses a linear geometry with a bond angle of 180°. However, once chemisorbed on the nickel clusters, this angle undergoes a substantial reduction, falling within the range of 148° to 139°. Such a distortion corresponds to a decrease of approximately 32° to 41° relative to the bare CO₂ molecule. This pronounced bending of the O–C–O angle provides direct evidence of strong interaction between CO_2 and the cluster surface, highlighting the ability of Ni clusters to activate the otherwise stable and inert CO_2 molecule. The deviation from linearity is a well-established indicator of activation, as it reflects the weakening of π bonds within the CO_2 framework and enhanced charge transfer from the metal cluster to the antibonding orbitals of CO_2 . E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org Notably, the most significant changes in bond angle are observed in the Ni₄ and Ni₅ clusters, suggesting that medium-sized clusters are particularly effective in facilitating the activation process. These findings, in conjunction with the elongation of the C–O bonds and formation of Ni–C bonds, conclusively demonstrate that Ni_n clusters serve as efficient nanostructured platforms for CO₂ adsorption and activation. **Figure 5.** Change of the bond angle of CO₂ on CO₂@Ni_n Clusters (n=2 to 6, 8) #### 3.3. Mulliken charge analysis of the CO₂ activated clusters: It is well established that the activation of CO₂ is strongly facilitated by the transfer of electronic charge from the transition metal surface to the lowest unoccupied molecular orbital (LUMO) of the CO₂ molecule [25]. Such charge transfer weakens the C–O bonds and bends the linear geometry, thereby enhancing reactivity. In this context, we carried out a systematic investigation of the charge transfer between the selected Ni_n clusters and the adsorbed CO₂ molecule to elucidate the underlying mechanism of activation. To quantify this effect, Mulliken charge analysis was performed on each cluster–CO₂ complex. The results, presented in Figure 6, clearly indicate that the net negative charge accumulated on the chemisorbed CO₂ molecule lies in the range of –0.2435e to –0.30027e. Among the studied systems, the Ni₆@CO₂ complex exhibits the largest degree of charge transfer, with a net charge of –0.30027e on CO₂. This finding is consistent with the significant elongation of the C–O bond observed in Ni₆@CO₂ relative to free CO₂, highlighting the strong correlation between charge transfer and bond activation. Furthermore, a general trend is observed across the cluster series: as the net negative charge on the chemisorbed CO₂ molecule increases, the C–O bonds undergo greater elongation. This direct relationship reinforces the conclusion that charge donation from the Ni clusters into the antibonding orbitals of CO₂ is the primary driving force behind its activation. E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org Figure 6. Mulliken charge on CO₂ and Ni clusters of Ni_n and CO₂@Ni_n Clusters (n=2 to 6, 8) clusters #### 4. Conclusion In the present study, we have carried out a comprehensive investigation of CO₂ adsorption and activation on Ni_n clusters (n = 2–6, 8) with the ultimate objective of understanding their potential in the reduction of CO₂ to value-added fuels such as methane. The interaction of CO₂ with these clusters plays a crucial role in modulating their electronic structures, which in turn governs the adsorption energies and activation mechanisms. Our findings reveal that the efficiency of CO₂ activation is highly dependent on the cluster size, the electronic band gap, and the extent of charge transfer from the metal cluster to the CO₂ molecule. Notably, the Ni₃ cluster displays relatively low adsorption energy, indicating weaker CO₂ binding, whereas the Ni₄ cluster demonstrates significantly higher adsorption energy, accompanied by substantial charge transfer to CO₂. This enhanced charge transfer not only strengthens the interaction but also results in remarkable modifications in the C–O bond lengths and the O–C–O bond angle of the chemisorbed CO₂ molecule. Among the examined systems, the Ni₄ cluster stands out as the most effective, as it induces pronounced structural distortions in CO₂, thereby facilitating a high degree of activation. These results clearly demonstrate that the Ni₄ cluster plays a pivotal role in enhancing CO₂ reactivity through efficient charge donation, establishing it as a promising candidate for catalytic CO₂ reduction. #### Financial support The authors acknowledge no financial support from any funding resources. #### **Declaration of competing interest** The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. **Acknowledgements:** The authors are grateful to Gour Mahavidyalaya, Malda-732142, India for providing computational resources support in order to continue this research work. #### **Author Contributions Statement:** Maksuda Khatuna: Computational Work, Drafting of manuscript, Original Research. E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org Tanusree Ray: Drafting of manuscript, Original Research. Debadrita Roy: Nitish Roy: Supervision, Drafting, Original Research. Mahendra Nath Roy: Drafting of manuscript, Original Research, Supervision. #### References: - 1. R. Dhillon, G. von Wuehlisch, Mitigation of global warming through renewable biomass, Biomass and bioenergy, 48 (2013) 75-89. - 2. L.J. Nunes, The rising threat of atmospheric CO₂: a review on the causes, impacts, and mitigation strategies, Environments, 10 (2023) 66. - 3. O. Awogbemi, D.A. Desai, Novel technologies for CO₂ conversion to renewable fuels, chemicals, and value-added products, Discover nano, 20 (2025) 29. - 4. D.C. Makepa, C.H. Chihobo, Sustainable pathways for biomass production and utilization in carbon capture and storage—a review, Biomass Conversion and Biorefinery, 15 (2025) 11397-11419. - 5. S. Satyam, S. Patra, Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review, Heliyon, 10 (2024). - 6. G. Varvoutis, Design and evaluation of advanced CeO₂-based transition metal catalytic composites for CO₂ activation by renewable H₂ toward synthetic CH₄ and CO, in, Πανεπιστήμιο Δυτικής Μακεδονίας. Σχολή Πολυτεχνική. Τμήμα Μηχανολόγων Μηχανικών, 2022. - 7. S. Singh, Energy crisis and climate change: Global concerns and their solutions, Energy: crises, challenges and solutions, (2021) 1-17. - 8. C. Song, Global challenges and strategies for control, conversion and utilization of CO₂ for sustainable development involving energy, catalysis, adsorption and chemical processing, Catalysis today, 115 (2006) 2-32. - 9. D. Cheng, K.-L.C. Nguyen, V. Sumaria, Z. Wei, Z. Zhang, W. Gee, Y. Li, C.G. Morales-Guio, M. Heyde, B. Roldan Cuenya, Structure sensitivity and catalyst restructuring for CO₂ electro-reduction on copper, Nature Communications, 16 (2025) 4064. - 10. M. Konsolakis, M. Lykaki, Facet-dependent reactivity of ceria nanoparticles exemplified by CeO₂-based transition metal catalysts: A critical review, Catalysts, 11 (2021) 452. - 11. C. Liu, T.R. Cundari, A.K. Wilson, CO₂ reduction on transition metal (Fe, Co, Ni, and Cu) surfaces: In comparison with homogeneous catalysis, The Journal of Physical Chemistry C, 116 (2012) 5681-5688. - 12. A. Temitope, Advances in heterogeneous catalysts for hydrogen production, (2025). - 13. U.J. Etim, C. Zhang, Z. Zhong, Impacts of the catalyst structures on CO₂ activation on catalyst surfaces, Nanomaterials, 11 (2021) 3265. - 14. L. Shen, J. Xu, M. Zhu, Y.-F. Han, Essential role of the support for nickel-based CO₂ methanation catalysts, Acs Catalysis, 10 (2020) 14581-14591. - 15. J. Alonso, Electronic and atomic structure, and magnetism of transition-metal clusters, Chemical reviews, 100 (2000) 637-678. - 16. S. De, J. Zhang, R. Luque, N. Yan, Ni-based bimetallic heterogeneous catalysts for energy and environmental applications, Energy & environmental science, 9 (2016) 3314-3347. - 17. J. Niu, C. Zhang, H. Liu, Y. Jin, R. Zhang, J. Ran, Unraveling the effects of Ni particle size and facet on CH₄ activation: From cluster to nanoparticle, International Journal of Hydrogen Energy, 48 (2023) 19486-19493. E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org - 18. Á. Morales-García, F. Vines, J.R. Gomes, F. Illas, Concepts, models, and methods in computational heterogeneous catalysis illustrated through CO₂ conversion, Wiley Interdisciplinary Reviews: Computational Molecular Science, 11 (2021) e1530. - 19. G.A. Cisneros, M. Castro, D.R. Salahub, DFT study of the structural and electronic properties of small Ni_n (n= 2–4) clusters, International journal of quantum chemistry, 75 (1999) 847-861. - 20. S.M. Putra, T.K. Wungu, I. Arif, Ab-Initio Calculation of Chlorophyll-b UV-Vis Absorbance Spectra using Gaussian 09 based Density Functional Theory (DFT), International Journal of Nanoelectronics & Materials, 14 (2021) 11-26. - 21. B. Ali, Q.U. Ain, M. Azeem, Z. Lin, Tuning Graphitic Carbon Nitride: A Computational Study of Metal, Semiconductor, and Non-Metal Doping Effects on Electronic and Thermodynamic Properties, Journal of Physics and Chemistry of Solids, (2025) 112878. - 22. K. Ghosh, N.K. Mridha, A.A. Khan, N. Baildya, T. Dutta, K. Biswas, N.N. Ghosh, CO₂ activation on transition metal decorated graphene quantum dots: An insight from first principles, Physica E: Low-dimensional Systems and Nanostructures, 135 (2022) 114993. - 23. F. Reuse, S. Khanna, Geometry, electronic structure, and magnetism of small Ni_n (n= 2–6, 8, 13) clusters, Chemical physics letters, 234 (1995) 77-81. - 24. V. Grigoryan, M. Springborg, A theoretical study of the structure of Ni clusters (Ni N), Physical Chemistry Chemical Physics, 3 (2001) 5135-5139. - 25. O. Mohan, Q.T. Trinh, A. Banerjee, S.H. Mushrif, Predicting CO₂ adsorption and reactivity on transition metal surfaces using popular density functional theory methods, Molecular Simulation, 45 (2019) 1163-1172.