

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Smart Battery Management System for Automotive Electric Vehicles

Dr. N. Manonmani ¹, Sharan D ², Sri Tarun Desigan G ³, Sundar R ⁴, Vivin S R ⁵

¹ Assistant Professor, Department of Electrical and Electronics Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, India.

^{2,3,4,5} Department of Electrical and Electronics Engineering,
Sri Krishna College of Engineering and Technology, Coimbatore, India.

¹ manonmani@skcet.ac.in, ²727721euee082@skcet.ac.in, ³727721euee091@skcet.ac.in,

⁴727721euee095@skcet.ac.in, ⁵727721euee110@skcet.ac.in

Abstract

This paper introduces a revolutionary Smart Battery Management System (BMS) for automotive electric vehicles (EVs), dramatically enhancing battery performance and lifespan through advanced monitoring, control, and safety features. Our BMS architecture boasts a robust battery pack management system, accurately monitoring cell voltage, temperature, and current, ensuring precise cell balancing, regulating thermal conditions, and rapidly detecting faults. The user-friendly dashboard interface provides real-time data visualization, alerts, and intuitive user controls. The low-voltage (LV) circuit management reliably distributes power and protects the 12V battery and auxiliary systems. MATLAB/Simulink simulations and real-world testing on an EV battery pack conclusively demonstrate the BMS's exceptional ability to maintain battery health, optimize energy usage, and ensure safety. Our system significantly boosts battery pack efficiency and reliability, resulting in outstanding overall performance of the electric vehicle. This study confirms the vital importance of integrated BMS in automotive EVs and paves the way for future innovations in optimization and integration with emerging EV technologies to revolutionize electric transportation solutions.

Keywords: CAN Bus, Cell Balancing, PCB, Smart Battery Management System (BMS)

1. Introduction

Electric vehicles' surge in popularity necessitates cutting-edge Battery Management Systems (BMS) that deliver exceptional efficiency and intelligence. A well-crafted BMS guarantees optimal battery performance, longevity, and safety by precisely regulating voltage, current, and temperature, eliminating overcharging, deep discharging, and overheating. Since battery packs comprise multiple cells, balancing them is essential to achieve uniform performance, prevent degradation, and optimise energy utilisation. A Smart BMS integrates real-time monitoring through a dashboard interface, providing users with essential battery health metrics, alerts, and control options beyond battery pack management. It regulates power distribution to auxiliary systems such as lighting, infotainment, and safety components, ensuring consistent and reliable vehicle operation through lowvoltage circuit management. This paper showcases a

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

cutting-edge Smart BMS for electric vehicles, spearheading innovations in advanced monitoring, cell balancing techniques, and real-world testing using MATLAB/Simulink simulations and practical trials. The results prove that our system boosts battery efficiency, prolongs lifespan, and significantly enhances vehicle safety. By integrating smart BMS technologies into modern electric vehicles, we unlock opportunities for future breakthroughs in battery optimization, thermal management, and AI-driven predictive maintenance.

2. Literature Review

- Zhang et al.'s 2018 study provided an in-depth analysis of smart battery management technology in electric vehicles. The research reveals emerging trends in state-of-charge estimation, thermal management, and fault diagnosis. Future advancements will depend on artificial intelligence and machine learning-based predictive algorithms for efficient battery health monitoring and energy optimization
- Harrison and Martin (2017) demonstrated the importance of cell balancing techniques in lithiumion battery packs, showing how they prolong battery life and prevent capacity loss. They compared passive and active balancing methods, revealing that active balancing, despite its complexity, achieves higher efficiency and long-term performance gains.
- Zhang et al. (2018) conducted a comprehensive review of passive and active balancing techniques, demonstrating that flyback converters, switched capacitor methods, and inductor-based balancing deliver superior energy efficiency and battery consistency.
- Wang et al. (2015) conducted a comprehensive study on dynamic battery equalization for EVs, examining innovative methods including energy redistribution, charge shuttling, and direct energy transfer. Hybrid balancing techniques that combine active and passive methods deliver the most cost-effective and reliable solutions.
- Cai and Zhou's 2016 proposal for a Battery Management System (BMS) with active control functions revolutionized real-time monitoring, fault diagnosis, and thermal regulation in EV battery packs. The integration of active balancing circuits and advanced control algorithms drastically boosts battery efficiency and extends cycle life.
- Pang and Chen developed a low-cost power management system for EVs in 2020. This system features energy-efficient power converters, real-time monitoring, and automated control mechanisms, delivering optimal battery utilization and vehicle performance.
- **Bianchi and Lorenzani's 2015** study revealed that power electronics play a crucial role in EVs, particularly in DC-DC converters, inverters, and motor controllers. Silicon carbide and gallium nitride devices boast higher efficiency, reduced switching losses, and improved thermal management, making them the best options for next-generation EVs.

3. System Methodology

3.1 Battery Pack Management

The battery pack management system includes the following sub-components:

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

- **Cell Monitoring**: We track critical parameters voltage, temperature, and current for each individual cell in a battery pack[1]. This is vital for three key reasons:
- **Safety:** monitoring these parameters detects anomalies that indicate potential safety issues, such as overheating or overvoltage conditions, which can lead to thermal runaway or fires.
- **Performance:** by operating each cell within its optimal range, cell monitoring maintains the overall performance and efficiency of the battery pack.
- **Longevity:** continuous monitoring identifies and addresses issues early, extending the lifespan of the cells and the battery pack as a whole.
- Balance and Uniformity: Accurate data on each cell's status enables effective cell balancing, essential for the health and efficiency of the battery pack, as shown in Figure 1.

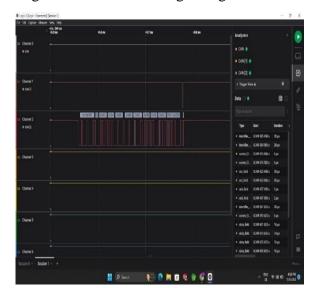


Figure 1: Cell Monitoring Using CAN Bus

- **Cell Balancing:** Cell balancing equalizes the charge across all cells in a battery pack, ensuring they maintain the same state of charge (SoC). This is crucial because:
- **Optimal Performance:** Cells with unequal charges compromise battery performance. Balancing guarantees uniform cell contribution to the overall output.
- Extended Battery Life: Imbalanced cells degrade more quickly, shortening overall battery life. Balancing prevents uneven degradation.
- **Safety:** Imbalanced cells directly cause safety hazards through overcharging or over-discharging. By balancing them, we eliminate these risks.
- Capacity Utilization: Ensuring all cells are balanced allows for maximum utilization of the battery pack's capacity, preventing the scenario where some cells are fully charged while others are not.

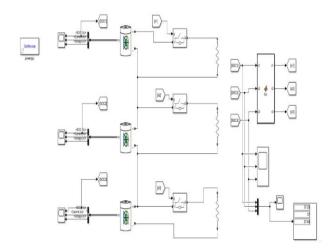
3.1.1 Methods of Cell Balancing

3.1.1.1 Passive Cell Balancing

We use Passive Balancing to equalize the charge of cells in a battery pack by dissipating excess energy from higher charged cells as heat [4] as shown in

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Figure 2. This method offers a more detailed approach:


Simpler and Less Expensive: Passive balancing circuits outperform active balancing systems in simplicity and cost. They demand fewer components and less complex control systems. Passive balancing dominates in less critical applications where high performance and efficiency are not paramount, such as low-cost consumer electronics or smaller battery packs.

Disadvantages

Inefficiency: The inefficiency caused by energy loss as heat is a major drawback. It wastes energy and necessitates robust thermal management for efficient heat dissipation.

Limited Performance: Since passive balancing just burns off extra energy as heat instead of reusing it, it's not the best choice for high-capacity or high-performance applications. This wastes energy, creates unnecessary heat, and can slow down the balancing process, making it less efficient for demanding systems.

Figure 2: Passive Cell Balancing

3.1.1.2 Active Cell Balancing

Active Balancing is a more sophisticated method that involves redistributing energy from higher charged cells to lower charged ones[6] as shown in Figure 3.

Here's a more detailed look:

Energy Redistribution: Active balancing surpasses passive balancing by transferring excess energy from one cell to another cell. We achieve this through methods including:

- **Inductors:** Energy is transferred through magnetic fields.
- Capacitors: Energy is temporarily stored in capacitors and then transferred to cells with lower charge.
- **DC-DC Converters:** These converters actively manage the energy flow between cells, transferring energy from overcharged cells to undercharged ones.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

More Efficient: Active balancing increases efficiency by redistributing energy, instead of wasting it as heat, ensuring the entire battery pack utilises its energy more effectively. This superior efficiency makes active balancing the optimal choice for highperformance and high-capacity battery packs, such as those used in electric vehicles, renewable energy storage systems, and other demanding applications.

Advantages:

Enhanced Performance: By ensuring all cells are equally charged, active balancing maximizes the performance and lifespan of the battery pack.

Better Capacity Utilization: It helps make the most of the battery pack by ensuring all cells charge evenly, preventing some from being full while others are left behind.

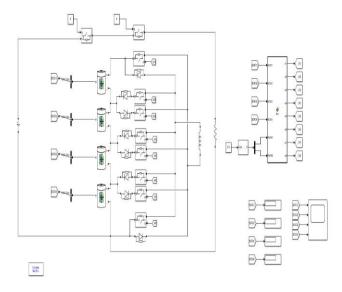


Figure 3: Active Cell Balancing

3.2 Dashboard Interface

The dashboard interface is a vital part of the Smart Battery Management System (BMS) for electric vehicles (EVs), providing users with an intuitive and interactive way to monitor and control their vehicle's battery and system parameters. This interface uses a touch-screen display to present real-time data and alerts from the BMS, giving users clear visibility into essential metrics such as state of charge (SoC), state of health (SoH), cell voltage, current, temperature, and remaining driving range[8]. The dashboard enhances user interaction by providing instant access to vital information and enabling manual control over key system functions.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

The Controller Area Network (CAN) bus integration, shown in Figure 4, is critical to the dashboard's operation, enabling seamless communication between the BMS and various vehicle subsystems. The CAN bus protocol transmits standardized messages that convey crucial data from the BMS to the dashboard, including battery voltage, current, and temperature, as well as fault codes and system status updates[9]. The dashboard's microcontroller interprets these CAN messages, updates the display in real-time, and provides users with feedback and alerts. This integration ensures the dashboard stays synchronized with the vehicle's operating conditions, enabling swift responses to any issues and contributing to the overall reliability and safety of the EV.

Microcontroller Unit

CAN Controler

CAN_TX

CAN_RX

CAN_TX

CAN_TX

CAN_L

CAN_L

Figure 3: BMS and CAN Interface

3.3 Low Voltage Circuit Management

Effective low-voltage circuit management is vital to ensure the efficiency and reliability of electric vehicle systems, with a focus on the 12V battery and auxiliary power distribution. Our custom PCB, shown in Figure 5, successfully handles these tasks, boasting a multilayer layout that optimises signal routing, power distribution, and thermal management [10]. This design guarantees stable operation and protection for vehicle subsystems, including lighting and infotainment.

The PCB incorporates several key components to enhance performance and safety:

- JW3313S Low-Power Battery Protection IC (2 units)
- FL3095K MOSFETs (2 units)
- 1N4148 Diode (1 unit)
- 0.1 µF Capacitors (5 units)
- 0.15 µF Capacitor (1 unit)
- 1 μF Capacitor (1 unit) 1 KΩ Resistors (4 units)
- 10 K Ω Resistors (3 units)
- 2 M Ω Resistor (1 unit)

The JW3313S ICs deliver robust protection against overcharge, over-discharge, and overcurrent conditions. The FL3095K MOSFETs efficiently manage high-current switching. The 1N4148 diode

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

safeguards against reverse voltage. Capacitors, including 0.1 μ F (5 units), 0.15 μ F (1 unit), and 1 μ F (1 unit), filter and stabilize the circuit. Resistors of 1 K Ω (4 units), 10 K Ω (3 units), and 2 M Ω (1 unit) set precise circuit biasing and signal conditioning [11].

This thorough approach to low-voltage circuit management ensures effective power regulation and fault protection, integrating seamlessly with the Battery Management System (BMS) [12-13]. The custom PCB guarantees reliable operation of vehicle systems, enhancing the overall safety and performance of the electric vehicle by providing consistent and protected power delivery.

| Simple | S

Figure 5: BMS PCB Schematics for LV Circuit

4. Results

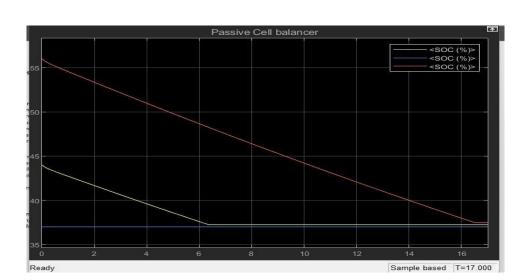


Figure 6: Output of Passive Cell Balancing

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

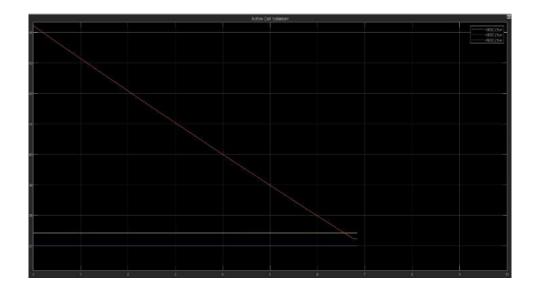


Figure 7: Output of Active Cell Balancing

5. Conclusion

Smart Battery Management System (BMS) for automotive electric vehicles (EVs) is a critical advancement in battery technology and vehicle performance. It integrates sophisticated monitoring, protection, and management features to ensure optimal battery health, efficient energy usage, and enhanced safety. Real-time data visualization through a CAN bus-enabled dashboard provides vehicle operators with valuable insights and control, enabling proactive management and maintenance. The custom PCB for low-voltage circuit management strengthens system reliability by ensuring stable power distribution and fault protection. These innovations increase efficiency, reliability, and safety of electric vehicles, paving the way for more advanced and sustainable automotive solutions, as shown in Figure 6. Future developments will refine these systems, driving progress in EV technology and performance.

References

- 1. Zhang X., Chen H., Xie Y., "Smart Battery Management Technology in Electric Vehicle Applications: Analytical and Technical Assessment toward Emerging Future Directions", Energies, 2018.
- 2. He H., Xiong R., Guo H., Li S., "Comparison study on the battery models used for the energy management of batteries in electric vehicles", Energy Conversion and Management, 64, 113–121, 2012. DOI: https://doi.org/10.1016/j.enconman.2012.03.018
- 3. Hannan M.A., Lipu M.H., Hussain A., Mohamed A., "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations", Renewable and Sustainable Energy Reviews, 78, 834–854, 2017. DOI: https://doi.org/10.1016/j.rser.2017.05.001

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

- 4. Harrison M., Martin P., "Cell balancing considerations for lithium-ion battery systems", Journal of Power Sources, 342, 292–302, 2017. DOI: https://doi.org/10.1016/j.jpowsour.2016.12.037
- 5. Zhang C., Wei X., Xu L., Xu J., "A review on passive and active balancing for lithium-ion batteries", Journal of Power Sources, 293, 804–812, 2018. DOI: https://doi.org/10.1016/j.jpowsour.2015.05.047
- 6. Wang Y., Zheng Y., Lu L., "A review on dynamic battery equalization methods for electric vehicles", Renewable and Sustainable Energy Reviews, 60, 189–198, 2016. DOI: https://doi.org/10.1016/j.rser.2016.01.105
- 7. Nguyen T.T., Peng H., "Active cell balancing of lithium-ion batteries in electric vehicles", IEEE Transactions on Vehicular Technology, 68(3), 1929–1940, 2019. DOI: https://doi.org/10.1109/TVT.2019.2895654
- 8. Schneider D., Thomsen C., "User interfaces in automotive environments: a comparative study of a touchscreen and a controller-based interface", AutomotiveUI '13: Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2013. DOI: https://doi.org/10.1145/2516540.2516542
- 9. Cai L., Zhou X., "Design and Implementation of a Battery Management System with Active Control Functions", IEEE Transactions on Industrial Electronics, 63(3), 1735–1743, 2016. DOI: https://doi.org/10.1109/TIE.2015.2497315
- 10. Pang S., Chen Y., "Design of a Low-Cost Power Management System for Electric Vehicles", Electronics, 9(8), 1241, 2020. DOI: https://doi.org/10.3390/electronics9081241
- 11. Bianchi N., Lorenzani E., "Power electronics for electric vehicles", Electrical Systems in Transportation, 5(3), 119–128, 2015. DOI: https://doi.org/10.1049/iet-est.2015.0017
- 12. Gupta A., Kumar S., "Design and Development of Efficient Low Voltage Power Supply System for Electric Vehicles", Journal of Power Electronics and Power Systems, 8(2), 123–130, 2018.
- 13. Hu X., Li S., "Battery Management System and its Functional Safety Design for Electric Vehicles", SAE Technical Paper Series, 2014. DOI: https://doi.org/10.4271/2014-01-1777