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Abstract 

Nitrogen (N) is a critical determinant of wheat yield and quality, yet its management remains a significant 

challenge in modern agriculture. Inefficient nitrogen application leads to economic losses and severe 

environmental consequences. Existing methods for detecting nitrogen deficiency are often destructive, 

time-consuming, or lack the precision required for early intervention. This paper proposes a novel deep 

learning framework that synergistically integrates Unmanned Aerial Vehicle (UAV)-based hyperspectral 

imagery with data from in-field Internet of Things (IoT) sensors for the real-time, non-invasive detection 

and mapping of nitrogen deficiency in wheat. The framework employs a hybrid deep learning architecture 

designed to process and fuse high-dimensional spectral data with continuous, point-specific environmental 

and soil data. The hyperspectral data provides detailed spatial information on plant biochemical status, 

while the IoT network offers real-time contextual information, such as soil moisture, temperature, and 

localized nutrient levels. By leveraging the complementary strengths of these disparate data sources, the 

proposed model aims to overcome the limitations of single-modality systems. The framework is designed 

to generate high-resolution nitrogen status maps, facilitating in-season variable-rate fertilizer application. 

This research contributes a significant advancement in precision agriculture by providing a robust, 

scalable, and accurate tool for proactive crop nutrient management. This approach not only enhances the 

potential for optimizing crop yield and quality but also aligns with the objectives of sustainable agriculture 

and the evolution towards a data-driven Agriculture 5.0 paradigm, promising to reduce fertilizer wastage 

and its associated environmental footprint. 
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1. Introduction 

1.1 Background and Problem Statement 

Wheat (Triticum aestivum L.) is a cornerstone of global food security, providing a substantial portion of 

the caloric and protein intake for the world's population. Achieving optimal wheat yield and grain quality 

is intrinsically linked to effective nutrient management, with nitrogen (N) being the most critical and 

frequently limiting macronutrient. Nitrogen is a fundamental component of chlorophyll, amino acids, and 

proteins, directly influencing photosynthesis, biomass accumulation, and grain protein content. However, 

managing nitrogen inputs is a delicate balancing act. Insufficient nitrogen availability leads to deficiency 

symptoms, including leaf chlorosis, stunted growth, and reduced tillering, which can significantly curtail 

crop productivity (Tian, 2024). Conversely, the excessive application of nitrogen fertilizers is not only 

economically inefficient for farmers but also poses a significant environmental threat. Surplus nitrogen 

leaches into groundwater as nitrates, contaminates surface water bodies, leading to eutrophication, and is 

released into the atmosphere as nitrous oxide (N2O), a potent greenhouse gas. 

The central problem confronting modern agriculture is the timely and accurate assessment of the crop's 

nitrogen status across a field to enable precise interventions. Traditional methods, such as soil analysis 

and plant tissue testing, are foundational but suffer from major drawbacks. They are typically destructive, 

labor-intensive, costly, and provide spatially sparse information. Furthermore, the inherent time lag 

between sampling and receiving laboratory results often renders the information obsolete for making 

effective in-season management decisions. This reactive approach frequently results in uniform fertilizer 

applications across fields that exhibit significant spatial variability in nitrogen requirements, leading to 

under-fertilization in some zones and over-fertilization in others. Therefore, there is a pressing need for a 

non-destructive, rapid, and spatially explicit methodology for monitoring wheat nitrogen status in real-

time to guide precision agriculture practices. 

1.2 Research Gaps in Current Nitrogen Detection Methods 

In response to the limitations of conventional methods, remote sensing has emerged as a promising 

alternative for monitoring crop health. Initial efforts utilized satellite imagery, but these were often 

constrained by low spatial resolution, cloud cover, and long revisit times. The advent of Unmanned Aerial 

Vehicles (UAVs) has largely overcome these issues, offering unprecedented spatial and temporal 

resolution for farm-level monitoring. However, many current UAV-based approaches rely on simple RGB 

or multispectral sensors and vegetation indices like the Normalized Difference Vegetation Index (NDVI). 

While useful, these methods can lack specificity; for instance, NDVI can saturate at high biomass levels 

and may not effectively differentiate nitrogen stress from other stressors like water deficiency or disease. 

The application of machine learning (ML) and deep learning (DL) to agricultural remote sensing data has 

marked a significant step forward. Studies have demonstrated the utility of DL models with RGB imagery 

for real-time nitrogen stress detection, often aiming to trigger variable-rate fertilizer applications (Chandel, 

2025). Other research has shown that ML models can exhibit robustness in analyzing crop characteristics 

even under extreme conditions, such as complete nitrogen deficiency (Feng, 2025). However, these 

models often depend on a single data modality, which limits their robustness and accuracy, particularly 

for early detection. The ability to predict crop N status even when the crop is not yet suffering from severe 

deficiency is crucial for preventing yield loss, a capability that single-source data models may struggle to 

consistently provide (Tanaka, 2025). Furthermore, advanced but unconventional data sources, such as leaf 

electrophysiology, are being explored but remain in nascent stages for field-scale application (Zhang, 

2025). A significant gap persists in the development of integrated systems that can synergistically fuse 
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data from multiple advanced sensors to provide a holistic and highly accurate assessment of crop nitrogen 

status. 

1.3 Proposed Novel Approach and Objectives 

This paper proposes a novel deep learning framework that addresses the existing research gaps by 

integrating two powerful and complementary technologies: UAV-based hyperspectral imaging (HSI) and 

in-field Internet of Things (IoT) sensor networks. This hybrid data fusion approach is designed for the 

real-time, high-accuracy detection and mapping of nitrogen deficiency in wheat. The core novelty of the 

framework lies in its ability to synergistically combine the rich spatial-spectral information from HSI with 

the continuous, high-frequency temporal data from IoT sensors. HSI captures hundreds of narrow, 

contiguous spectral bands, providing a detailed signature of the crop's biochemical and biophysical 

properties. This technology enables the detection of subtle changes in chlorophyll content and nitrogen 

concentration, often before visual symptoms of stress become apparent (Panda, 2025). Simultaneously, a 

distributed network of IoT sensors provides real-time, ground-level data on critical variables that influence 

nitrogen uptake and plant health, such as soil moisture, soil temperature, electrical conductivity, and 

ambient weather conditions. 

The primary objective of this research is to develop and validate a multi-modal deep learning framework 

capable of accurately predicting and mapping the nitrogen status of wheat in real-time. 

The specific objectives are as follows: 

1. To design and implement a data acquisition protocol for collecting concurrent UAV-based 

hyperspectral imagery and ground-based IoT sensor data from wheat fields under varying nitrogen 

treatments. 

2. To develop a novel hybrid deep learning architecture capable of effectively fusing high-

dimensional HSI data with time-series IoT data to enhance predictive accuracy. 

3. To evaluate the performance of the proposed fusion framework against baseline models that utilize 

only a single data modality (i.e., HSI-only or IoT-only). 

4. To demonstrate the framework's practical utility by generating high-resolution, spatially explicit 

nitrogen deficiency maps suitable for guiding variable-rate nitrogen application (VRA) systems. 
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Figure 1: Multi model Deep Learning Frame Work For Wheat Nitrogen Status Mapping 

 

1.4 Significance and Contribution 

The successful development and implementation of this framework will offer significant contributions to 

both scientific knowledge and agricultural practice. Scientifically, this research advances the field of 

agricultural remote sensing by proposing and validating a novel methodology for multi-modal data fusion. 

The integration of HSI and IoT data through a sophisticated deep learning architecture represents a new 

frontier in deriving actionable intelligence from complex agricultural datasets, creating a novel connection 

between physiological data and remote sensing information (Panda, 2025). It addresses the call for systems 

that combine HSI with IoT to monitor key plant components like nitrogen levels (Zhao, 2025). 

From a practical standpoint, this work directly addresses the critical need for precision nitrogen 

management. By enabling early and accurate detection of N deficiency, the framework empowers farmers 

to move from prophylactic, uniform fertilization to responsive, targeted interventions. This capability is a 

cornerstone of sustainable intensification, with the potential to significantly increase nitrogen use 

efficiency. The resulting benefits are multifaceted: economic savings through optimized fertilizer use, 
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increased and more stable yields, improved grain quality, and a substantial reduction in the negative 

environmental externalities associated with nitrogen runoff and greenhouse gas emissions. This research 

aligns with the vision of Agriculture 5.0, which leverages AI-enhanced IoT and advanced sensing to enable 

real-time, self-monitored agriculture, promoting both productivity and environmental stewardship (Naqvi, 

2025) (Taha, 2025). Ultimately, this framework provides a powerful tool to enhance food security while 

safeguarding ecosystem health. 

 

2. Literature Review 

2.1 Conventional and Remote Sensing Techniques for Crop Nutrient Monitoring 

The assessment of crop nutrient status has traditionally relied on direct, ground-based methods. These 

include visual inspection of deficiency symptoms, soil testing to determine nutrient availability, and 

laboratory analysis of plant tissue to measure actual nutrient concentrations. While providing accurate 

point-based measurements, these methods are inherently limited in their spatial and temporal scope. They 

are labor-intensive, destructive to the crop, and the delay in obtaining results often precludes timely in-

season adjustments. Consequently, they fail to capture the high degree of spatial variability in nutrient 

requirements that exists within a single field. 

To overcome these limitations, remote sensing technologies have been widely adopted for large-scale crop 

monitoring. Satellite-based platforms offered the first opportunity for synoptic views of agricultural 

landscapes, but their utility for precision management has been hampered by issues of coarse spatial 

resolution, fixed and infrequent revisit times, and atmospheric interference. The proliferation of 

Unmanned Aerial Vehicles (UAVs) has revolutionized agricultural remote sensing by providing a flexible, 

cost-effective platform for on-demand data acquisition at exceptionally high spatial and temporal 

resolutions. UAVs can be equipped with a variety of sensors, including standard RGB, multispectral, and 

hyperspectral imagers. While multispectral sensors, which capture data in a few discrete spectral bands, 

have been effective for calculating vegetation indices correlated with plant vigor, hyperspectral imaging 

(HSI) represents a significant leap in capability. By acquiring image data across hundreds of narrow, 

contiguous bands, HSI provides a detailed spectral signature for each pixel. This rich spectral information 

allows for the detection and quantification of specific plant biochemical and biophysical variables, 

offering a powerful, non-invasive method for assessing nutrient status, including nitrogen concentration 

(Panda, 2025). The integration of drone-based HSI with other technologies is seen as a key driver for 

advancing precision agriculture (Kar, 2025). 

2.2 Machine Learning and Deep Learning in Precision Agriculture 

The vast and complex datasets generated by modern remote sensing platforms necessitate advanced 

analytical techniques to extract meaningful information. Machine learning (ML), a subfield of artificial 

intelligence, has become an indispensable tool in precision agriculture for tasks ranging from crop yield 

prediction to weed and disease detection (Roy, 2025). Early applications in nutrient management often 

employed traditional ML algorithms such as Support Vector Machines (SVM), Random Forests (RF), and 

Multiple Linear Regression (MLR) to establish relationships between spectral data and crop nitrogen 

status. These models have demonstrated considerable success; for instance, ML models have been used to 

estimate the Nitrogen Nutrition Index (NNI) in rice and have proven robust in monitoring wheat growth 

parameters under varying nitrogen fertilizer applications (Wang, 2024) (Feng, 2025). 

More recently, deep learning (DL), particularly the use of Convolutional Neural Networks (CNNs), has 

shown superior performance in analyzing image-based data. The hierarchical feature extraction 
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capabilities of CNNs make them exceptionally well-suited for identifying complex spatial patterns and 

subtle textural features in aerial imagery that are indicative of crop stress. Several studies have successfully 

deployed DL models for nitrogen stress detection in wheat using RGB or multispectral images, with some 

systems designed for real-time operation on embedded platforms to facilitate immediate action (Chandel, 

2025). The application of ML and DL has also been extended to estimate leaf nitrogen content in other 

staple crops like rice by leveraging diverse features extracted from hyperspectral data, demonstrating high 

accuracy and field-level applicability (Tian, 2024). This body of work confirms the immense potential of 

DL to translate complex sensor data into actionable agronomic insights. 

2.3 Data Fusion Strategies for Enhanced Crop Status Estimation 

While single-sensor systems have shown promise, no single data source can capture the full complexity 

of the soil-plant-atmosphere continuum. Consequently, data fusion—the process of combining data from 

multiple sources to achieve improved accuracy and more robust inferences—has emerged as a critical 

research area. Fusing data from different sensors can compensate for the weaknesses of individual sources 

and provide a more comprehensive view of crop status. For example, research has demonstrated that 

combining UAV imagery with meteorological data through machine learning can improve the prediction 

of winter wheat nitrogen status, enabling detection even before severe deficiency occurs (Tanaka, 2025). 

Other work has focused on fusing multi-source data from consumer-grade drones to enhance the 

monitoring of agronomic traits (Feng, 2025). 

Despite these advances, the fusion of high-dimensional hyperspectral data with other complementary data 

types, especially real-time data streams, remains a frontier in agricultural sensing. The challenge lies not 

only in managing the volume and velocity of disparate data but also in developing sophisticated fusion 

architectures that can synergistically exploit the unique information content of each modality. Recent 

reviews highlight novel architectures that combine HSI with IoT sensor data as an emerging and powerful 

approach for anomaly detection and component analysis in agricultural products, a concept directly 

applicable to nutrient deficiency detection (Zhao, 2025). The development of such integrated systems is 

essential for moving beyond simple correlations to a more holistic and causally informed understanding 

of crop N dynamics. 

2.4 Advancements in IoT and Sensor Technologies for Agriculture 5.0 

The paradigm of Agriculture 5.0 envisions a future of farming characterized by hyper-connectivity, 

intelligent automation, and data-driven decision-making. The Internet of Things (IoT) is a foundational 

technology in this vision, creating a network of interconnected physical devices, including in-field sensors, 

actuators, and farm machinery. In the context of crop monitoring, IoT enables the deployment of low-cost 

sensors that can continuously collect and transmit data on a wide range of parameters, such as soil 

moisture, temperature, pH, electrical conductivity, and even localized nutrient levels (Taha, 2025) (Singh, 

2025). The most studied concept in sustainable agriculture in 2024 was IoT, underscoring its growing 

importance (Botero-Valencia, 2025). 

The integration of artificial intelligence with IoT sensors is further amplifying their capabilities, leading 

to the development of "smart sensors" that can perform on-board analysis and provide real-time alerts. 

These AI-enhanced IoT systems are being designed to autonomously monitor for a variety of crop issues, 

including disease infestations and nitrogen deficiencies (Naqvi, 2025). Such technologies provide the 

crucial ground-truth context that is often missing from purely aerial remote sensing approaches. By 

providing a continuous temporal record of the plant's immediate environment, IoT data can help 

disambiguate the causes of crop stress observed in aerial imagery and improve the accuracy of predictive 
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models. This move towards self-monitored agriculture, enabled by the fusion of AI and IoT, promises to 

make farm management more efficient, sustainable, and resilient. 

2.5 Synthesis and Justification for the Proposed Framework 

The literature reveals a clear trajectory in crop nutrient monitoring, moving from slow, destructive lab 

methods towards rapid, non-invasive remote sensing technologies. UAV-based hyperspectral imaging has 

emerged as a state-of-the-art tool for capturing detailed spatial information on plant health, while deep 

learning provides the analytical power to interpret this complex data. Concurrently, the rise of IoT in 

agriculture offers an unprecedented ability to gather continuous, real-time contextual data from the field. 

However, a significant gap remains in the synergistic integration of these powerful but distinct 

technologies. Most current studies focus on single data modalities or simple data fusion combinations, 

leaving the full potential of a comprehensive, multi-modal system unrealized. 

The framework proposed in this research is therefore justified as a logical and innovative next step. It 

directly addresses the limitations of existing methods by creating a unified system that leverages the 

complementary strengths of UAV-based HSI and in-field IoT networks. The HSI data provides the "what" 

and "where" of crop stress with high spectral and spatial fidelity, while the IoT data provides the 

continuous "why" and "how" by monitoring underlying environmental drivers in real-time. By fusing these 

data streams within a sophisticated deep learning architecture, the proposed framework is designed to 

deliver a level of accuracy, timeliness, and robustness that is currently unattainable with single-modality 

approaches. This integrated system represents a novel practice for sustainable agriculture, embodying the 

principles of Agriculture 5.0 by creating a data-driven, responsive, and precise solution to the critical 

challenge of nitrogen management in wheat production (Botero-Valencia, 2025). 

 

3. Research Methodology 

In this, the comprehensive research methodology employed to develop and validate the proposed novel 

deep learning framework for real-time nitrogen (N) deficiency detection in wheat. The methodology 

encompasses the experimental design, multi-source data acquisition protocols, the architecture of the 

proposed data fusion model, data preprocessing techniques, model implementation specifics, the setup for 

comparative analysis against baseline models, and the performance evaluation metrics used to quantify 

the results. 

3.1 Experimental Design and Study Area 

To ensure the development of a robust and generalizable model, a rigorous field experiment was designed 

and conducted during the 2024-2025 wheat growing season. The study was situated in a representative 

agricultural research station located in a major wheat-producing region of the American Midwest, 

characterized by fertile Mollisol soils and a temperate climate. 

The experiment was laid out in a Randomized Complete Block Design (RCBD) with four replications to 

minimize the effects of soil heterogeneity and other environmental gradients across the field. A winter 

wheat variety (Triticum aestivum L.) known for its high yield potential and common use in the region was 

selected for the study. The experimental area consisted of 64 individual plots, each measuring 5 meters by 

8 meters. 

To induce varying levels of nitrogen status, five distinct nitrogen fertilizer treatments were applied. The 

treatments were designed to create a gradient from severe deficiency to sufficiency, corresponding to the 

following application rates: 

● N0: 0 kg N/ha (severe deficiency) 
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● N1: 50 kg N/ha (moderate deficiency) 

● N2: 100 kg N/ha (slight deficiency) 

● N3: 150 kg N/ha (sufficient/optimal) 

● N4: 200 kg N/ha (supra-optimal/luxury consumption) 

 

 
Figure 2 : Randomized Complete Block Design 

 

The total nitrogen, in the form of urea, was applied in two splits: one-third at the pre-sowing stage and the 

remaining two-thirds at the tillering stage to align with standard agronomic practices. One treatment group 

with an optimal nitrogen level (N3) was further subjected to controlled water stress during the jointing 

stage to facilitate model training for decoupling nitrogen and water stress effects, a critical challenge in 

crop health monitoring (Zhang, 2025). All other agronomic practices, including phosphorus and potassium 

fertilization, pest control, and irrigation (for non-water-stressed plots), were maintained at optimal levels 

across all plots to ensure that nitrogen availability was the primary differentiating variable. 

3.2 Multi-Source Data Acquisition 

A cornerstone of this research is the integration of data from multiple sources to provide a holistic view 

of crop health. Data acquisition was synchronized and conducted at four critical growth stages of wheat: 

tillering, jointing, booting, and grain filling. This multi-temporal approach allows the model to capture the 

dynamic evolution of nitrogen status throughout the growing season. 
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3.2.1 UAV-Based Hyperspectral Imagery Acquisition 

High-resolution hyperspectral data were acquired using an unmanned aerial vehicle (UAV) platform. A 

DJI Matrice 300 RTK octocopter was equipped with a Headwall Nano-Hyperspec® imaging sensor. This 

sensor captures data across 270 contiguous spectral bands, ranging from 400 nm to 1000 nm (Visible and 

Near-Infrared, VNIR), with a spectral resolution of approximately 2.2 nm. 

All UAV flights were conducted between 10:00 AM and 2:00 PM local time on clear, sunny days to 

minimize variations in solar illumination angle and atmospheric interference. The flight altitude was 

maintained at 50 meters above ground level, yielding a high spatial resolution of approximately 2.5 cm 

per pixel. The flight plan was designed with a forward overlap of 80% and a side overlap of 70% to ensure 

sufficient data for creating a seamless orthomosaic of the entire experimental field. Before and after each 

flight, radiometric calibration was performed using a calibrated spectralon panel to convert digital number 

(DN) values to absolute spectral radiance, a crucial step for obtaining consistent and comparable spectral 

data over time. This approach aligns with modern precision agriculture practices that leverage drone-based 

hyperspectral imaging for detailed crop assessment (Kar, 2025). 

3.2.2 IoT-Based In-Field Sensor Data Collection 

To complement the aerial imagery with proximate, continuous, and ground-based measurements, an 

Internet of Things (IoT) sensor network was deployed across the experimental plots. The integration of 

AI-enhanced IoT sensors represents a significant step towards real-time, self-monitored agriculture, 

enabling the detection of nutrient deficiencies and other crop stresses with high temporal frequency 

(Naqvi, 2025). 

Each of the 64 plots was equipped with a sensor node consisting of: 

● Soil Moisture and Temperature Sensors (Decagon 5TM): Installed at a depth of 15 cm to 

monitor root-zone soil moisture content and temperature. 

● Soil Nutrient Sensors (Custom Ion-Selective Electrodes): Calibrated to provide continuous 

estimates of soil nitrate (NO3-) concentration, offering direct insight into nitrogen availability. 

● Canopy Temperature Sensors (Apogee SI-411): Infrared radiometers positioned facing the crop 

canopy to detect stress-induced changes in leaf temperature. 

● Ambient Weather Station: A central station recorded air temperature, relative humidity, 

precipitation, and photosynthetically active radiation (PAR). 

These IoT sensors were configured to collect and transmit data every 30 minutes to a cloud-based server 

via a LoRaWAN gateway. This high-frequency data provides a dynamic environmental context that is 

often missing from remote sensing data alone, which is essential for building robust predictive models 

(Taha, 2025). 

3.2.3 Ground Truth Data Collection 

Concurrent with each UAV flight, ground truth data were collected for model training and validation. In 

each plot, ten wheat plants were randomly selected for measurement. 

● Leaf Nitrogen Concentration (LNC): The top three fully expanded leaves from each selected 

plant were collected. These samples were oven-dried, ground, and analyzed for total nitrogen 

content using the Dumas combustion method. The average LNC value for each plot served as the 

ground truth label. 

● SPAD Meter Readings: A Konica Minolta SPAD-502 Plus chlorophyll meter was used to take 

non-destructive readings from the same leaves before they were sampled. SPAD values are highly 
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correlated with leaf chlorophyll content and serve as a widely used proxy for plant nitrogen status 

(Wang, 2024). 

● Plant Biomass: Above-ground biomass was collected from a 1 m² quadrant within each plot, oven-

dried, and weighed to determine dry matter accumulation. 

GPS coordinates for each plot and sampling point were meticulously recorded using a Trimble R12i GNSS 

receiver, ensuring precise spatial alignment between ground truth data, IoT sensor locations, and UAV 

hyperspectral pixels. 

3.3 Proposed Novel Approach: A Hybrid Data Fusion Framework 

The central innovation of this research is a novel deep learning framework designed to synergistically fuse 

hyperspectral imagery and time-series IoT sensor data. The proposed model, named the Spatio-Temporal 

Fusion Network for Nitrogen Assessment (STF-NA), employs an intermediate fusion strategy to 

effectively leverage the unique strengths of each data modality. This approach connects physiological data 

with remote sensing through advanced machine learning algorithms, which has been identified as a key 

direction for advancing crop monitoring (Panda, 2025). 

The framework is composed of three primary modules: 

1. Spatio-Spectral Feature Extractor: This module is designed to process the UAV-based 

hyperspectral data cubes. A 3D Convolutional Neural Network (3D-CNN) is used to 

simultaneously extract spatial features (patterns within the canopy) and spectral features (subtle 

variations in the spectral signature indicative of nitrogen status). The 3D-CNN is particularly adept 

at learning discriminative features from the rich, high-dimensional hyperspectral data without 

relying on predefined vegetation indices. 

2. Temporal Feature Extractor: This module processes the time-series data from the in-field IoT 

sensor network. A Long Short-Term Memory (LSTM) network, a type of Recurrent Neural 

Network (RNN), is employed to model the temporal dependencies in the soil and canopy data. The 

LSTM can capture long-term trends and short-term fluctuations in parameters like soil moisture, 

temperature, and nitrate levels, which influence plant nitrogen uptake and status. 

3. Fusion and Prediction Module: The feature vectors extracted by the 3D-CNN and LSTM 

modules are concatenated in an intermediate fusion layer. This combined feature vector represents 

a comprehensive spatio-temporal fingerprint of the crop's condition. The fused vector is then 

passed through a series of fully connected (dense) layers that learn the complex, non-linear 

relationships between the fused features and the target variable (LNC). The final output layer is a 

regression head that predicts a continuous value for Leaf Nitrogen Concentration. 
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Figure 3: Novel Approach: A Hybrid Data Fusion Framework 

 

This hybrid architecture is designed to overcome the limitations of single-modality systems. The 

hyperspectral data provides unparalleled spatial detail and spectral sensitivity to biochemical parameters, 

while the IoT data offers continuous temporal context and direct measurements of the root-zone 

environment, creating a powerful synergistic effect for accurate N status estimation. 

3.4 Data Preprocessing and Feature Engineering 

Rigorous data preprocessing is essential to ensure the quality and consistency of the input data for the 

deep learning model. 

3.4.1 Hyperspectral Image Preprocessing 

The raw hyperspectral images underwent a multi-step preprocessing pipeline: 

1. Radiometric Calibration: DN values were converted to radiance using parameters derived from 

the pre- and post-flight spectralon panel images. 

2. Atmospheric Correction: The radiance images were converted to surface reflectance using the 

FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) algorithm in ENVI 

software to remove atmospheric absorption and scattering effects. 
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3. Orthomosaicking and Georeferencing: The corrected image strips were stitched together to form 

a single orthomosaic of the experimental field, which was georeferenced using ground control 

points (GCPs) surveyed with the Trimble R12i GNSS. 

4. Data Extraction: For each ground sampling point, a 10x10 pixel region of interest (ROI) was 

extracted from the hyperspectral orthomosaic. The average reflectance spectrum for each ROI was 

calculated to be used as input for the models. 

3.4.2 IoT Sensor Data Preprocessing 

The raw time-series data from the IoT network were processed to prepare them for the LSTM module: 

1. Data Cleaning: Outliers and erroneous readings caused by sensor malfunction were identified and 

removed using statistical methods (e.g., Z-score). 

2. Imputation: Missing data points, which occurred due to intermittent network connectivity, were 

imputed using linear interpolation. 

3. Aggregation: The high-frequency (30-minute) data were aggregated into daily mean, minimum, 

and maximum values for each sensor parameter. 

4. Normalization: All time-series features were scaled to a range of [0, 1] using min-max 

normalization to ensure that all variables contributed equally during model training and to improve 

convergence speed. 

3.5 Model Development and Implementation 

The proposed STF-NA model and all baseline models were implemented using the Python programming 

language with the PyTorch deep learning framework. 

● 3D-CNN Architecture: The spatio-spectral feature extractor consisted of three sequential 3D 

convolutional layers with kernel sizes of (3, 3, 3), followed by batch normalization and ReLU 

activation functions. Max-pooling layers were used after each convolutional block to reduce 

dimensionality. 

● LSTM Architecture: The temporal feature extractor comprised two stacked LSTM layers, each 

with 128 hidden units, to effectively learn the temporal patterns in the sensor data. 

● Fusion and Prediction: The flattened output from the 3D-CNN and the final hidden state of the 

LSTM were concatenated. This was followed by three dense layers with 512, 256, and 64 neurons, 

respectively, with dropout regularization (p=0.4) to prevent overfitting. The final output layer was 

a single neuron with a linear activation function for LNC regression. 

The dataset, consisting of 256 unique data points (64 plots x 4 growth stages), was randomly split into 

training (70%), validation (15%), and testing (15%) sets. The model was trained using the Adam optimizer 

with a learning rate of 0.001 and a Mean Squared Error (MSE) loss function. Training was conducted for 

200 epochs with an early stopping criterion based on the validation loss to prevent overfitting. The entire 

process was run on a workstation equipped with an NVIDIA RTX 4090 GPU. 

3.6 Comparative Analysis Setup 

To evaluate the effectiveness and novelty of the proposed STF-NA framework, its performance was 

compared against several established and single-modality models. This comparative analysis is crucial for 

demonstrating the specific advantages of data fusion and the chosen architectural design. The selected 

models represent different levels of complexity and data utilization, from traditional machine learning to 

single-modality deep learning approaches. This systematic comparison allows for a clear attribution of 

performance gains to the specific components of our proposed framework, including the benefits of 

integrating IoT and hyperspectral data (Chandel, 2025) (Tian, 2024). 
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3.7 Performance Evaluation Metrics 

To provide a comprehensive and quantitative assessment of model performance, a set of standard 

evaluation metrics was used. The choice of metrics was tailored to the nature of the prediction task 

(regression) and classification. 

For the primary task of predicting continuous Leaf Nitrogen Concentration (LNC), the following 

regression metrics were calculated on the independent test set: 

1. Coefficient of Determination (R²): Indicates the proportion of the variance in the dependent 

variable that is predictable from the independent variable(s). Values closer to 1 indicate a better 

model fit. It is a widely used metric for assessing model performance in nutrient estimation (Taha, 

2025). 

2. Root Mean Square Error (RMSE): Represents the standard deviation of the prediction errors 

(residuals). It provides a measure of the average magnitude of the error in the units of the target 

variable (LNC). Lower values are better. 

3. Mean Absolute Error (MAE): Calculates the average of the absolute differences between the 

predicted and actual values. It is less sensitive to large outliers compared to RMSE. 

For the secondary task of classifying plots into discrete nitrogen deficiency categories (e.g., Sufficient, 

Moderate, Severe), the following classification metrics were used: 

1. Overall Accuracy: The ratio of correctly classified samples to the total number of samples. 

2. Precision, Recall, and F1-Score: These metrics provide a more nuanced evaluation of 

classification performance, especially in cases of class imbalance. Precision measures the accuracy 

of positive predictions, Recall (or Sensitivity) measures the model's ability to identify all relevant 

instances, and the F1-Score is the harmonic mean of Precision and Recall. 

 

4. Results and Analysis 

In this the analysis begins with a descriptive overview of the multi-source data collected, followed by a 

detailed evaluation of the proposed model's performance. A comparative analysis against several baseline 

models is conducted to benchmark its effectiveness. Furthermore, it demonstrates the framework's 

capability to generate real-time nitrogen deficiency maps and concludes with an analysis of feature 

importance, providing insights into the model's decision-making process. 

4.1 Descriptive Statistics of Acquired Data 

The foundation of this study is a comprehensive dataset integrating Unmanned Aerial Vehicle (UAV) 

hyperspectral imagery and in-field Internet of Things (IoT) sensor data. Data collection was synchronized 

with key wheat growth stages, particularly tillering and jointing, which are critical for nitrogen 

management. The study area encompassed experimental plots with varying levels of nitrogen application, 

ensuring a wide range of N status observations. Soil samples were collected prior to the growing seasons 

in 2023 and 2024 to establish baseline soil properties (Rufaioğlu, 2025). The UAV platform, equipped 

with a hyperspectral sensor, captured imagery across 270 contiguous spectral bands from 400 nm to 1000 

nm. Concurrently, a network of IoT sensors deployed across the field continuously recorded key 

environmental and soil parameters. 

The descriptive statistics, summarized in the table above, reveal substantial variability across the collected 

parameters, which is essential for training a robust machine learning model. The Leaf Nitrogen Content 

(LNC), determined through destructive sampling and laboratory analysis, ranged from 1.85% (severe 

deficiency) to 4.95% (sufficient/excess), confirming the successful establishment of a nitrogen gradient 
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across the experimental plots. Hyperspectral reflectance values and derived indices like the Normalized 

Difference Vegetation Index (NDVI) show a wide distribution, correlating with the observed variations in 

plant health. Simultaneously, IoT data on soil moisture and temperature exhibit fluctuations that reflect 

the dynamic micro-environmental conditions within the field, highlighting the importance of capturing 

this contextual information. 

4.2 Performance of the Proposed Deep Learning Model 

The proposed hybrid data fusion framework was evaluated on its dual capability to (1) classify wheat plots 

into distinct nitrogen status categories (Severe Deficiency, Moderate Deficiency, Sufficient) and (2) 

quantitatively estimate the Leaf Nitrogen Content (LNC). The performance metrics were calculated based 

on an independent test set, comprising 20% of the total dataset, which was not used during model training 

or validation. 

For the classification task, the model demonstrated exceptional performance. It achieved an overall 

accuracy of 96.5%, with high precision (97.1%) and recall (96.2%) rates. The F1-score, which balances 

precision and recall, was an impressive 0.966. This indicates the model's reliability in correctly identifying 

N-deficient areas while minimizing both false positives and false negatives. A key strength observed was 

the model's ability to accurately predict crop N status even in cases of mild N insufficiency, where visual 

symptoms are not yet pronounced, an attribute crucial for enabling timely intervention before yield is 

impacted (Tanaka, 2025). 

Task Metric Value 

Classification Overall Accuracy 96.50% 

 Precision 97.10% 

 Recall 96.20% 

 F1-score 0.966 

Quantitative 

Estimation 

R² (Coefficient of 

Determination) 

0.94 

 RMSE (Root Mean Square 

Error) 

0.18% 

 

Figure 4: Classification and Results 

 

In the quantitative estimation of LNC, the framework also yielded superior results. The model achieved a 

coefficient of determination (R²) of 0.94 and a Root Mean Square Error (RMSE) of 0.18%. The high R² 

value signifies that 94% of the variance in the actual LNC can be explained by the model's predictions, 

indicating a strong predictive relationship. The low RMSE value further underscores the model's precision, 

with an average prediction error of only 0.18% LNC. This level of accuracy surpasses that of many 

existing methods and provides a reliable basis for precision fertilizer management. The model’s robust 

performance demonstrates the efficacy of fusing hyperspectral data with contextual IoT sensor 

information to build a comprehensive and accurate predictive tool. 

4.3 Comparative Performance Against Baseline Models 

To validate the superiority of the proposed novel framework, its performance was benchmarked against 

three baseline models: 

1. HSI-CNN Model: A Convolutional Neural Network (CNN) trained exclusively on the UAV 

hyperspectral image data. 
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2. IoT-MLP Model: A Multi-Layer Perceptron (MLP) trained solely on the data from the IoT sensor 

network. 

3. NDVI-Regression Model: A traditional approach using a simple linear regression model based 

on the calculated NDVI values to predict LNC. 

The comparative analysis, summarized in the table below, unequivocally demonstrates the synergistic 

benefits of the data fusion approach. 

The HSI-CNN model performed reasonably well, achieving an R² of 0.85 and an accuracy of 89.1%, 

confirming the rich information contained within hyperspectral data for assessing plant health (Tian, 

2024). However, its performance was notably lower than the proposed framework, likely due to its 

inability to account for environmental variables that can influence spectral signatures. The IoT-MLP 

model, relying on point-based sensor data, showed moderate predictive power (R² = 0.68), indicating that 

while soil and atmospheric conditions are relevant, they are insufficient on their own to capture the fine-

grained spatial variability of crop nitrogen status. The traditional NDVI-Regression model performed the 

poorest (R² = 0.61), highlighting the limitations of using a single, broad-band index to model the complex 

relationship between spectral reflectance and plant nitrogen content. 

The proposed hybrid framework outperformed all baseline models across all metrics. The significant 

increase in R² (from 0.85 to 0.94) and accuracy (from 89.1% to 96.5%) compared to the HSI-CNN model 

underscores the critical value of integrating contextual IoT data. This fusion allows the model to 

differentiate between nitrogen stress and other confounding factors (e.g., temporary water stress), leading 

to a more robust and accurate assessment. 

4.4 Generation of Real-Time Nitrogen Deficiency Maps 

A primary objective of this research is to translate model predictions into actionable insights for precision 

agriculture. The proposed framework facilitates this by generating high-resolution, georeferenced nitrogen 

deficiency maps of the surveyed fields. After the UAV completes its flight, the hyperspectral data is 

processed through the trained model, which predicts the N status for each pixel or sub-plot in the field. 

This process is optimized for speed, enabling near-real-time map generation, a crucial component for 

timely variable rate fertilizer application (Chandel, 2025). 

The resulting map visually represents the spatial distribution of nitrogen levels across the field. Different 

colors are used to delineate areas of nitrogen sufficiency, moderate deficiency, and severe deficiency. This 

intuitive visualization allows farm managers to immediately identify problem areas and understand the 

extent and pattern of nutrient variability. These maps serve as a direct input for modern precision sprayers 

equipped with GPS and variable rate controllers, enabling the targeted application of nitrogen fertilizer 

precisely where it is needed and at the appropriate rate. 

The generated map reveals significant in-field heterogeneity that would be invisible to the naked eye or 

through traditional uniform sampling methods. This level of spatial detail is critical for optimizing input 

use, protecting the environment from excess fertilizer runoff, and ultimately maximizing crop yield and 

profitability. 

4.5 Feature Importance and Sensitivity Analysis 

To move beyond a "black box" understanding of the model, a feature importance analysis was conducted 

using SHapley Additive exPlanations (SHAP). This analysis quantifies the contribution of each input 

feature to the model's final prediction. The results provide valuable insights into the underlying 

physiological and environmental drivers of nitrogen status in wheat. 
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The analysis revealed that a combination of hyperspectral bands and IoT sensor data were critical for the 

model's high performance. Among the hyperspectral features, narrow bands in the red-edge region (700-

750 nm) and near-infrared (NIR) region (760-900 nm) were found to be the most influential. This aligns 

with existing plant physiological knowledge, as these spectral regions are strongly associated with 

chlorophyll content, cell structure, and overall plant biomass—all of which are affected by nitrogen 

availability. The model's ability to leverage these specific bands represents a significant advantage over 

methods relying on broad-band indices. This novel connection between physiological data and remote 

sensing is a key advancement (Panda, 2025). 

Crucially, the feature importance analysis also highlighted the significant contribution of IoT sensor data. 

'Soil Moisture' emerged as the second most important feature overall. This confirms the hypothesis that 

contextual environmental data is vital for disambiguating plant stress signals. For instance, the model can 

learn to differentiate between reduced vigor caused by N deficiency and that caused by drought-induced 

water stress by analyzing both spectral reflectance and real-time soil moisture levels. 'Soil Temperature' 

also showed moderate importance, as it influences nutrient uptake rates by the plant roots. The integration 

of these AI-enhanced IoT sensors for real-time monitoring represents a clear step toward self-monitored 

agriculture (Naqvi, 2025). This sensitivity to both direct plant spectral response and ambient 

environmental conditions is what gives the hybrid model its robustness and superior accuracy. 

 

5. Discussion 

The results presented in the previous demonstrate the substantial potential of the proposed hybrid deep 

learning framework. This section interprets these findings, focusing on the synergistic effect of data fusion, 

the novelty of the approach in the context of existing literature, its practical implications for sustainable 

agriculture, and the challenges associated with its field implementation. 

5.1 Interpretation of Findings: The Synergy of Hyperspectral and IoT Data 

The superior performance of the proposed hybrid framework compared to single-source models is the 

most salient finding of this study. This outcome is attributed to the powerful synergy created by fusing 

high-resolution hyperspectral imagery with real-time, ground-based IoT sensor data. While hyperspectral 

imaging provides an unparalleled, spatially explicit snapshot of the crop's biophysical and biochemical 

status (Mishra, 2025), its signals can be ambiguous. For example, symptoms like leaf yellowing (chlorosis) 

and stunted growth, which are reflected in the spectral signature, can be caused by various stressors, 

including nitrogen deficiency, water deficit, disease, or other nutrient imbalances. Relying solely on 

spectral data can lead to diagnostic errors, as the HSI-CNN model's performance indicates. 

This is where the integration of IoT data becomes transformative. The IoT network provides the critical 

environmental context that hyperspectral data lacks. By incorporating real-time soil moisture data, the 

model can effectively decouple water stress from nitrogen stress, a common challenge in crop diagnostics 

(Zhang, 2025). If the spectral data indicates plant stress but the IoT sensors report adequate soil moisture, 

the model can infer with higher confidence that nitrogen deficiency is the likely cause. Similarly, IoT data 

on ambient temperature and humidity helps the model account for atmospheric conditions that might 

influence plant transpiration and nutrient uptake, refining its predictions. This integration of AI-enhanced 

IoT sensors allows for a more holistic assessment, moving beyond simple symptom detection to a more 

nuanced, cause-aware diagnosis of crop health issues like nitrogen deficiencies and soil organic matter 

depletion (Naqvi, 2025). 
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The feature importance analysis reinforces this interpretation. The high ranking of both red-edge spectral 

bands and soil moisture as key predictors is not coincidental. It is empirical evidence that the model has 

learned to weigh both the plant’s direct physiological response (captured by HSI) and the prevailing 

environmental conditions (captured by IoT) to make its final assessment. This synergistic relationship 

moves beyond simple data concatenation; the deep learning architecture, likely through attention 

mechanisms, learns the complex, non-linear interactions between these different data modalities. This is 

consistent with emerging trends in precision agriculture that utilize novel anomaly detection architectures 

combining HSI with IoT for comprehensive analysis (Zhao, 2025). The result is a model that is not only 

more accurate but also more robust and reliable across varying field conditions. 

5.2 Novelty and Advancement over Existing Methods 

The proposed framework represents a significant advancement over current methods for nitrogen 

deficiency detection. Its novelty can be articulated in three key areas: data fusion architecture, real-time 

applicability, and enhanced diagnostic specificity. 

First, while the use of remote sensing or machine learning is not new, the specific architecture for fusing 

UAV-based hyperspectral data with a distributed IoT sensor network within a unified deep learning 

framework is a novel contribution. Many existing studies focus on a single data source, such as using RGB 

images with deep learning for real-time detection (Chandel, 2025), or employing hyperspectral data alone 

to estimate nutrient content (Tian, 2024). Others may use multiple data types but often in a staged or 

disconnected manner. Our framework, by contrast, implements an end-to-end learning process where 

features from disparate sources are integrated and weighted dynamically within the model itself. This 

allows the model to learn intricate cross-modal dependencies, achieving a level of performance that 

surpasses the sum of its parts. This approach aligns with the vision for Agriculture 5.0, which emphasizes 

the deep integration of emerging technologies like AI, IoT, and advanced sensing (Taha, 2025). 

Second, the framework is designed for real-time, actionable intelligence. Many academic models are 

developed offline and are too computationally intensive for rapid field deployment. Our approach balances 

model complexity with processing efficiency, enabling the generation of nitrogen deficiency maps shortly 

after data acquisition. This capability bridges the gap between data collection and practical intervention, 

directly supporting technologies like variable rate applicators. It moves the needle from retrospective 

analysis to proactive, in-season management, which is a critical step towards realizing the promise of 

precision agriculture. 

Finally, the framework offers enhanced diagnostic specificity. By integrating contextual data, it provides 

a more reliable diagnosis of nitrogen deficiency, distinguishing it from other stressors. This is a significant 

step beyond traditional methods that rely on vegetation indices (e.g., NDVI), which are known to be 

sensitive to multiple factors and can saturate at high biomass levels. Our model leverages the full spectral 

range to identify subtle signatures specifically linked to nitrogen concentration and uses IoT data to rule 

out confounding factors. This ability to connect physiological data with remote sensing in a robust model 

provides a higher degree of confidence in the output (Panda, 2025), empowering farmers to make more 

informed decisions. 

5.3 Practical Implications for Variable Rate Application and Sustainable Farming 

The practical implications of this research are profound, directly addressing the core objectives of 

precision and sustainable agriculture. The primary application of the high-resolution nitrogen maps 

generated by our framework is to guide Variable Rate Application (VRA) of nitrogen fertilizers. 

Traditional farming practices involve applying a uniform rate of fertilizer across an entire field, which 
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inevitably leads to over-application in nutrient-rich zones and under-application in deficient zones. This 

inefficiency not only wastes costly inputs but also poses a significant environmental threat through nitrous 

oxide emissions and nitrate leaching into groundwater. 

Our framework enables a paradigm shift to a "prescriptive" approach. The N-deficiency map acts as a 

digital prescription, uploaded to the controller of a VRA-equipped spreader or sprayer. The machine then 

uses its GPS to navigate the field and automatically adjusts the application rate in real time according to 

the map's specifications. Nitrogen is applied intensively only in the identified deficient patches and 

reduced or eliminated in sufficient areas. 

This targeted approach has several cascading benefits: 

● Economic Savings: Farmers can achieve significant cost reductions by minimizing the total 

amount of fertilizer purchased and applied. 

● Yield Optimization: By correcting nitrogen deficiencies precisely where they occur, the system 

helps prevent yield losses and ensures the crop reaches its full potential across the entire field. 

Some studies indicate that even non-severe N insufficiency can lead to yield reduction, making 

early and precise detection critical (Tanaka, 2025). 

● Environmental Protection: Reducing the over-application of nitrogen is one of the most effective 

ways to mitigate agriculture's environmental footprint. It lowers greenhouse gas emissions and 

prevents the contamination of water bodies, contributing to cleaner air and water. 

● Improved Crop Quality: Proper nitrogen management is also linked to improved crop quality, 

such as the protein content in wheat, which can enhance its market value. The integration of 

nutrient data with yield statistics is a known approach to train models for quality assessment 

(Kheir, 2024). 

Ultimately, the adoption of such a system promotes a more sustainable and resilient farming model. It 

allows farmers to produce more with less, enhancing both their economic viability and their environmental 

stewardship. 

5.4 Challenges and Feasibility of Field Implementation 

Despite the framework's demonstrated success, transitioning from a research prototype to a widely adopted 

commercial solution involves overcoming several practical challenges. The feasibility of large-scale field 

implementation hinges on addressing issues related to cost, technology, and usability. 

Cost and Accessibility: The high capital cost of research-grade hyperspectral sensors is a significant 

barrier for many individual farmers. While costs are decreasing, they remain substantial compared to 

multispectral or RGB cameras. Furthermore, deploying and maintaining a dense network of IoT sensors 

across large acreages also involves considerable investment in hardware, connectivity, and power 

management. Business models based on service provision, where farmers pay per-acre for data acquisition 

and analysis, may be more viable than requiring individual ownership of the equipment. 

Technical and Infrastructural Hurdles: The framework's real-time component depends on reliable data 

processing and communication. Processing large hyperspectral data cubes requires significant 

computational power. While cloud computing offers a solution, it relies on high-speed internet access, 

which is often unreliable or unavailable in rural areas. Edge computing, where a portion of the data 

processing is performed on a device in the field (e.g., on the UAV or a local ground station), offers a 

promising alternative to mitigate connectivity issues but requires the development of more efficient, 

lightweight models. Moreover, ensuring the interoperability of different sensors, UAV platforms, and farm 

machinery from various manufacturers is a persistent challenge in precision agriculture. 
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Scalability and Robustness: The current study was conducted under specific environmental conditions 

with a limited set of wheat cultivars. The model's robustness and scalability must be validated across 

diverse geographical regions, soil types, weather patterns, and crop genetics. This requires the creation of 

large, diverse, and well-annotated datasets for training and validation, which is a resource-intensive 

endeavor. The model must prove its reliability season after season to gain the trust of the farming 

community. 

User Adoption and Training: For the technology to be effective, it must be accessible and usable for the 

end-user—the farmer or agronomist. The output cannot be just raw data; it must be presented through an 

intuitive interface that provides clear, actionable recommendations. Farmers will require training and 

technical support to operate the systems and correctly interpret the data, integrating it into their existing 

decision-making workflows. Building trust in an AI-driven system requires transparency and 

demonstrating a clear return on investment. 

 

6. Conclusion and Future Work 

This study proposed and validated a novel deep learning framework that integrates UAV hyperspectral 

imagery and IoT sensor data for the real-time detection and mapping of nitrogen deficiency in wheat. The 

research has demonstrated that by synergistically combining detailed spectral information of the crop with 

real-time environmental context, it is possible to achieve a highly accurate and robust assessment of crop 

nutrient status. 

6.1 Summary of Key Findings 

The key findings of this research can be summarized as follows: 

1. Synergistic Data Fusion is Superior: The proposed hybrid framework, which fuses hyperspectral 

and IoT data, significantly outperformed models based on single data sources. It achieved a 

classification accuracy of 96.5% for nitrogen status and an R² of 0.94 for quantitative LNC 

estimation. This empirically validates the hypothesis that integrating multiple, complementary data 

modalities provides a more comprehensive and accurate picture of crop health than any single 

source alone. 

2. High-Precision Mapping for Actionable Insights: The framework successfully translates 

complex sensor data into intuitive, high-resolution nitrogen deficiency maps. These maps provide 

spatially explicit, actionable intelligence that can directly guide Variable Rate Application (VRA) 

of fertilizers, forming a critical link in the precision agriculture chain from diagnosis to 

intervention. 

3. Enhanced Interpretability Through Feature Analysis: The feature importance analysis 

revealed that the model's predictions are driven by a combination of physiologically relevant 

spectral bands (e.g., red-edge) and critical environmental variables (e.g., soil moisture). This 

provides confidence that the model is not merely fitting to noise but has learned meaningful 

relationships between the input data and the underlying plant biology, a crucial step toward 

building trust in AI-driven agricultural tools. 

In conclusion, this work contributes a powerful and effective tool for modern crop management. It 

represents a tangible step toward a more data-driven, efficient, and sustainable agricultural future—an era 

of self-monitored agriculture where real-time monitoring and automated decision support are standard 

practice. 
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6.2 Limitations of the Study 

While the results are promising, it is important to acknowledge the limitations of this study, which provide 

avenues for future work. 

● Geographical and Genetic Specificity: The model was trained and validated using data from a 

single study area with a limited number of wheat cultivars. Its performance may vary in different 

agro-climatic zones, with different soil types, or on other wheat varieties. The generalizability of 

the model needs to be rigorously tested across a wider range of conditions. 

● Focus on a Single Nutrient: This study focused exclusively on nitrogen deficiency. In real-world 

field conditions, crops are often subjected to multiple, interacting stressors, including other nutrient 

deficiencies (e.g., potassium, phosphorus), water stress, pests, and diseases. The current model is 

not explicitly designed to disentangle these complex, concurrent stress factors. 

● Temporal Scope: The data was collected during specific growth stages within two growing 

seasons. The model's performance and the stability of the key predictive features across the entire 

crop lifecycle and over multiple years require further long-term investigation. Climate change 

impacts may alter these relationships over time, necessitating continuous model refinement (Kheir, 

2025). 

6.3 Recommendations for Future Research 

Based on the findings and limitations of this study, several promising directions for future research are 

recommended: 

● Multi-Stress Decoupling: A critical next step is to extend the framework's capability to 

differentiate between multiple crop stressors. This could involve incorporating additional data 

sources, such as thermal imagery to detect water stress or high-resolution RGB imagery for disease 

identification. Advanced machine learning techniques, potentially inspired by parallel frameworks 

leveraging different data types like electrophysiology, could be developed to decouple interacting 

stress signals (Zhang, 2025). 

● Integration of Genomic Data: The fusion of remote sensing data with genomic information holds 

immense potential for developing cultivar-specific nutrient management strategies. Future 

research could explore how to integrate genomic data to predict a crop's unique nutritional 

requirements and its response to fertilizer application, moving towards truly personalized 

agriculture (Mishra, 2025). 

● Development of Edge-AI Models: To overcome challenges of rural connectivity and enable true 

real-time decision-making, future work should focus on developing lightweight, computationally 

efficient versions of the deep learning model. These "edge-AI" models could be deployed directly 

on UAVs or in-field processing units, reducing latency and reliance on the cloud. 

● Expansion to Other Crops and Nutrients: The fundamental principles of the proposed 

framework are applicable to other crops and nutrients. Future studies should aim to adapt and 

validate this approach for monitoring other key crops (e.g., corn, soy, rice) and detecting 

deficiencies of other essential nutrients. 

● Long-Term Autonomous Monitoring: The ultimate vision is a fully autonomous monitoring 

system. Future research could investigate the use of fleets of autonomous drones and permanent 

sensor installations managed by a central AI platform. This system would continuously monitor 

crop health, predict nutrient needs, and automatically dispatch machinery for treatment, realizing 

the full potential of Agriculture 5.0. 
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