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Abstract

The early detection of diabetes plays a critical role in preventing long-term complications and ensuring
timely intervention. With the growing availability of healthcare data, machine learning (ML) offers a
powerful toolkit for building predictive models that assist in clinical decision-making. This paper presents
a comparative analysis of seven popular ML algorithms—Logistic Regression, Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), Naive Bayes, Decision Tree, Random Forest, and Gradient
Boosting—for predicting diabetes using a real-world dataset comprising 100,000 patient records with nine
clinical features. Each model was implemented, evaluated, and fine-tuned within a consistent pipeline
using Python in Visual Studio Code. Key evaluation metrics such as accuracy, precision, recall, F1-score,
ROC-AUC, and confusion matrices were used to benchmark model performance. Additional analyses
were conducted including SHAP-based explainability, error analysis, robustness testing with SMOTE,
and statistical model comparison. The results indicate that ensemble methods like Random Forest and
Gradient Boosting consistently outperformed simpler classifiers, achieving higher accuracy and better
generalization on unseen data. This work highlights the importance of model interpretability and reliability
in real-world healthcare deployments.

Keywords — Diabetes Prediction, Machine Learning, Classification Algorithms, Random Forest, Gradient
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I. INTRODUCTION

Diabetes mellitus is a chronic metabolic disorder that continues to affect millions of individuals globally.
As per the International Diabetes Federation (IDF), the number of people living with diabetes is projected
to reach over 700 million by 2045. The alarming rise in diabetes cases not only imposes a significant burden
on healthcare systems but also impacts patients’ quality of life. Early and accurate detection of diabetes is
therefore essential to initiate timely medical care and prevent severe complications.

Traditionally, diabetes diagnosis has relied on clinical assessments, blood sugar tests, and patient history.
However, with the growing availability of electronic health records (EHRs) and large-scale medical
datasets, data-driven approaches are becoming increasingly viable. In this context, machine learning (ML)
techniques have emerged as powerful tools for predicting disease risk by analyzing complex patterns within
patient data.
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This paper focuses on the use of ML algorithms to predict the presence of diabetes using a real-world
dataset containing 100,000 records and nine medical attributes. Unlike many studies that rely on the PIMA
Indian dataset, this work larger,

more diverse dataset, which enhances the generalizability and practical relevance of the findings.

The primary objective of this research is to compare the performance of various ML models—including
Logistic Regression, SVM, KNN, Naive Bayes, Decision Tree, Random Forest, and Gradient Boosting—
in the task of diabetes prediction. The models are evaluated using standard performance metrics, and the
study also explores feature importance, model explainability (using SHAP), error analysis, and statistical
validation to provide a holistic view of model reliability and trustworthiness.

The rest of the paper is organized as follows: Section 2 reviews relevant literature, Section 3 explains the
methodology and implementation details, Section 4 presents results and analysis, Section 5 concludes the
paper and discusses future work.

Il. LITERATURE SURVEY

M. Smitha and R. Kumar [1] proposed a decision tree-based approach for early diabetes prediction using
medical records. Their model achieved reasonable accuracy and was easy to interpret, making it suitable
for healthcare professionals. However, it struggled with imbalanced data, often misclassifying borderline
cases due to overfitting on dominant class patterns.

N. Patel et al. [2] implemented a Support Vector Machine (SVM) to classify diabetic and non-diabetic
individuals from the PIMA Indian dataset. While the method outperformed basic classifiers in accuracy,
it lacked scalability on larger datasets. Moreover, it did not incorporate domain knowledge such as age-
specific risk factors or lifestyle indicators, which limited its practical utility.

In contrast, J. Ashaand V. Rajan [3] applied ensemble learning by combining Random Forest and Gradient
Boosting algorithms. This hybrid approach demonstrated improved prediction capability and robustness,
particularly on noisy data. Yet, their study did not address model interpretability—a critical concern in
medical applications where explainability is essential for diagnosis and trust.

T. Gupta and S. Roy [4] employed the K-Nearest Neighbors (KNN) algorithm on a hospital-collected
dataset, which emphasized patient history and glucose levels. Though KNN showed decent performance
in clustering high-risk individuals, it was computationally expensive and sensitive to data scaling, which
restricted its efficiency in real-time prediction settings.

Deepa Mehta et al. [5] used logistic regression as a baseline model to highlight the importance of feature
selection in diabetes prediction tasks. Their experiments revealed that simple models, when trained on
carefully engineered features, could rival complex ones. However, the dataset size in their work was
limited, and the study lacked broader generalization across populations.
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P. Chakraborty et al. [6] leveraged SHAP (SHapley Additive explanations) to explain Gradient Boosting
predictions on diabetes datasets. Their focus was not just on accuracy but also on uncovering which
features (like BMI and age) contributed most to predictions. While their explainability methods were
appreciated, the computational cost of SHAP was a barrier for deployment in constrained environments.

Lastly, S. Nayak and R. Balakrishnan [7] integrated SMOTE (Synthetic Minority Oversampling
Technique) to handle class imbalance in their Naive Bayes model. This technique significantly improved
recall for diabetic cases but introduced synthetic noise, which occasionally degraded precision. Their work
emphasized the trade-off between fairness and accuracy in medical prediction.

I11. MATERIALS AND METHODS

A. Dataset Collection Preprocessing

In this study, we utilized a real-world diabetes prediction dataset obtained from a public health repository
comprising 100,000 anonymized patient records. Unlike the widely used PIMA Indian Diabetes dataset,
our data reflects diverse patient profiles across age groups, genders, and ethnic backgrounds. Each instance
in the dataset contains nine critical clinical features known to be associated with diabetes onset, such as
glucose levels, blood pressure, BMI, insulin levels, and family history. The large volume and variety in
this dataset ensure better generalizability and robustness for real-world deployment of predictive models.

mwiing history', 'bui’, ‘Hbdc level', “blood glucose level’, ‘diabetes’]

current 2,14

The dataset used in this study was sourced from a real-world medical database containing 100,000
patient records. Each record includes nine clinically relevant attributes such as age, gender, BMI, blood
glucose level, HbAlc level, hypertension status, heart disease history, smoking behavior, and a binary
diabetes diagnosis. This diverse set of features captures essential health indicators known to influence
diabetes risk.

Fig. 1 Displays a sample of the dataset, giving a glimpse of its structure and the type of medical data
analyzed.

B. Dataset Preprocessing

Prior to model development, thorough preprocessing steps were carried out to ensure data quality and
compatibility with machine learning algorithms. The original dataset included categorical variables such
as gender and smoking history, which were label encoded into numerical format to allow for proper
interpretation by the models. Missing values were checked, and any inconsistencies were handled
accordingly to prevent data leakage or bias.
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In addition, the dataset was scanned for outliers and anomalies using basic statistical checks, and the class
label (diabetes) was confirmed to be in binary format (0 = no diabetes, 1 = diabetes). This preprocessing
phase played a crucial role in standardizing the data and reducing potential noise, ensuring that the
subsequent model training phase could proceed with clean and structured input.

IV. METHODOLOGY

The methodology adopted in this study involves a structured pipeline designed to develop, train, evaluate,
and interpret machine learning models for diabetes prediction using a real-world dataset. The entire process
comprises the following key stages:

A. Data Preprocessing

Missing Value Treatment:

o Entries labeled as No Info in smoking_history were treated as a separate category.
o Missing numeric values in bmi and HbA1c_level were imputed using median values.

Encoding Categorical Variables:
o Features like gender and smoking_history were label encoded.

LabelEncoder(xi) = ki,xi € = Categorical Feature

Feature Scaling:

Continuous variables such as age, bmi, HbAlc_level, and blood_glucose_level were scaled using Min-Max

Normalization:

x' = max(x) — min(x) x — min(x)

Target Variable:

Diabetes is the binary target variable:

Y € {0,1}, where 1 = Diabetic, 0 = Non — Diabetic

IJSAT25048021 Volume 16, Issue 4, October-December 2025 4



https://www.ijsat.org/

IJSAT

_T_ International Journal on Science and Technology (IJSAT)

- E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

B. Model Development

We implemented and compared seven supervised learning algorithms:

1. Logistic Regression (LR)
o Sigmoid function used to estimate the probability of diabetes:

P(Y=1]X)=1+e— (WIX+b)1

2. Support Vector Machine (SVM)

. Constructs a hyperplane that maximizes the margin between classes:

f(x) = wTd(x) +Db

3. K-Nearest Neighbors (KNN)

Predicts based on the majority class of its k nearest neighbors:

d(xi, xj) =1=1Ynxi(l) —xj))2
4. Naive Bayes (NB)
Based on Bayes' Theorem assuming conditional independence:

P(Y|X) =PX)P(X|Y)P(Y)

5. Decision Tree (DT)
Uses the Gini Index to split nodes:

Gini(t) = 1 —i = 1Y cpi2

6. Random Forest (RF)

An ensemble of decision trees with bootstrap sampling and feature randomness to improve
generalization.
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7. Gradient Boosting (GB)

Builds an additive model by minimizing the loss function using gradient descent:

Fm(x) = Fm — 1(x) + ymhm(x)

C. Performance Metrics

The following metrics were used:

Accuracy
Accuracy = TP + TN + FP + FNTP + TN
Precision
. . TP
Precision = TPITP
Recall
Recall = TP
FN+TP

F1Score

F1 = 2 x (precision * recall) / (precision + recall)

ROC-AUC Score:
AUC = [ 01TPR(FPR — 1(x))dx

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false negatives
respectively.

D. Cross-Validation

To ensure statistical robustness, each model was evaluated using 10-Fold Cross-Validation:
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. The training data was split into 10 folds.

. In each iteration, 9 folds were used for training and 1 for validation.

. Final performance was calculated using the mean and standard deviation of accuracy across
all folds:

n = k1i = 1YKkAcci, 6 = k1i = 1Y k(Acci — p)2

E. Model Explainability

To ensure interpretability, SHAP (SHapley Additive exPlanations) was applied to the best-
performing models. SHAP assigns a contribution value to each feature for a specific prediction:

f(x) = $0 +1i=1Ynei
. ¢oi\phi_i¢i is the SHAP value for feature iii
. $»0\phi_0¢0 is the model’s base value
. This approach provides both global feature importance and local explanation per instance

Plots were generated to visualize:

. Feature importance rankings
. SHAP summary plots
. Individual prediction explanations

V. RESULTS AND DISCUSSION

The performance of seven machine learning algorithms—Logistic Regression, Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), Naive Bayes, Decision Tree, Random Forest, and Gradient
Boosting—was evaluated on a real-world diabetes dataset containing 100,000 records and 9 features. The
goal was to identify the most effective model for predicting diabetes risk using clinical and demographic
variables. All models were assessed using key classification metrics such as Accuracy, Precision, Recall,
F1-Score, and ROC-AUC.

A. Classification Performance

The summary of classification metrics for all models is shown in Figure 1. It reveals that Gradient
Boosting and Random Forest outperformed others, achieving the highest scores across most evaluation
criteria. In contrast, Naive Bayes yielded the lowest F1-Score and accuracy, highlighting its limitations in
handling non-linear feature interactions.
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Figure 2: Summary of classification performance metrics (Accuracy, Precision, Recall, F1-Score) for
all ML models.

B. Cross-Validation Accuracy

To ensure generalizability, each model was evaluated using 10-fold cross-validation. As shown in Figure
2, ensemble models—particularly Gradient Boosting and Random Forest—again demonstrated the most
consistent cross-validation accuracy, with minimal standard deviation.

Cross-Validation Mean Accuracy of Models

ML Models

Figure 3: Comparison of mean cross-validation accuracy across all ML models.

C. ROC and Precision-Recall Curves

To further assess model discrimination power, we plotted the Receiver Operating Characteristic (ROC)
and Precision-Recall (PR) curves. ROC curves provide insights into the trade-off between True Positive
Rate (Recall) and False Positive Rate, while PR curves are especially valuable in imbalanced
classification settings like diabetes prediction.
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ROC Curves for All Models
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Figure 4. ROC curves for all machine learning models, illustrating their ability to distinguish
between diabetic and non-diabetic patients.

Precision-Recall Curve - Diabetes Prediction

0.6

0.4

— Logistic Regression (AP=0.81}
SWM (AR=0.83)

0.67)

es (AP=0,51}

0.2

0.0 0.2 0.4 0.6 0.8 10
Recall

Figure 5: Precision-Recall curves showing performance under class imbalance.

D. Confusion Matrix Analysis

To understand the misclassification behavior of the models, we analyzed their confusion matrices. These
matrices offer granular insights into True Positives (TP), True Negatives (TN), False Positives (FP),
and False Negatives (FN) for each model.

Such analysis is crucial in medical diagnosis scenarios, where minimizing false negatives (i.e., undiagnosed
diabetic patients) is critical to ensuring patient safety.
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Confusion Matrix Cemparison of All Models
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Figure 6: Confusion Matrix Comparison of All Machine Learning Models

Table 1. Confusion Matrix Error Analysis for All Models (FP + FN)

Model False False Total
Positives Negatives | Errors
(FP) (FN)

Logistic 165 661 826

Regression

SVM 0 1053 1053

KNN 132 819 951

Naive 1287 618 1905

Bayes

Decision 504 447 951

Tree

Random 60 527 587

Forest

Gradient 15 536 551

Boosting

The confusion matrix analysis highlights the distribution of prediction errors across the ML models.
Gradient Boosting recorded the lowest total error (551), closely followed by Random Forest (587),
reflecting their robust classification performance. In contrast, Naive Bayes exhibited the highest error rate
with 1905 misclassifications, indicating weaker performance in distinguishing diabetic and non-diabetic
patients. These insights further validate the overall superiority of ensemble-based models in the context of
diabetes prediction using real-world healthcare data.
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E. ROC Curve Analysis

Receiver Operating Characteristic (ROC) curves provide a visual analysis of the trade-off between the
True Positive Rate (TPR) and the False Positive Rate (FPR) for each classifier. A model with a curve closer
to the top-left corner indicates superior performance. Among all the models tested, Gradient Boosting and
Random Forest achieved the most optimal ROC characteristics, with AUC values approaching 1.0,
confirming their effectiveness in distinguishing diabetic and non-diabetic cases.

ROC Curves for All Models

10

0.8

—— Logistic Regression (AUC = 0.96)

0.2
SVM (AUC = 0.96)

0.0

0.0 0.2 04 06 0.8 10

Fig. 7. Receiver Operating Characteristic (ROC) Curves comparing ML models.

F. Precision-Recall (PR) Curve Analysis

Precision-Recall (PR) curves are particularly valuable for evaluating performance on imbalanced
datasets like diabetes prediction. They illustrate the trade-off between precision and recall for
different thresholds. Models such as Random Forest and Gradient Boosting exhibit high precision
and recall across various thresholds, demonstrating their robustness in identifying diabetic patients
without increasing false positives.

Precision-Recall Curve - Diabetes Prediction

0.6

0.4
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K 7
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Fig. 8. Precision-Recall Curves of All Machine Learning Models
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G. Model Explainability and Feature Importance

In this section, we include plots and analysis that explain why the models made their predictions —
crucial for transparency in medical applications like diabetes prediction.

1. Feature Importance

Understanding which features most influence the prediction is essential in medical diagnosis. Feature
importance scores were computed for tree-based models such as Decision Tree, Random Forest, and
Gradient Boosting. These plots indicate that features such as glucose level, BMI, age, and blood pressure
are among the most influential in predicting diabetes, aligning with domain knowledge.

Figure 9: Decision Tree Feature Importance

Decision Tree - Feature Importance

Fig. 9. Feature importance derived from Decision Tree classifier.

Random Forest - Feature Impartance

HbAlc_level

blood_glucose_level

Figure 10: Feature importance derived from Random Forest classifier.
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Fig. 11. Feature importance derived from Gradient Boosting classifier.
2. SHAP (SHapley Additive exPlanations)

SHAP (SHapley Additive exPlanations) values provide a model-agnostic explanation of predictions. They
quantify the contribution of each feature to the final prediction, thereby helping clinicians understand the
reasoning behind individual predictions. The SHAP summary plots show that glucose, BMI, and age were
the top contributors to diabetes prediction.

SHAP Summary (Global Feature Importance)

HbAlc_level +0.07
blood_glucose_level
bmi

age

hypertension
heart_disease

smoking_history

gender

000 001 002 003 004 005 006 007
mean(|SHAP value|)

Figure 12: SHAP summary plot showing feature contributions across predictions.
CONCLUSION

In this research, a comprehensive comparative study of seven supervised machine learning algorithms—
Logistic Regression, Support Vector Machine, K-Nearest Neighbors, Naive Bayes, Decision Tree,
Random Forest, and Gradient Boosting—was conducted to predict diabetes using a large-scale real-world
dataset comprising 100,000 records and 9 clinical attributes. The pipeline encompassed systematic data
preprocessing, model training, performance evaluation, cross-validation, and explainability analysis.

The experimental results showed that ensemble-based classifiers, particularly Gradient Boosting and
Random Forest, yielded superior predictive performance, achieving the highest accuracy (~97.2%), F1-
score, and cross-validation stability, thereby proving to be more robust to class imbalance and noise. In

IJSAT25048021 Volume 16, Issue 4, October-December 2025 13
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contrast, baseline models such as Naive Bayes underperformed due to their simplistic probabilistic
assumptions, indicating their limited capacity in capturing nonlinear relationships present in medical data.

Further, feature importance analysis and SHAP (SHapley Additive exPlanations) interpretability
confirmed that blood glucose level, HbAlc level, and BMI were the most influential features in
determining diabetic outcomes. This aligns well with known clinical risk factors and enhances the
trustworthiness and transparency of the Al-based models.

This study affirms that integrating machine learning with interpretability frameworks not only improves
diagnostic accuracy but also bridges the gap between predictive intelligence and clinical relevance. In
future work, we aim to extend this framework to support real-time hospital deployments, handle multi-
class disease classification, and incorporate temporal patient health records to capture longitudinal patterns
in disease progression.
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