

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Secure Data Sharing in Financial Services: Redshift Data Sharing vs. Snowflake Secure Data Sharing

Ujjawal Nayak¹, Surbhi Gupta²

¹Software Development Manager, Costa Mesa, CA ²Specialist Credit Risk, Seattle WA

Abstract

The financial services industry operates in a highly regulated environment that demands secure, compliant, and efficient data exchange to enable critical functions such as credit scoring, fraud detection, risk analytics, and regulatory reporting. As institutions accelerate their cloud transformation journeys, the ability to share data seamlessly across business units, partners, and ecosystems—while maintaining strict control and auditability—has become a strategic imperative.

Modern **cloud data platforms** such as **AWS Redshift** and **Snowflake** have introduced advanced, **native data-sharing capabilities** that eliminate the need for data duplication and complex ETL pipelines. These features enable **real-time collaboration** across teams and external stakeholders without compromising on **security**, **governance**, **or compliance**.

This article provides a **comprehensive comparison** between **Amazon Redshift Data Sharing** and **Snowflake Secure Data Sharing**, analyzing their capabilities in **security and encryption standards**, **data governance and lineage**, **performance and scalability**, and **regulatory compliance** (e.g., **GDPR**, **CCPA**, **GLBA**, **SOX**). The discussion highlights architectural differences, operational trade-offs, and alignment with financial-sector compliance frameworks.

I. Introduction

Financial organizations operate under strict regulations such as GDPR, CCPA, SOC 2, and GLBA, requiring secure handling of sensitive data like credit histories, transactions, and personally identifiable information (PII). Traditional methods of data sharing—such as ETL pipelines or file-based exchanges—are inefficient and prone to compliance risks. Cloud platforms now offer native mechanisms for secure, near real-time data collaboration without data duplication. Two prominent solutions are AWS Redshift Data Sharing and Snowflake Secure Data Sharing.

II. Redshift Data Sharing

Redshift Data Sharing allows multiple Redshift clusters (producer and consumer) to access the same data without duplication.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

A. Architecture

- Data is shared at the schema, table, or view level between Redshift clusters.
- Consumers query live data, eliminating ETL or file transfers.
- Designed for AWS ecosystem integration (Glue, S3, Lake Formation).

B. Security and Governance

- IAM roles and AWS Lake Formation policies enforce fine-grained access.
- Encryption at rest/in transit via AWS KMS.
- Resource-level sharing restricted to clusters within the same AWS account or organization.

C. Performance and Cost

- Eliminates data duplication but may introduce inter-cluster network overhead.
- Reserved Instances and concurrency scaling mitigate cost issues.

D. Limitations

- Limited cross-region and cross-account sharing.
- Governance depends heavily on AWS account structures and policies.
- Not inherently multi-cloud.

III. Snowflake Secure Data Sharing

Snowflake Secure Data Sharing, part of its Snowgrid architecture, enables data exchange across accounts, regions, and even cloud providers.

A. Architecture

- Zero-copy architecture: shared data is not duplicated, consumers query provider's metadata and compute their own workloads.
- Works across regions and cloud platforms (AWS, Azure, GCP).
- Supports both private sharing (between accounts) and data marketplaces.

B. Security and Governance

- Strong Role-Based Access Control (RBAC) and policy-as-code support.
- Data masking, tokenization, and column-level security integrated with shares.
- End-to-end encryption and immutable audit logs.

C. Performance and Cost

- No storage duplication—cost savings for providers.
- Consumers pay only for compute resources.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

- Near real-time sharing supports low-latency analytics across financial ecosystems.

D. Limitations

- Vendor lock-in to Snowflake ecosystem.
- Governance policies must be carefully aligned with regulatory frameworks.
- Initial setup complexity for multi-cloud replication.

IV. Comparative Analysis

Feature	Redshift Data Sharing	Snowflake Secure Data Sharing
Scope	Intra-AWS, limited cross-region	Cross-cloud, cross-region (Snowgrid)
Security	AWS IAM + KMS, Lake Formation	RBAC, masking, audit logs, policy-as-code
Compliance	Dependent on AWS compliance stack	Native GDPR/CCPA/FCRA- aligned features
Performance	Good for intra-account workloads	Optimized for real-time global sharing
Cost Model	Provider bears infra cost	Provider pays storage; consumer pays compute
Governance	AWS account-based	Fine-grained, tag-based, column-level

V. Use Cases in Financial Services

- Redshift Data Sharing: Best suited for financial institutions already standardized on AWS, requiring internal business unit collaboration.
- -. Snowflake Secure Data Sharing is the **preferred solution** for institutions with **heterogeneous technology stacks**, **multi-cloud strategies**, and **global compliance obligations**. Its **zero-copy architecture** and **centralized governance** make it ideal for **financial ecosystems** that require **cross-entity collaboration** with strict control and auditability.

VI. Conclusion

Secure data sharing is central to financial services transformation. While Redshift Data Sharing provides a cost-effective, AWS-centric option, Snowflake Secure Data Sharing enables global, cross-cloud, compliance-ready collaboration. Institutions must evaluate based on regulatory requirements, ecosystem alignment, and collaboration scope. A hybrid approach—leveraging Redshift for intra-AWS workloads and Snowflake for external exchanges—can deliver the best of both worlds.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

References

- 1. GDPR Compliance Overview, 2025. https://gdpr.eu
- 2. California Consumer Privacy Act (CCPA), 2025. https://oag.ca.gov/privacy/ccpa
- 3. AWS Redshift Documentation, 2024. https://aws.amazon.com/redshift/
- 4. Snowflake Documentation, 2024. https://docs.snowflake.com
- 5. U. Nayak, "Cost Optimization Strategies in Cloud Data Warehousing: AWS Redshift vs. Snowflake," IJCEM, vol. 8, no. 2, pp. 1–4, 2025.
- 6. U. Nayak, "Disaster Recovery in the Cloud: Best Practices for High Availability in Financial Services," IJLRP, vol. 6, no. 5, pp. 1–5, 2025.
- 7. U. Nayak, "Automated Data Governance and Compliance Monitoring using AI & Big Data," IJIRMPS, vol. 13, no. 4, pp. 1–3, 2025.
- 8. U. Nayak, "Building a Multi-Cloud Data Strategy with AWS, Snowflake, and Terraform," IJIRMPS, vol. 13, no. 5, pp. 1–4, 2025.
- 9. S. Gupta, "Fairness-Constrained Collections Policies: A Theoretical Model with Off-Policy Evaluation," International Journal on Science and Technology, vol. 16, no. 3, July–September 2025.