

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Futuristic Bio printing Based Food Production System for Space Habitats

Samriddhi Jain

Abstract

This paper proposes **AgroVista**, an advanced bio printing-based food production system designed to sustain human space settlements by 2080. The system integrates multiple technologies like biological cultivation in controlled "bio modules," 3D-printed scaffolds for cultivating plant and animal tissues, and automated robotics for planting, harvesting, and delivery. We describe the system architecture, workflow (from injecting cell-rich "Vista Samples" to robotic harvesting by **AgriBot** and quality control), and the supporting logistics (including drone delivery and repurposed storage). The design emphasizes environmental sustainability, recycling waste into fertilizers and recirculating nutrients under precise climate control (17–24°C, 80–85% relative humidity, elevated CO₂, low total pressure). We discuss customization features enabling personalized, on-demand nutrition and outline future expansion to additional planetary outposts. Finally, we identify technical and ethical challenges (e.g. system complexity, food safety, cultural acceptance) and stress that automated, regenerative food systems will be critical for the long-term health and survival of space colonists [1][2].

Introduction

As humanity ventures into long-term space exploration and colonization, reliable food production becomes a mission-critical challenge. Carrying all required food from Earth is impractical for multi-year voyages, since nutrients degrade over time and packaging adds mass and waste and uses unnecessary accommodations to regularly transport [3]. Instead, in-situ food cultivation can reduce resupply needs and improve crew health. For example, NASA notes that nutrient deficiencies can arise on long missions (echoing historical scurvy) unless fresh produce is available [3]. Even Earth-bound indoor farming has leveraged space-agency research: NASA pioneered vertical farming and closed-loop plant growth chambers to recycle waste into food, oxygen, and clean water [4][5]. These bio regenerative life-support studies show that plants can both nourish crews and support habitat air quality [6][5].

By 2080, we envision a fully integrated, compact factory that uses advanced 3D bioprinting of foods to feed entire space settlements. Such a system will be capable to generate large amounts of food in controlled environments using 3D food printing. This system operates on the principle idea of producing layered foods from living cells. In this paper, we describe AgroVista, a conceptual food production system where biological modules are seeded with cell cultures and 3D-printed scaffolds, robots manage growth cycles, and waste is recycled. The system aims to provide dietary variety (meat, seafood, and plants) while minimizing resource use and supporting crew well-being [2][7].

System Description

AgroVista consists of climate-controlled bio modules that support the cultivation of a range of food products. Each module contains *bio-ink* (living cells and nutrients) and custom 3D-printed scaffolds

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

tailored for specific foods. For example, one module may be dedicated to muscle cell (meat) tissue, another to algae or spirulina (seafood-like biomass), and others to plant sprouts or fruits. The scaffolds act as a framework for tissues to grow, mimicking an extracellular matrix [8]. Materials such as edible proteins (alginate, soy, pea protein) can be printed to form these internal lattices [8]. By designing scaffolds with channels and pores, cell cultures can receive nutrients and oxygen efficiently, guiding growth into sheets or chunks of "meat" or leafy layers as per requirement. Such scaffolds have been shown to direct muscle and fat cells, allowing targeted growth of specific animal tissues and reducing waste [9].

The AgroVista modules are maintained in precisely controlled microclimates. Temperature is kept between about 17–24 °C and humidity around 80–85% RH, which falls within the known acceptable range for many crops and cultured cells (studies show plants thrive between 10–35 °C). The atmosphere is enriched to roughly 10–12.5% CO₂ (100,000–125,000 ppm) to accelerate photosynthesis and cell metabolism, far above Earth-normal levels but comparable to NASA experiments with "super-elevated" CO₂ to boost plant growth [5]. Because the internal pressure is kept very low (around 1.0 kPa total), the modules use minimal gas and can be sealed with light walls, but CO₂ is constantly replenished (for example, from crew exhalation or electrochemical CO₂ generation). The absence of high pressure significantly reduces structural mass for the habitat. Advanced sensors monitor gas mix, lighting, and nutrient concentrations. In short, each module provides a sterile, controlled mini-ecosystem where cells printed on scaffolds can proliferate into edible tissues under optimal conditions [5][8].

Function and Workflow

The production cycle begins with Vista Samples which are cartridges containing live cells (stem cells, plant seedlings, or algae) and nutrient broth. These are injected into empty bio modules to seed the culture. Once a module is primed, the next step is scaffold fabrication. Using an array of bio-friendly materials, the modules deposit the scaffold framework into the module in situ. (This bottom-up printing approach lets operators control exactly where cells will attach and grow within the module). For example, a steak-like muscle filetoid might be built layer by layer on a vertical scaffold, alternating muscle cell deposition and fat cell deposition to create marbling.

After scaffolds are in place, the seeded modules enter a growth phase under full automation. AgriBot serves as an autonomous robotic cart designed to maintain the entire process. It periodically visits each module. It delivers water and nutrient solutions through small microfluidic ports, and adjusts lighting if needed. Once the tissues reach maturity, AgriBot is also responsible for harvesting the product. For plant modules, it may gently cut leaflets or rotate and extract lettuce heads. For muscle/seafod modules, it can shear off the outer layer of cells. Sensors or cameras provide quality control data (color, texture, microbial assays) throughout the cycle. After harvest, AgriBot replants the module. It injects fresh Vista Samples for the next batch and the cycle repeats. Throughout, modules are kept sterile and monitored for contamination. Multiple AgriBots and backup systems ensures that a failure in one bot does not stop production. By handling planting and harvesting robotically, the need for crew gardening time is minimized (freeing astronauts for other tasks).

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Logistics and Automation

Once food is harvested, it must be delivered throughout the habitat. AgriBot itself transports freshly harvested items to a centralized processing, storage and distribution area. Here, the food goes through any processing or mechanical modifications it may need and is then packed safely in climate-controlled lockers to keep the produce fresh for a long time.

Small delivery drones are used for last-mile distribution within the settlement. In futuristic habitats, miniature autonomous drones shall carry trays from the food depot to crew living quarters or dining halls. These "Drones & Delivery" units are programmed to follow pre-planned routes and avoid obstacles.

Overall, the system is designed for high automation: crops and bioprinted products rarely leave the secured bio-lab until they reach the consumer. Automated guided vehicles like AgriBot, storage pods and drones handle logistics under a central scheduling system. This reduces manual labor and allows the colony to function with a small crew. The logistics infrastructure draws on developments like NASA's autonomous cargo drones and automated agriculture robots.

Customization and Future Expansion

A key feature of AgroVista is personalization. Because foods are printed and grown on demand, each crew member's nutritional needs and preferences can be accommodated. Sensors and wearable health monitors feed data (e.g., vitamin levels, caloric burn) into an AI nutrition service. Based on this, the system can adjust nutrient mixes or even genetic composition of lab-grown foods for, say, more protein or flavor. An example of this case may be an astronaut requesting a spicy plant burger fortified with vitamin D, while another orders a lab-grown fish fillet tailored to their taste. The printer's software then assembles the layers accordingly. This means virtually infinite menu variety from a limited number of input ingredients.

Scalability is also built-in. AgroVista's modular design means additional units can be added as the population grows. AgroVista modules could be integrated into habitats on Mars: the low-pressure, high-CO₂ environment we use is similar to proposed Martian greenhouses (using Martian CO₂ for pressurization) [5]. Other colonies (orbiting stations, lunar lava tubes, deep-space vessels) could adopt AgroVista as their food factory. Over decades, a network of standardized bioprinting food systems may connect Earth and other worlds, enabling shared knowledge and continuous improvement.

Challenges and Considerations

Despite its promise, AgroVista faces technical and ethical hurdles. On the technical side, the system is very complex. Integrating living systems with machines requires robust controls. Sterility must be maintained to avoid contamination. A rogue microbe could spoil a whole batch of cultured meat. Robotics and electronics must operate reliably for years in the space environment, where maintenance is difficult. AgroVista modules would require shielding or fault-tolerant design to keep tissues alive. The high-CO₂, low-pressure environment also poses engineering challenges: seals and materials must withstand unusual conditions. Another technical challenge is energy efficiency: running LEDs,

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

bioreactors, and printers 24/7 will demand substantial power, so the habitat's energy system must scale accordingly.

Ethical and social issues may arise as well. Some crew might be uneasy eating lab-grown meat or microalgae products. Cultivated foods may lack the sensory appeal or cultural significance of traditional cooking. Studies of cultured meat on Earth have found public skepticism about "unnatural" food processes. We must consider the psychological impact of a fully automated diet system. There is also the risk of dependency: if the automated system fails, could the colony revert to more primitive means. Logistically, maintaining spare parts and input supplies (like growth media) is vital. Although many inputs can be recycled, some minerals or flavors may require Earth resupply. Transporting those to a remote colony or replacing a broken bioprinter is expensive. The system must include redundancies (multiple printers, backup power) and clear maintenance protocols. Training crews to oversee and repair bioreactors is a new challenge for space missions.

Appendix

Although each settlement would have its own specific designs and volumes allotted for agriculture, following is a proposed layout of the agricultural facility. This would ensure smooth flow of products and efficient and timely deliveries to consumers.

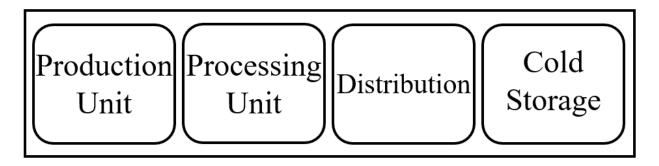


Figure 1: Possible Layout of the Agricultural facility in Future Settlement

Acknowledgement

I would like to thank space agriculture researchers from NASA, ESA, and associated academic institutions for prior work on bio regenerative life-support systems, which served as foundational inspiration for this concept. Appreciation is also extended to educators and mentors who encouraged the development of this futuristic design for sustainable food production in space. I would like to extend my gratitude to Mrs. Anita Gale, for reviewing the entire system during the Asian Regional Round of the Space Settlement Design Competition 2024.

Conclusion

By 2080, sustaining human life off Earth will demand reliable, efficient food systems. AgroVista represents one vision of this future: a fully automated, regenerative farm that uses 3D bioprinting and robotics to grow and deliver fresh food on-demand. Such a system capitalizes on the maturity of

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

controlled-environment agriculture and additive manufacturing. It addresses the critical problem of lack of nutrition being consumed by space residents if only prepackaged foods are available [3].

Implementing this vision is non-trivial, but the groundwork is already laid by decades of research. NASA's studies of plant growth chambers and space greenhouses have proven that multi-functional life-support is achievable [4]. Similarly, recent advances in food bioprinting demonstrate that layered, edible tissues can be printed from cells [1][8]. Combining these threads, AgroVista shows how settlers might one day walk into a habitat dining hall to find a variety of locally printed meals, without any traditional farm fields in sight. If achieved, this approach will help ensure that human communities can flourish across the solar system and beyond.

Authors' Biography

Samriddhi Jain is a high school student with a strong interest in space habitation, futuristic life-support technologies, and engineering. She has explored speculative systems for sustainable living beyond Earth and aims to pursue further research in aerospace and planetary settlement design. This paper represents an early attempt to integrate robotics and controlled-environment high tech machines into a unified vision for space colonization.

References

- 1. Hall, L. (2021). NASA Research Launches a New Generation of Indoor Farming. NASA.
- 2. Jensen, S. (2019). MIT team places second in 2019 NASA BIG Idea Challenge. MIT News.
- 3. NASA. (2019). Deep-Space Food Science Research Improves 3D-Printing Capabilities. NASA Spinoff.
- 4. NASA. (2023). 3D Bioprinting. NASA.
- 5. NASA. (n.d.). Modular System for Waste Treatment, Water Recycling, and Resource Recovery. NASA Technology Transfer (KSC-TOPS-100).
- 6. NASA. (n.d.). Growing Plants in Space. NASA.
- 7. Prithviraj, V., Puente Díaz, L., & Lemus, R. (2025). Emerging advancements in 3D food printing. Frontiers in Food Science and Technology, 5, 1607449.
- 8. Whiting, T. (2024). NASA Moves Drone Package Delivery Industry Closer to Reality. NASA.
- 9. Wheeler, R. M., Spencer, L. E., Bhuiyan, R. H., Mickens, M. A., Bunchek, J. M., van Santen, E., Massa, G. D., & Romeyn, M. W. (2024). Effects of elevated and super-elevated carbon dioxide on salad crops for space. Journal of Plant Interactions, 19(2), 112–130.
- 10. [14] [15] Deep-Space Food Science Research Improves 3D-Printing Capabilities | NASA Spinoff

https://spinoff.nasa.gov/Spinoff2019/ip_2.html

- 3D Bioprinting NASAhttps://www.nasa.gov/missions/station/iss-research/3d-bioprinting/
- [3] [6] Growing Plants in Space NASA

https://www.nasa.gov/exploration-research-and-technology/growing-plants-in-space/

[4] [13] NASA Research Launches a New Generation of Indoor Farming - NASA

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

https://www.nasa.gov/technology/tech-transfer-spinoffs/nasa-research-launches-a-new-generation-of-indoor-farming/

[5] (PDF) Effects of elevated and super-elevated carbon dioxide on salad crops for space

https://www.researchgate.net/publication/376491518_Effects_of_elevated_and_super-elevated_carbon_dioxide_on_salad_crops_for_space

[7] [12] Modular System for Waste Treatment, Water Recycling, and Resource Recovery | T2 Portal

https://technology.nasa.gov/patent/KSC-TOPS-100

[8] [9] [17] Frontiers | Emerging advancements in 3D food printing

https://www.frontiersin.org/journals/food-science-and-technology/articles/10.3389/frfst.2025.1607449/full

[10] [16] MIT team places second in 2019 NASA BIG Idea Challenge | MIT News | Massachusetts Institute of Technology

https://news.mit.edu/2019/mit-team-nasa-big-idea-challenge-martian-greenhouse-0520

[11] NASA Moves Drone Package Delivery Industry Closer to Reality

https://www.nasa.gov/aeronautics/drones/delivering-closer-to-reality/