IJSAT

j’_ International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

OOP-Based WhatsApp Chatbot for Educational
Use

SASWATH K Rl, DR MADHU MITHA K 2

2Assistant Professor
L2pepartment of Computing Technologies, SRM Institute of Science and Technology

Abstract

The integration of conversational agents into ubiquitous messaging platforms enables interactive, always-
available learning experiences. This paper presents the design and development of a rule-based WhatsApp
chatbot that teaches Object-Oriented Programming (OOP) concepts while itself being implemented with
OOP principles. The system uses Node.js (ES Modules) with Express for routing, MongoDB for persistent
logs, and Redis for lightweight session state. WhatsApp connectivity is provided through Twilio’s
Messaging API; ngrok is used for secure webhook exposure in development. The architecture is modular,
with classes for menu rendering, input parsing, session management, and intent routing. We demonstrate
encapsulation, inheritance, polymorphism, and abstraction throughout the codebase and show that
deterministic, menu-driven conversations are effective for beginner-friendly programming instruction. In
tests on Twilio’s sandbox, the bot achieved sub-250 ms median response time, stable concurrency for 15+
simulated users, and positive qualitative feedback. We discuss limitations and outline extensions including
multilingual support and future NLP-based intent handling.

Keywords- WhatsApp chatbot, Object-Oriented Programming, Twilio, Node.js, Express, MongoDB,
Redis, Educational technology, Rule-based dialog

1. INTRODUCTION

Messaging applications are a natural medium for educational assistants due to their reach and
familiarity. WhatsApp’s global adoption enables learners to access help without new accounts, apps, or
installations. However, many educational chatbots either rely on opaque NLP pipelines or lack
pedagogical structure, especially for foundational topics such as OOP.

We develop a WhatsApp chatbot that explains OOP concepts—classes, objects, encapsulation,
inheritance, polymorphism, and abstraction—through short, deterministic responses and a guided menu
flow. Crucially, the bot’s internal design mirrors the concepts it teaches: class-based handlers encapsulate
behaviors, a base handler interface enables polymorphic responses, and shared abstractions isolate
infrastructure (Twilio, persistence) from pedagogy (topic content).

A. Problem Statement and Objectives
Beginners often struggle to connect abstract OOP concepts to working software. Traditional

IJSAT25048698 Volume 16, Issue 4, October-December 2025 1

https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)

- E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

materials can be static and non-interactive. We therefore design a chatbot that (i) delivers concise,
structured explanations of OOP topics over WhatsApp, (ii) embodies OOP in its internal architecture, (iii)
integrates Twilio for reliable message delivery, and (iv) remains modular and extensible for future NLP
upgrades.

B. Contributions

A practical OOP-driven architecture for an educational, rule-based chatbot on WhatsApp.

A clean separation of concerns via class-based handlers, a router, and services (Twilio, persistence,
session), illustrating encapsulation, inheritance, polymorphism, and abstraction.

An implementation using Node.js/Express, MongoDB, and Redis that achieves low-latency
responses in sandbox, evaluations.

A reproducible configuration workflow for Twilio WhatsApp sandbox and local development

2. RELATED WORK

Chatbots in education. Prior work shows chatbots can increase engagement by enabling on-demand,
conversational explanations in domains from programming to general STEM. Deterministic, rule-based
flows are attractive for formative instruction where consistency and assessment alignment matter.

WhatsApp and Twilio. WhatsApp does not expose a native DIY chatbot interface; Twilio bridges this
via programmable messaging. Incoming WhatsApp messages hit a Twilio webhook that forwards payload
to the application server; the server’s response is relayed back to the user, enabling near real-time
interaction.

Rule-based vs. NLP bots. Rule-based agents simplify validation and guarantee predictable outputs, while
NLP bots (e.g., based on spaCy/BERT/Dialogflow) enable flexible phrasing and intent recognition at the
cost of training, tuning, and occasional non-determinism. For introductory instruction, our system
prioritizes control and transparency, while remaining extensible for future NLP upgrades.

3. PROBLEM DEFINITION

Learners new to object-oriented programming (OOP) often struggle to connect concise definitions with
working mental models and everyday examples. Existing resources are either static (notes/videos that
don’t adapt) or open-ended Al chatbots that can be inconsistent and difficult to validate in instructional
settings. At the same time, students overwhelmingly spend time on messaging apps, where lightweight,
low-friction learning could happen—Dbut WhatsApp lacks a native, pedagogy-first teaching flow:

Constraints & assumptions

e Platform constraint: WhatsApp messaging via Twilio webhooks (no custom WhatsApp Ul).

e Deployment constraint: lightweight Node.js/Express service with simple data stores (e.g., Redis for
session state, MongoDB for logs).

e Pedagogy constraint: deterministic, rule-based responses prioritized over free-form NLP.

e Privacy assumption: no storage of personally identifying content beyond minimal messaging metadata
required for sessioning.

IJSAT25048681 Volume 16, Issue 4, October-December 2025 2

https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

=

e Environment assumption: development accessible via secure public endpoint (e.g., tunnel) and
configurable secrets.

Functional requirements

e Present main and sub-menus for OOP topics; accept numeric and keyword selections.
o Deliver concise definition + example per topic; offer Next / Back / Menu navigation.
e Handle unexpected inputs with clear guidance; allow users to re-enter the flow quickly.
e Persist and restore user session context (current topic/step).

e Record timestamped request/response logs.

Non-functional requirements (success criteria)
o Predictability: identical inputs in the same state yield identical outputs.
e Responsiveness: median end-to-end reply under ~250 ms in a development setup.

e Robustness: no crashes under at least ~15 concurrent user sessions; zero unhandled exceptions in
routine tests.

e Maintainability: add new topics by subclassing/registration without modifying existing handlers
(Open/Closed Principle).

e Security: secrets via environment variables; request validation in production; minimal data retention.

Out of scope (initial version)

o Free-form natural-language intent detection, code execution/grading, and multimedia lessons; these
may be added in future iterations.

4. SYSTEM ARCHITECTURE

A. Technology Stack

The backend uses JavaScript (ES Modules) with Node.js and Express for HTTP endpoints, Twilio’s API
for WhatsApp integration, MongoDB (via Mongoose) for structured logging, Redis for in-memory session
state, and ngrok for secure localhost tunneling during development [4]-[6].

IJSAT25048681 Volume 16, Issue 4, October-December 2025 3

https://www.ijsat.org/

@ International Journal on Science and Technology (IJSAT)

- E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

Chat bot integration on
messaging

Define Use-case
“ (chatbot, Q&A, etc.)

gemini-1.5-flash 4 (fast
& cheap)

Google Cloud Setup &

(Enable Generative Language API ¥]

Create API Key

Understand Endpoint s* POST
https://...

Set up Node.js App ¥

Run & Test «’(node
geminiRequest.js)

Get Model Response @ ¥
|
Integrate into App &

[

[WebApp (React/Nextjs)][Bot = (Telegram, WhatsApp)][Backend Logic]

Fig. 1. Flowchart of Chatbot integration
B. High-Level Flow

When a user sends a WhatsApp message, Twilio invokes the bot’s webhook with message metadata. The
server normalizes input, routes it via an intent router to a corresponding handler class, and returns a
templated reply. Logs are persisted to MongoDB; Redis caches recent session context (e.g., last menu) for
continuity.

C. OOP Design

The design includes (a) a MessageRouter that dispatches to handlers, (b) a MenuManager that renders
main/sub-menus, (c) a TwilioService that encapsulates messaging 1/0, and (d) a SessionStore backed by
Redis. A base Handler defines the interface (canHandle, handle); specialized handlers (e.g.,
InheritanceHandler, EncapsulationHandler) extend it.

e Encapsulation: services wrap external concerns (Twilio, DB, cache)..

e Polymorphism: router invokes handle on the matched handler at runtime.

IJSAT25048681 Volume 16, Issue 4, October-December 2025 4

https://www.ijsat.org/

IJSAT

T International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

e Abstraction: external modules interact through concise interfaces.

Main server setup for Node.js

Express.js App
I Mounts /webhook endpoint
+use()
+listen()
(
|
uses
WebhookRouter
Handles incoming WhatsApp messages
+registerRoutes()
+handlelncoming()

\
delegates
TwilioWebhookHandler

Processes message types
+parseMessage() . SR

+triggerResponse()
|
parses & routes
MessageController

I Twilio API integration
+handleText() L - = S

+handleMedia()
[

|
sends response

TwilioService

+sendMessage()
+receiveMessage()

Fig. 2. UML Class Diagram of the OOP-Based Chatbot

5. METHODOLOGY

This section details how the WhatsApp OOP tutor was conceived, engineered, and evaluated. It covers
requirements capture, architecture, message-flow logic, state management, content authoring,
deployment, testing, and metrics—so you can reproduce or extend the system.

A. Requirements Elicitation and Scope

The preprocessing pipeline is an important part in providing consistency in the data and in increasing the
efficiency of learning. Steps include:

e Pedagogical needs: short, deterministic explanations of OOP topics (classes/objects, encapsulation,
inheritance, polymorphism, abstraction) with minimal cognitive load.

e User constraints: learn inside WhatsApp; tolerate typos; resume where they left off.
e System constraints: lightweight backend, simple persistence, fast responses, minimal PII retention.

e Success criteria: predictable outputs (same input — same response), median latency <250 ms (dev),

IJSAT25048681 Volume 16, Issue 4, October-December 2025 5

https://www.ijsat.org/

IJSAT

T International Journal on Science and Technology (IJSAT)

- E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

stable with >15 concurrent users.

B. System Architecture

e Runtime: Node.js (ES Modules) + Express.

e Messaging: WhatsApp via Twilio Programmable Messaging webhooks.

e State: Redis (per-user session/context).

e Persistence: MongoDB (Mongoose) for message logs and simple analytics.
e Config/Secrets: environment variables; centralized config module.

e Local tunneling (dev): ngrok for public HTTPS to webhook.

Core components (class-oriented):
e MessageHandler (abstract): interface with canHandle(state, input) and respond(context).

e Topic handlers: EncapsulationHandler, InheritanceHandler, PolymorphismHandler,
AbstractionHandler, etc.

e MenuManager: renders menus, maps choices/keywords to handlers, manages “menu/back/help”.
e Router: normalizes input, selects handler (polymorphism), orchestrates response.

e TwilioService: verifies requests (prod), parses inbound payloads, sends outbound messages.

e SessionService: get/set user state in Redis with TTL.

e DbService: asynchronous inserts for logs; backpressure-aware.

e ErrorMiddleware: centralized error capture, classification, and safe fallbacks.

C. Message Lifecycle (End-to-End)

° Inbound: WhatsApp — Twilio — HTTPS POST to /webhook/whatsapp.

° Normalization: lowercase, trim, collapse whitespace; extract keywords and numeric options.
) Context load: fetch user session (state machine node) from Redis.

° Routing: Router queries MenuManager + handlers via canHandle(...).

° Response compose: selected handler returns text (definition, mini-example, next options).

° State update: advance/retain state (e.g., Topic=Encapsulation, Step=Example).

° Persist: async log to MongoDB (user hash, input, output, timestamps, state snapshot).

° Outbound: TwilioService replies to WhatsApp; delivery status optionally recorded.

° Observability: structured log (JSON) with correlation id for tracing

IJSAT25048681 Volume 16, Issue 4, October-December 2025 6

https://www.ijsat.org/

IJSAT

T International Journal on Science and Technology (IJSAT)

- E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

D: Conversation State Machine

States (simplified):

e WELCOME — MAIN MENU — TOPIC_ MENU — TOPIC EXPLAIN — TOPIC_EXAMPLE —
(NEXT_TOPIC | TOPIC_MENU)

e Global interrupts: HELP, MENU, BACK.

Transitions:
e Numeric choice 1/2/3... or keyword (e.g., “polymorphism’) advances deterministically.
e Invalid input - FALLBACK (one-line guidance + show valid actions).

e MENU jumps to MAIN_MENU; BACK returns to previous valid state.

Session policy:
e Redis key: sess:<user_hash>; fields: state, topic, step, updated_at.

e TTL (e.g., 24 h) to evict stale sessions and minimize data retention.

E. Content Authoring and Delivery
e Content blocks per topic: {definition, one-liner, micro-example, analogy, next-hint}.
e Authoring format: small JSON/TS objects co-located with handlers or loaded from a content/ directory.

e Determinism: each topic returns the same text for the same step; no randomization.

F. Input Handling and Intent Resolution

e Accept numbers (menu indices) and keywords (topic names/synonyms).
e Keyword map includes common misspellings (e.g., “poly morphism”).
e Priority: if in TOPIC_MENU, keywords map to visible topics; otherwise prompt to type menu.

e Ambiguity: prefer current state’s valid transitions; else show minimal disambiguation.

G. Error Handling and Fallbacks
e User errors: respond with a friendly single-line tip + valid options.

e System errors: generic apology + preserve state; log stack and classification (Twilio, Redis, Mongo,

IJSAT25048681 Volume 16, Issue 4, October-December 2025 7

https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

=

App).
e Retries: limited retry on transient Redis/Mongo ops; circuit breaker to avoid cascading failures.

e Time-outs: graceful time-out handling with idempotent webhook processing.

H. Data Model and Persistence

MongoDB collections:
e message_logs: { id, user_hash, direction, text, state_snapshot, ts}

e events (optional): health pings, delivery receipts.
Indexes: {user_hash, ts} for session traces; TTL index (optional) for retention policy.

Privacy: store a salted/hashed user identifier; no message content beyond instructional necessity if policy
requires.

I. Security and Compliance

e Secrets via environment variables; no hard-coded tokens.

Validate Twilio request signatures (production).

HTTPS everywhere; restrict IPs if hosting allows.

Least-privilege database users; parameterized queries.

Data retention window aligned with institutional policy; document consent if storing transcripts.

(&

. Deployment Workflow
e Dev: Node server + ngrok URL — configure Twilio Sandbox webhook.

e Staging/Prod: public HTTPS (reverse proxy), environment-specific Redis/Mongo, autoscaling app
container.

e Config bundles: .env.<env> with CI/CD to inject secrets.

e Observability: structured logs, minimal dashboard: requests/min, median/95p latency, error rate.

K. Testing Methodology
e Unit tests: handlers, router, session service, content selector.
e Integration tests: end-to-end webhook flows with mocked Twilio payloads.

e [oad tests: synthetic users (>15 concurrent), measure throughput and latency under steady load and

IJSAT25048681 Volume 16, Issue 4, October-December 2025 8

https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)

- E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

spikes.
e Resilience tests: induce Redis/Mongo failures; verify fallbacks and recovery.
e Usability scripts: predefined learner journeys (beginner, lost user, returning user).

e Regression suite: snapshot expected responses per state to guarantee determinism.

Key metrics captured:

e Median & 95p response time (app-only and end-to-end).

e Error rates by class (4xx user-flow vs 5xx system).

e Session completion rate (from MAIN MENU — at least one topic example).

e Fallback frequency (proxy for UX friction).

L. Risks and Mitigations

e Rigid feel (rule-based): add synonyms and gentle prompts; future intent detection.

e Scaling state store: size/TTL tuning; move to managed Redis in production.

e \Webhook exposure (dev): rotate ngrok URLS; never reuse secrets across environments.

e Content drift: keep content blocks versioned; review for consistency across topics.

M. Ethical and Accessibility Considerations
e Keep language simple; offer “analogy” for each concept.
e Provide quick “repeat” and “example” options; minimize cognitive load.

e Auvoid collecting PIl; communicate retention and opt-out where applicable.

User on WhatsApp B

'
Twilio Webhook Receiver
l
Express.js Server &
— N T
twilioService.js * aiService.js %% dbService.js H Response sent via Twilio
|
OOP Madules, e.g. Inheritance, Encapsulation
Fig. 3. Service

IJSAT25048681 Volume 16, Issue 4, October-December 2025

https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

6. IMPLEMENTATION
I.Twilio Integration and Webhook

We configure Twilio’s WhatsApp sandbox, set the webhook URL to an ngrok HTTPS endpoint, and
accept POST requests with message bodies. The server replies with XML/JSON per Twilio’s API

expectations [1].

I1.Menu-Driven Dialog

On first contact, the bot greets the user and presents options: OOP Concepts, Project Info, and Help.
Selecting “OOP Concepts” reveals topics (Class, Object, Encapsulation, Inheritance, Polymorphism,
Abstraction). Users can respond via numbers or keywords. A fallback handler returns guidance for
unrecognized input and a link back to the main menu.

I11.Persistence and Sessions

MongoDB stores logs with user ID, message, response, and timestamps for analytics. Redis tracks
a small context (e.g., last menu node) to resume flows seamlessly.

7. EVALUATION

We evaluated functionality (greetings, menu navigation, topic responses, fallback), persistence
(MongoDB inserts), and session continuity (Redis). In sandbox tests with multiple sim- ulated users, we
observed average response time 180-220 ms, stable operation for 15+ concurrent conversations, and no
crashes during multi-hour sessions. Table | summarizes key metrics.

Qualitative feedback indicated that deterministic, concise explanations aid recall for beginners, while the

menu reduces ambiguity.

[

ul you like to learn?

Welcome! What wou}

{

A 4

!

7

and O

.

1. Classes

~

bjects
J

[2. Inheritance J

' R

3. Encapsulation

\ J

A

Y

—

Explain
Classes amd

Objects
| —

)

A 4

Explain
Inheritancce

Menu flow

——

Explain

Encapsulation
-~

Fig. 4. Example Menu Driven Chat Flow

[JSAT25048681

Volume 16, Issue 4, October-December 2025

10

https://www.ijsat.org/

@ International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

=

User Feedback and Performance Analysis

etric Values

47

Ease of Use (%) Avg Response Time (s} Overall Rating {oul of 5)

User Satistaction (5)

Fig. 5. User Feedback and Performance Analysis

8. DISCUSSION AND LIMITATIONS

This section details how the WhatsApp OOP tutor was conceived, engineered, and evaluated. It covers
requirements capture, architecture, message-flow logic, state management, content authoring,
deployment, testing, and metrics—so you can reproduce or extend the system.

9. RESULT

A. Overall Accuracy

e ResNet50 (default): 91.78%

e VGG19 (default): 89.12%

e Conv2D (default): 78.65%

e ResNet50 (tuned): Dropped to 41.92% due to improper tuning.

B. Class-wise Performance

The confusion matrix revealed high accuracy for DR and AMD detection but lower recall for Glaucoma,
attributed to dataset imbalance. Cataract was sometimes confused with normal images due to overlapping
visual features.

C. Effect of Preprocessing

Data augmentation improved robustness by reducing overfitting. Normalization helped accelerate
convergence. Without augmentation, validation accuracy dropped by nearly 6%.

D. Hyperparameter Sensitivity

Results indicated that improper tuning (e.g., very high learning rate, insufficient dropout) led to unstable
gradients and reduced accuracy. This highlights the necessity for careful hyperparameter search (grid
search, Bayesian optimization).

IJSAT25048681 Volume 16, Issue 4, October-December 2025 11

https://www.ijsat.org/

IJSAT

j’_ International Journal on Science and Technology (IJSAT)

- E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

E. Clinical Implications

Automated detection systems can serve as screening tools in rural healthcare centers where
ophthalmologists are scarce. Integration into tele-ophthalmology platforms could allow early referral and
reduce the risk of preventable blindness. However, models must be explainable to gain clinician trust.
Tools like Grad-CAM can highlight image regions influencing predictions.

10. CONCLUSION

This paper presented a comparative study of CNN architectures for automated ophthalmic disease
detection using the ODIR-5K dataset. ResNet50 achieved the best performance, demonstrating the
effectiveness of transfer learning in retinal disease classification. However, results also revealed
sensitivity to hyperparameter tuning and challenges with imbalanced data. Future work will focus on:

e Applying imbalance-aware techniques such as focal loss, class reweighting, and synthetic data
augmentation.

e Exploring attention-based architectures for improved interpretability.
¢ Integrating multi-modal data (fundus + OCT images).

e Testing models in real-world telemedicine systems to evaluate clinical usability.

By addressing these challenges, automated ophthalmic disease detection systems have the potential to
significantly reduce the burden of blindness worldwide.

REFERENCES

1. V. Gulshan, et al., “Development and validation of a deep learning algorithm for detection of
diabetic retinopathy in retinal fundus photographs,” JAMA, vol. 316, no. 22, pp. 2402-2410, 2016.

2. D.S. W. Ting, et al., “Development and validation of a deep learning system for diabetic retinopathy
and related eye diseases using retinal images from multi-ethnic populations with diabetes,” JAMA,
vol. 318, no. 22, pp. 2211-2223, 2017.

3. D. S. Kermany, et al., “Identifying medical diagnoses and treatable diseases by image-based deep
learning,” Cell, vol. 172, no. 5, pp. 1122-1131.e9, 2018.

4. Z.Li, Y. He, and L. Keel, “Applications of deep learning in ophthalmology: A review,” Eye and
Vision, vol. 7, no. 1, pp. 1-13, 2020.

5. World Health Organization, World Report on Vision, Geneva: WHO, 2019.

6. S. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, “Convolutional neural networks
for diabetic retinopathy,” Procedia Computer Science, vol. 90, pp. 200205, 2016.

7. J. De Fauw, et al., “Clinically applicable deep learning for diagnosis and referral in retinal disease,”
Nature Medicine, vol. 24, no. 9, pp. 1342-1350, 2018.

8. L. Shen, L. Lin, and S. Wu, “Deep learning-based automatic diagnosis of diabetic retinopathy,”
Diabetes Therapy, vol. 11, no. 3, pp. 747-758, 2020.

9. A. Ghosh, S. Sufian, F. Sultana, A. Chakrabarti, and D. De, “Fundus image analysis for diabetic
retinopathy detection using deep learning,” International Journal of Computer Applications, vol.

IJSAT25048681 Volume 16, Issue 4, October-December 2025 12

https://www.ijsat.org/

@ International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

178, no. 8, pp. 41-46, 2019.

10. T. Chen, Y. Lu, M. Zheng, and L. Zheng, “A hybrid attention mechanism for automatic diabetic
retinopathy classification,” IEEE Access, vol. 8, pp. 167909-167918, 2020.

11. M. Sahlsten, et al., “Deep learning fundus image analysis for diabetic retinopathy and macular
edema grading,” Scientific Reports, vol. 9, no. 1, p. 10750, 2019.

12. R. Rajalakshmi, et al., “Validation of a deep learning algorithm for detection of diabetic retinopathy
in retinal fundus photographs,” Indian Journal of Ophthalmology, vol. 66, no. 9, pp. 1151-1156,
2018.

IJSAT25048681 Volume 16, Issue 4, October-December 2025 13

https://www.ijsat.org/

