

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25048698 Volume 16, Issue 4, October-December 2025 1

OOP-Based WhatsApp Chatbot for Educational

Use

SASWATH K R1, DR MADHU MITHA K.2

2Assistant Professor

1,2Department of Computing Technologies, SRM Institute of Science and Technology

Abstract

The integration of conversational agents into ubiquitous messaging platforms enables interactive, always-

available learning experiences. This paper presents the design and development of a rule-based WhatsApp

chatbot that teaches Object-Oriented Programming (OOP) concepts while itself being implemented with

OOP principles. The system uses Node.js (ES Modules) with Express for routing, MongoDB for persistent

logs, and Redis for lightweight session state. WhatsApp connectivity is provided through Twilio’s

Messaging API; ngrok is used for secure webhook exposure in development. The architecture is modular,

with classes for menu rendering, input parsing, session management, and intent routing. We demonstrate

encapsulation, inheritance, polymorphism, and abstraction throughout the codebase and show that

deterministic, menu-driven conversations are effective for beginner-friendly programming instruction. In

tests on Twilio’s sandbox, the bot achieved sub-250 ms median response time, stable concurrency for 15+

simulated users, and positive qualitative feedback. We discuss limitations and outline extensions including

multilingual support and future NLP-based intent handling.

Keywords- WhatsApp chatbot, Object-Oriented Programming, Twilio, Node.js, Express, MongoDB,

Redis, Educational technology, Rule-based dialog

1. INTRODUCTION

• Messaging applications are a natural medium for educational assistants due to their reach and

familiarity. WhatsApp’s global adoption enables learners to access help without new accounts, apps, or

installations. However, many educational chatbots either rely on opaque NLP pipelines or lack

pedagogical structure, especially for foundational topics such as OOP.

• We develop a WhatsApp chatbot that explains OOP concepts—classes, objects, encapsulation,

inheritance, polymorphism, and abstraction—through short, deterministic responses and a guided menu

flow. Crucially, the bot’s internal design mirrors the concepts it teaches: class-based handlers encapsulate

behaviors, a base handler interface enables polymorphic responses, and shared abstractions isolate

infrastructure (Twilio, persistence) from pedagogy (topic content).

A. Problem Statement and Objectives

• Beginners often struggle to connect abstract OOP concepts to working software. Traditional

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25048681 Volume 16, Issue 4, October-December 2025 2

materials can be static and non-interactive. We therefore design a chatbot that (i) delivers concise,

structured explanations of OOP topics over WhatsApp, (ii) embodies OOP in its internal architecture, (iii)

integrates Twilio for reliable message delivery, and (iv) remains modular and extensible for future NLP

upgrades.

B. Contributions

• A practical OOP-driven architecture for an educational, rule-based chatbot on WhatsApp.

• A clean separation of concerns via class-based handlers, a router, and services (Twilio, persistence,

session), illustrating encapsulation, inheritance, polymorphism, and abstraction.

• An implementation using Node.js/Express, MongoDB, and Redis that achieves low-latency

responses in sandbox, evaluations.

• A reproducible configuration workflow for Twilio WhatsApp sandbox and local development

2. RELATED WORK

Chatbots in education. Prior work shows chatbots can increase engagement by enabling on-demand,

conversational explanations in domains from programming to general STEM. Deterministic, rule-based

flows are attractive for formative instruction where consistency and assessment alignment matter.

WhatsApp and Twilio. WhatsApp does not expose a native DIY chatbot interface; Twilio bridges this

via programmable messaging. Incoming WhatsApp messages hit a Twilio webhook that forwards payload

to the application server; the server’s response is relayed back to the user, enabling near real-time

interaction.

Rule-based vs. NLP bots. Rule-based agents simplify validation and guarantee predictable outputs, while

NLP bots (e.g., based on spaCy/BERT/Dialogflow) enable flexible phrasing and intent recognition at the

cost of training, tuning, and occasional non-determinism. For introductory instruction, our system

prioritizes control and transparency, while remaining extensible for future NLP upgrades.

3. PROBLEM DEFINITION

Learners new to object-oriented programming (OOP) often struggle to connect concise definitions with

working mental models and everyday examples. Existing resources are either static (notes/videos that

don’t adapt) or open-ended AI chatbots that can be inconsistent and difficult to validate in instructional

settings. At the same time, students overwhelmingly spend time on messaging apps, where lightweight,

low-friction learning could happen—but WhatsApp lacks a native, pedagogy-first teaching flow:

Constraints & assumptions

● Platform constraint: WhatsApp messaging via Twilio webhooks (no custom WhatsApp UI).

● Deployment constraint: lightweight Node.js/Express service with simple data stores (e.g., Redis for

session state, MongoDB for logs).

● Pedagogy constraint: deterministic, rule-based responses prioritized over free-form NLP.

● Privacy assumption: no storage of personally identifying content beyond minimal messaging metadata

required for sessioning.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25048681 Volume 16, Issue 4, October-December 2025 3

● Environment assumption: development accessible via secure public endpoint (e.g., tunnel) and

configurable secrets.

Functional requirements

● Present main and sub-menus for OOP topics; accept numeric and keyword selections.

● Deliver concise definition + example per topic; offer Next / Back / Menu navigation.

● Handle unexpected inputs with clear guidance; allow users to re-enter the flow quickly.

● Persist and restore user session context (current topic/step).

● Record timestamped request/response logs.

Non-functional requirements (success criteria)

● Predictability: identical inputs in the same state yield identical outputs.

● Responsiveness: median end-to-end reply under ~250 ms in a development setup.

● Robustness: no crashes under at least ~15 concurrent user sessions; zero unhandled exceptions in

routine tests.

● Maintainability: add new topics by subclassing/registration without modifying existing handlers

(Open/Closed Principle).

● Security: secrets via environment variables; request validation in production; minimal data retention.

Out of scope (initial version)

● Free-form natural-language intent detection, code execution/grading, and multimedia lessons; these

may be added in future iterations.

4. SYSTEM ARCHITECTURE

A. Technology Stack

The backend uses JavaScript (ES Modules) with Node.js and Express for HTTP endpoints, Twilio’s API

for WhatsApp integration, MongoDB (via Mongoose) for structured logging, Redis for in-memory session

state, and ngrok for secure localhost tunneling during development [4]–[6].

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25048681 Volume 16, Issue 4, October-December 2025 4

Fig. 1. Flowchart of Chatbot integration

 B. High-Level Flow

When a user sends a WhatsApp message, Twilio invokes the bot’s webhook with message metadata. The

server normalizes input, routes it via an intent router to a corresponding handler class, and returns a

templated reply. Logs are persisted to MongoDB; Redis caches recent session context (e.g., last menu) for

continuity.

C. OOP Design

The design includes (a) a MessageRouter that dispatches to handlers, (b) a MenuManager that renders

main/sub-menus, (c) a TwilioService that encapsulates messaging I/O, and (d) a SessionStore backed by

Redis. A base Handler defines the interface (canHandle, handle); specialized handlers (e.g.,

InheritanceHandler, EncapsulationHandler) extend it.

● Encapsulation: services wrap external concerns (Twilio, DB, cache)..

● Polymorphism: router invokes handle on the matched handler at runtime.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25048681 Volume 16, Issue 4, October-December 2025 5

● Abstraction: external modules interact through concise interfaces.

Fig. 2. UML Class Diagram of the OOP-Based Chatbot

5. METHODOLOGY

 This section details how the WhatsApp OOP tutor was conceived, engineered, and evaluated. It covers

requirements capture, architecture, message-flow logic, state management, content authoring,

deployment, testing, and metrics—so you can reproduce or extend the system.

A. Requirements Elicitation and Scope

The preprocessing pipeline is an important part in providing consistency in the data and in increasing the

efficiency of learning. Steps include:

● Pedagogical needs: short, deterministic explanations of OOP topics (classes/objects, encapsulation,

inheritance, polymorphism, abstraction) with minimal cognitive load.

● User constraints: learn inside WhatsApp; tolerate typos; resume where they left off.

● System constraints: lightweight backend, simple persistence, fast responses, minimal PII retention.

● Success criteria: predictable outputs (same input → same response), median latency <250 ms (dev),

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25048681 Volume 16, Issue 4, October-December 2025 6

stable with ≥15 concurrent users.

B. System Architecture

● Runtime: Node.js (ES Modules) + Express.

● Messaging: WhatsApp via Twilio Programmable Messaging webhooks.

● State: Redis (per-user session/context).

● Persistence: MongoDB (Mongoose) for message logs and simple analytics.

● Config/Secrets: environment variables; centralized config module.

● Local tunneling (dev): ngrok for public HTTPS to webhook.

Core components (class-oriented):

● MessageHandler (abstract): interface with canHandle(state, input) and respond(context).

● Topic handlers: EncapsulationHandler, InheritanceHandler, PolymorphismHandler,

AbstractionHandler, etc.

● MenuManager: renders menus, maps choices/keywords to handlers, manages “menu/back/help”.

● Router: normalizes input, selects handler (polymorphism), orchestrates response.

● TwilioService: verifies requests (prod), parses inbound payloads, sends outbound messages.

● SessionService: get/set user state in Redis with TTL.

● DbService: asynchronous inserts for logs; backpressure-aware.

● ErrorMiddleware: centralized error capture, classification, and safe fallbacks.

C. Message Lifecycle (End-to-End)

● Inbound: WhatsApp → Twilio → HTTPS POST to /webhook/whatsapp.

● Normalization: lowercase, trim, collapse whitespace; extract keywords and numeric options.

● Context load: fetch user session (state machine node) from Redis.

● Routing: Router queries MenuManager + handlers via canHandle(...).

● Response compose: selected handler returns text (definition, mini-example, next options).

● State update: advance/retain state (e.g., Topic=Encapsulation, Step=Example).

● Persist: async log to MongoDB (user hash, input, output, timestamps, state snapshot).

● Outbound: TwilioService replies to WhatsApp; delivery status optionally recorded.

● Observability: structured log (JSON) with correlation id for tracing

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25048681 Volume 16, Issue 4, October-December 2025 7

D: Conversation State Machine

 States (simplified):

● WELCOME → MAIN_MENU → TOPIC_MENU → TOPIC_EXPLAIN → TOPIC_EXAMPLE →

(NEXT_TOPIC | TOPIC_MENU)

● Global interrupts: HELP, MENU, BACK.

 Transitions:

● Numeric choice 1/2/3… or keyword (e.g., “polymorphism”) advances deterministically.

● Invalid input → FALLBACK (one-line guidance + show valid actions).

● MENU jumps to MAIN_MENU; BACK returns to previous valid state.

 Session policy:

● Redis key: sess:<user_hash>; fields: state, topic, step, updated_at.

● TTL (e.g., 24 h) to evict stale sessions and minimize data retention.

 E. Content Authoring and Delivery

● Content blocks per topic: {definition, one-liner, micro-example, analogy, next-hint}.

● Authoring format: small JSON/TS objects co-located with handlers or loaded from a content/ directory.

● Determinism: each topic returns the same text for the same step; no randomization.

F. Input Handling and Intent Resolution

● Accept numbers (menu indices) and keywords (topic names/synonyms).

● Keyword map includes common misspellings (e.g., “poly morphism”).

● Priority: if in TOPIC_MENU, keywords map to visible topics; otherwise prompt to type menu.

● Ambiguity: prefer current state’s valid transitions; else show minimal disambiguation.

G. Error Handling and Fallbacks

● User errors: respond with a friendly single-line tip + valid options.

● System errors: generic apology + preserve state; log stack and classification (Twilio, Redis, Mongo,

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25048681 Volume 16, Issue 4, October-December 2025 8

App).

● Retries: limited retry on transient Redis/Mongo ops; circuit breaker to avoid cascading failures.

● Time-outs: graceful time-out handling with idempotent webhook processing.

H. Data Model and Persistence

MongoDB collections:

● message_logs: {_id, user_hash, direction, text, state_snapshot, ts}

● events (optional): health pings, delivery receipts.

Indexes: {user_hash, ts} for session traces; TTL index (optional) for retention policy.

Privacy: store a salted/hashed user identifier; no message content beyond instructional necessity if policy

requires.

I. Security and Compliance

● Secrets via environment variables; no hard-coded tokens.

● Validate Twilio request signatures (production).

● HTTPS everywhere; restrict IPs if hosting allows.

● Least-privilege database users; parameterized queries.

● Data retention window aligned with institutional policy; document consent if storing transcripts.

J. Deployment Workflow

● Dev: Node server + ngrok URL → configure Twilio Sandbox webhook.

● Staging/Prod: public HTTPS (reverse proxy), environment-specific Redis/Mongo, autoscaling app

container.

● Config bundles: .env.<env> with CI/CD to inject secrets.

● Observability: structured logs, minimal dashboard: requests/min, median/95p latency, error rate.

K. Testing Methodology

● Unit tests: handlers, router, session service, content selector.

● Integration tests: end-to-end webhook flows with mocked Twilio payloads.

● Load tests: synthetic users (≥15 concurrent), measure throughput and latency under steady load and

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25048681 Volume 16, Issue 4, October-December 2025 9

spikes.

● Resilience tests: induce Redis/Mongo failures; verify fallbacks and recovery.

● Usability scripts: predefined learner journeys (beginner, lost user, returning user).

● Regression suite: snapshot expected responses per state to guarantee determinism.

Key metrics captured:

● Median & 95p response time (app-only and end-to-end).

● Error rates by class (4xx user-flow vs 5xx system).

● Session completion rate (from MAIN_MENU → at least one topic example).

● Fallback frequency (proxy for UX friction).

L. Risks and Mitigations

● Rigid feel (rule-based): add synonyms and gentle prompts; future intent detection.

● Scaling state store: size/TTL tuning; move to managed Redis in production.

● Webhook exposure (dev): rotate ngrok URLs; never reuse secrets across environments.

● Content drift: keep content blocks versioned; review for consistency across topics.

M. Ethical and Accessibility Considerations

● Keep language simple; offer “analogy” for each concept.

● Provide quick “repeat” and “example” options; minimize cognitive load.

● Avoid collecting PII; communicate retention and opt-out where applicable.

Fig. 3. Service

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25048681 Volume 16, Issue 4, October-December 2025 10

6. IMPLEMENTATION

I.Twilio Integration and Webhook

We configure Twilio’s WhatsApp sandbox, set the webhook URL to an ngrok HTTPS endpoint, and

accept POST requests with message bodies. The server replies with XML/JSON per Twilio’s API

expectations [1].

II.Menu-Driven Dialog

On first contact, the bot greets the user and presents options: OOP Concepts, Project Info, and Help.

Selecting “OOP Concepts” reveals topics (Class, Object, Encapsulation, Inheritance, Polymorphism,

Abstraction). Users can respond via numbers or keywords. A fallback handler returns guidance for

unrecognized input and a link back to the main menu.

III.Persistence and Sessions

 MongoDB stores logs with user ID, message, response, and timestamps for analytics. Redis tracks

a small context (e.g., last menu node) to resume flows seamlessly.

7. EVALUATION

We evaluated functionality (greetings, menu navigation, topic responses, fallback), persistence

(MongoDB inserts), and session continuity (Redis). In sandbox tests with multiple sim- ulated users, we

observed average response time 180–220 ms, stable operation for 15+ concurrent conversations, and no

crashes during multi-hour sessions. Table I summarizes key metrics.

Qualitative feedback indicated that deterministic, concise explanations aid recall for beginners, while the

menu reduces ambiguity.

Fig. 4. Example Menu Driven Chat Flow

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25048681 Volume 16, Issue 4, October-December 2025 11

Fig. 5. User Feedback and Performance Analysis

8. DISCUSSION AND LIMITATIONS

 This section details how the WhatsApp OOP tutor was conceived, engineered, and evaluated. It covers

requirements capture, architecture, message-flow logic, state management, content authoring,

deployment, testing, and metrics—so you can reproduce or extend the system.

9. RESULT

A. Overall Accuracy

● ResNet50 (default): 91.78%

● VGG19 (default): 89.12%

● Conv2D (default): 78.65%

● ResNet50 (tuned): Dropped to 41.92% due to improper tuning.

B. Class-wise Performance

The confusion matrix revealed high accuracy for DR and AMD detection but lower recall for Glaucoma,

attributed to dataset imbalance. Cataract was sometimes confused with normal images due to overlapping

visual features.

C. Effect of Preprocessing

Data augmentation improved robustness by reducing overfitting. Normalization helped accelerate

convergence. Without augmentation, validation accuracy dropped by nearly 6%.

D. Hyperparameter Sensitivity

Results indicated that improper tuning (e.g., very high learning rate, insufficient dropout) led to unstable

gradients and reduced accuracy. This highlights the necessity for careful hyperparameter search (grid

search, Bayesian optimization).

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25048681 Volume 16, Issue 4, October-December 2025 12

E. Clinical Implications

Automated detection systems can serve as screening tools in rural healthcare centers where

ophthalmologists are scarce. Integration into tele-ophthalmology platforms could allow early referral and

reduce the risk of preventable blindness. However, models must be explainable to gain clinician trust.

Tools like Grad-CAM can highlight image regions influencing predictions.

10. CONCLUSION

This paper presented a comparative study of CNN architectures for automated ophthalmic disease

detection using the ODIR-5K dataset. ResNet50 achieved the best performance, demonstrating the

effectiveness of transfer learning in retinal disease classification. However, results also revealed

sensitivity to hyperparameter tuning and challenges with imbalanced data. Future work will focus on:

● Applying imbalance-aware techniques such as focal loss, class reweighting, and synthetic data

augmentation.

● Exploring attention-based architectures for improved interpretability.

● Integrating multi-modal data (fundus + OCT images).

● Testing models in real-world telemedicine systems to evaluate clinical usability.

By addressing these challenges, automated ophthalmic disease detection systems have the potential to

significantly reduce the burden of blindness worldwide.

REFERENCES

1. V. Gulshan, et al., “Development and validation of a deep learning algorithm for detection of

diabetic retinopathy in retinal fundus photographs,” JAMA, vol. 316, no. 22, pp. 2402–2410, 2016.

2. D. S. W. Ting, et al., “Development and validation of a deep learning system for diabetic retinopathy

and related eye diseases using retinal images from multi-ethnic populations with diabetes,” JAMA,

vol. 318, no. 22, pp. 2211–2223, 2017.

3. D. S. Kermany, et al., “Identifying medical diagnoses and treatable diseases by image-based deep

learning,” Cell, vol. 172, no. 5, pp. 1122–1131.e9, 2018.

4. Z. Li, Y. He, and L. Keel, “Applications of deep learning in ophthalmology: A review,” Eye and

Vision, vol. 7, no. 1, pp. 1–13, 2020.

5. World Health Organization, World Report on Vision, Geneva: WHO, 2019.

6. S. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, “Convolutional neural networks

for diabetic retinopathy,” Procedia Computer Science, vol. 90, pp. 200–205, 2016.

7. J. De Fauw, et al., “Clinically applicable deep learning for diagnosis and referral in retinal disease,”

Nature Medicine, vol. 24, no. 9, pp. 1342–1350, 2018.

8. L. Shen, L. Lin, and S. Wu, “Deep learning-based automatic diagnosis of diabetic retinopathy,”

Diabetes Therapy, vol. 11, no. 3, pp. 747–758, 2020.

9. A. Ghosh, S. Sufian, F. Sultana, A. Chakrabarti, and D. De, “Fundus image analysis for diabetic

retinopathy detection using deep learning,” International Journal of Computer Applications, vol.

https://www.ijsat.org/

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 ● Website: www.ijsat.org ● Email: editor@ijsat.org

IJSAT25048681 Volume 16, Issue 4, October-December 2025 13

178, no. 8, pp. 41–46, 2019.

10. T. Chen, Y. Lu, M. Zheng, and L. Zheng, “A hybrid attention mechanism for automatic diabetic

retinopathy classification,” IEEE Access, vol. 8, pp. 167909–167918, 2020.

11. M. Sahlsten, et al., “Deep learning fundus image analysis for diabetic retinopathy and macular

edema grading,” Scientific Reports, vol. 9, no. 1, p. 10750, 2019.

12. R. Rajalakshmi, et al., “Validation of a deep learning algorithm for detection of diabetic retinopathy

in retinal fundus photographs,” Indian Journal of Ophthalmology, vol. 66, no. 9, pp. 1151–1156,

2018.

https://www.ijsat.org/

