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We study a deterministic 2D grid navigation task with “hot–cold” sign feedback. The agent observes 

whether its last move decreased or increased the Manhattan distance to a hidden goal. The observation is 

non-Markov. A worst-case optimal strategy reaches the goal in at most D0 + 6 steps, where D0 is the start–

goal Manhattan distance. We evaluate Proximal Policy Optimization with an LSTM backbone (Recurrent 

PPO). The learned policy approaches the theoretical bound on many episodes but shows gaps due to axis 

misidentification and turn dithering. The task provides a minimal, interpretable benchmark for 

reinforcement learning under partial observability. 

1. Introduction 

Many navigation settings are partially observable. In hot–cold search, the agent receives a binary sign 

after each action: +1 if the last move reduced the distance to the goal and −1 otherwise. The goal location 

is hidden. Despite the sparse signal, there exists a simple worst-case optimal strategy: probe both axes, 

then march to the goal, which takes at most D0 + 6 steps. 

Feed-forward PPO struggles because the state is not Markov. The agent must retain a memory of actions 

and signs to infer hidden goal directions. We deploy Recurrent PPO (PPO–LSTM) and measure how 

closely it matches the theoretical upper bound. 

Problem Formulation 

Grid and goal. The environment is a W× H grid. At episode start, the agent is at s = (xs, ys); the goal is 

at g = (xg, yg). Define Manhattan distance 

D0 = |xs − xg| + |ys − yg|. 

Actions and dynamics. The action set is {up, right, down, left}. Transitions are deterministic with 

clamping at borders. The episode ends on reaching the goal or on a step limit. 

Observation. At time t the agent receives 

ot = [ signt,  x̂t,  ŷt,  onehot(at−1) ], 
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where signt ∈ {−1,+1} reports whether the previous move reduced the true Manhattan distance, 

(x̂t, ŷt) ∈ [−1,1]2 are normalized coordinates, and onehot(at−1) ∈ {0,1}4 encodes the previous action. 

Reward. The per-step reward equals signt. A small terminal bonus is added on success. During training, 

episodes may be truncated after a fixed number of consecutive non-improving steps to avoid endless 

wandering. Evaluation uses deterministic policies without shaping. 

Baseline policy. A worst-case optimal deterministic strategy: (i) probe one axis; if sign is negative, reverse 

once; (ii) march along that axis until overshoot, then correct by one step; (iii) repeat for the remaining 

axis. If both axes are nonzero, the worst-case steps are D0 + 6; if only one axis is nonzero, D0 + 2. 

Reinforcement Learning Setup 

We employ Recurrent PPO with an LSTM backbone (MlpLstmPolicy) to allow memory over action–

feedback sequences. Policy and value networks consist of two fully connected layers (64 units each), 

followed by a single LSTM layer with hidden size 128. Eight parallel environments stabilize updates. Key 

hyperparameters include learning rate 3 × 10−4, n_steps = 512, batch size 2048, clip range 0.15, γ =

0.99, λ = 0.95, target KL 0.03, entropy coefficient 0.01, and value coefficient 0.3. 

PPO training statistics (good runs). 

Metric Typical Range 

Approx. KL 0.015–0.025 

Clip fraction 0.10–0.20 

Entropy loss -1.3 → -0.6 

Explained variance 0.6–0.8 

Results 

The recurrent policy approaches the theoretical bound in many episodes. Success rates exceed 90%; 

median gaps to the bound are ≈ 4 steps. Failure cases include axis misidentification, dithering near turns, 

and rare loops. 

Example evaluation episodes. Ideal = D0 + 6 for 2D cases. 

Ep Start Goal D0 Ideal Steps Gap 

165 (12,3) (3,9) 15 21 25 +4 

166 (13,16) (9,20) 8 14 28 +14 

169 (4,4) (6,7) 5 11 21 +10 

170 (18,16) (10,12) 12 18 500 Timeout 

174 (16,19) (7,5) 23 29 25 -4 
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Analysis 

The observation is not Markov; single sign feedback conflates multiple hidden goal positions. Recurrent 

PPO learns to integrate sequences, but failures reveal where this integration is incomplete. Dithering 

dominates the gap. Early truncation reduces loops but not dithering. 

Related Work 

Hot–cold navigation tasks highlight memory and inference from minimal feedback. POMDPs require 

history integration; recurrent networks such as DRQN and PPO–LSTM address this. Our environment 

isolates partial observability without perceptual confounds. 

Conclusion 

We presented a deterministic hot–cold navigation task with a known optimal bound. PPO–LSTM learns 

policies approaching the bound but exhibits characteristic failures. The environment provides a clean 

benchmark for studying partial observability in reinforcement learning, focusing on memory and 

reasoning rather than perception. Future work includes richer memory architectures and hierarchical 

option discovery. 
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