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1. Introduction

Fixed point theory, pioneered by Brouwer in 1912, has had profound influence due to its applications in
diverse areas such as optimization theory, differential equations, variational inequalities, complementary
problems, equilibrium theory, game theory, and economics. The field was further advanced in 1922
when Banach [2] established the contraction principle. Building on these foundations, many scholars
have studied different contraction and contractive mappings to investigate fixed point and common fixed
point results within metric spaces and generalized metric spaces. which can be explored in ([7]-[13]).

In 1984, Sessa [21], M. S. Khan, and M. Swalech [13] expanded the scope of metric fixed point theory
by introducing a control function, known as an altering distance function. More recently, J. R. Morales
and E. M. Rojas [20] derived fixed point theorems using altering distance functions through rational
expressions, while Manish Sharma and A. S. Saluja [17] also developed fixed point theorems based on
altering distance functions.

The concept of a soft set was introduced by Molodtsov [19] in 1999 as a new mathematical tool for
addressing uncertainty. A soft set can be viewed as a parameterized collection that provides approximate
descriptions of objects. Research in soft set theory progressed rapidly after Maji et al. [15,16] defined
several operations on soft sets. Over the years, soft set theory has continued to develop and has shown
promising applications in various fields. Das and Samanta [5,6] introduced the concepts of soft
elements, soft real numbers, and soft points, along with their key properties. Building on these
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foundations, they proposed the notion of a soft metric [6]. Wardowski [22] later defined soft mappings
and established several fixed point results.Moreover, Abbas et al. [1] introduced soft contraction
mappings based on the theory of soft elements in soft metric spaces and investigated their fixed points,
deriving several significant results. Cigdem Gunduz Aras et al. [3,4] proposed the concept of soft S-
metric spaces and examined their key properties. They further established corresponding soft fixed
point theorems.

In the next section we focuses on the key definitions and properties needed to understand the results
presented in this paper. Additional details and explanations can be found in the cited references.

2. Prilimeries

Definition 2.1.[19]: “A pair (F,E) is called a soft set over a given universal set X, if and only if F is a
mapping from a set of parameters E (each parameter could be a word or a sentence) into the power set of
X denoted by P(X). Thatis, F: E — P(X). Clearly, a soft set over X is a parameterized family of subsets
of the given universe X.”

Example 2.2.[19] “Suppose a person wants to buy a television. So let X denotes the number of
televisions which he saw in different showrooms as X = {h1, hz, hs, hs, hs, he}. Let E is the set of
parameters where E = {e1, €2, €3, €s, €5} = {android, branded, 55 inches, full HD, refresh rate}. Suppose
that F(ey) = {hy, hy, by, hs}, F(ep) = {hy, h3, hs}, F(e3) = {hy, hs}, F(es) = {hy, hs, hs}, F(es) =
{hi, hs, he}, then the soft set (F, E) can be looked as a collection of approximations as below :

(F,E) = {android = {hy, h,, hy, hs},branded = {h4, h3, hs}, 55 inches = {h;, hs},
full HD = {h4, hs3, hs}, refresh rate = {hy, hs, he}}.”

Definition 2.3.[16]: “A soft set (F,E) over X is said to be a null soft set denoted by ®, if for all
e € E,F(e) =null set ¢.”

Definition 2.4.[16]: “A soft set (F,E) over X is said to be an absolute soft set denoted by X if for all
ecE,F(e)=X.

Definition 2.5.[5]: “Let R be the set of real numbers and B(R) the collection of all non-empty bounded
subsets of R and E be taken as a set of parameters. Then a mapping F: E — B(R) is called a soft real set. If
a real soft set is a singleton soft set, it will be called a soft real number and denoted by #, §, f etc 0 and
T are the soft real numbers where 0(e) = 0, 1(e) = 1, for all e € E respectively.”

Definition 2.6.[S]: “Let (X, S, E) be a soft S-metric space. A map (T, ¢): (X,S,E) - (X,S,E) is said to

be a soft contraction mapping if there exists a soft real number k € R(E), 0 < k < 1 (where R(E)
denotes the soft real number set) such that

S((T, ) (@a), (T, 9) (@), (T, @) (Bp)) < k S(8, Ua, D),
for all @, D, € SP(X).”

In 2018, Aras et al. [3] introduced the concept of soft S-metric spaces and also discussed its important
properties which are as follows:
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“Let X be an absolute soft set, E be a non-empty set of parameters and SP(X) be the collection of all
soft points of X. Let R(E)* denotes the set of all non-negative soft real numbers.”

Definition 2.7.[3] “A soft S-metric on X is a mapping § : SP(X) x SP(X) x SP(X) - R(E)* which
satisfies the following conditions:

(S1) S(@g, Dy, W) = 0;
(S,) S(iig, Dy, w,) = 0, ifand only if i, = D, = W,;
(5_3) S(aa: ﬁb) WC) < S(ﬁa: ﬁa’ fd) + S(ﬁbl ﬁbl fd) + S(WCI WC! fd)

Forall 4, Dy, W, tq € SP(X), then the soft set X with a soft S-metric is called soft S-metric space and
denoted by (X, S,E).”

Lemma 2.8.[3] “Let (X, S, E) is a soft S-metric space. Then we have
‘S(ﬁai aa' 1’J\b) = ‘S(ﬁb' 1’J\bi aa)-”
Definition 2.9.[3] “A soft sequence {@} } in (X, S, E) converges to 9, if and only if S(a% ,a% ,9,) -
0 as n - o and we denote this by lim @ = 7;,.”
n—oo
Definition 2.10.[3] “A soft sequence {@ } in (X,S,E) is called a Cauchy sequence if for & > 0, there

exists ng € N such that S(a% , a5 ,am ) < & foreachm,n > n,.”

Definition 2.11.[3] “A soft S-metric space (J? ,S, E) is said to be complete if every Cauchy sequence is
convergent.”

Definition 2.12.[4] “Let (X,S,E) and (Y,S",E') be two soft S-metric spaces. The mapping
fo: (X,8,E) > (Y,8',E’) is a soft mapping, where f: X - Yand ¢ : E — E’ are two mappings.”

Definition 2.13.[4] “Let f,:(X,S,E) - (Y,S',E") be a soft mapping from soft S-metric space
(X, s, E) to a soft S-metric space (Y, S’, E'). Then f,, is soft continuous at a soft point fi,e SP(X) if and
only if £,({a% }) = f,(0).”

Definition 2.14.[4] “Let (X, S, E) be a soft S-metric space. A map f,,: (X,S,E) - (X,S,E) is said to
be a soft contraction mapping if there exists a soft real number k e R(E), 0 < k < 1 (where R(E)
denotes the soft real number set) such that

S (f(p(aa)rf(p(aa)rf(p(ﬁb)) = ]E S(ﬁa’aw ﬁb);

for all 4, D, € SP(X).”

Definition 2.15.[13] “A function { : Rt - R* is called an altering distance function if the following
property is satisfied:

(1) Y(0) =0,
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(©,) W is monotonically non-decreasing function,
(©3) Y is a continuous function,
By W we denote the set of all altering distance functions.”

In 2018, Elif G. et al. [9] establish the following definition of soft altering distance function in soft
metric space.

Definition 2.16.[9] “A soft function { : R(E)" — R(E)" is called a soft altering distance function if
satisfies the following property:

() W(0) =0,
(©,) W is monotonically non-decreasing function,
(®3) Y is a sequentially continuous function i.e., ig, — i, then Y (iig,) = Y(d,).”

Theorem 2.17.[9] “Let (X, d) be a complete metric space. Let { : R(E)* — R(E)* be a soft altering
distance function and T: X — X be a soft mapping which satisfies the following inequality:

V(d(T@g), T(h,)) < ¢ W(d(iy, D)),
for some 0 < ¢ < T and @y, D€ SP(X). Then T has a unique soft fixed point.”
3. Main Result

Theorem 3.1: Let (J? S,E) be a complete soft S-metric space. Let { : R(E)* —» R(E)* be a soft
altering distance function with yi(x) # 0 for all x # 0 and £, be soft self mapping on (X, S, E)) which
satisfies the following inequality:

S (fo(@ad, fo(@a), fio(0)) < S (8, U, D) — W(S (B U, D)), 3.1)
for all 4, D, € SP(X). Then £, has a unique soft fixed point in X.
Proof: Let i e SP ()? ) be an arbitrary point and let {ﬁgn} be a soft sequence defined as follows
artl = f(ar ) = £, (), &, = S(ar ,an ,antl) foreachn € N U {0}.

We first prove that f;, has a soft fixed point in (X, S, E'). We may assume that £, > 0 foreachn € Nu
{0}. From the contractive condition (3.1), we obtain

S (foan), fo@n,). fo(antt)) < S(as, az, amtt) — v (s(ag, a2, a5t))

fn+1 < fn - lIj(i-n) < fn- (32)
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Since {t,} is a decreasing sequence of soft real numbers. Hence {Z,;} has a limit point. We put lim £, =
n—-0oo

t and suppose £ > 0. Since Y is non decreasing, £,, = £ implies that Y(£,) = ¢ (£) > 0. By (3.2) we
have &4 < £, — V(D).

Thus, £,y < £, — M Y(f) is a contradiction for M large enough. So £ = 0. Therefore, {f,,} converges
to 0. As in above theorem it is easy to show that {1z} is a Cauchy sequence in (f,S, E). By
completeness of (X, S, E), {a% } converges to some soft point ...

Now, we show that W, is a fixed soft point of f,,. If we substitute @1, = 47", and 9, = W, in (3.1), we
obtain

SUp (@1, fo (82, fo (W) < S(aft, ai, we) — w(S(ant, agt, w.) )
SR, %, fo () < S(ait, ant, we) — ¢ (s(an, a5, we)).

Taking limit as n — oo and using the continuity of s and f,,, we get

S (Wc» We, f(p(wc)) < S(We, W, W) — LIJ(S(WC' we, 171\/c)) = ‘b(ﬁ) = 6’

which implies s (W, W, f, (W,)) = 0 thatis f,, (W.) = W,.

To prove the uniqueness, we assume that w, and 7; be two different fixed soft point of f,,. Then from
(3.1), we obtain that

S (foe), fo (W), fi (7)) < S(Wey Wi Fa) = W(S Wi B, 7))
S(We, We, Tg) < SWe, We, Fq) — W(S (W, W, 7).
Which implies y(S (W, ., 7)) < 0.
Thus, Y(S (W, w,, 7)) = 0 and hence we get w, = 7.
Therefore, f,, has a soft unique fixed point.
Here completes the proof.

Note: If we consider Y (£) = k.t where 0 < k < 1, then the above theorem reduces to contraction
condition

S(fq)(aa): f(p(ﬁa)» f(p(ﬁb)) < C_‘S(ﬁa, aa; 9b),
for some 0 < ¢ < 1, which is given by Aras [4].

Theorem 3.2: Let (f S, E) be a complete soft S-metric space. Let §5,d : R(E)* - R(E)* be the two
soft altering distance function with Ys(%) # 0 and (%) # 0 for all ¥ # 0 and f,, be soft self mapping on
(X, S, E) which satisfies the following inequality:

lIJ(S(f(p(ﬁa), f(p(ﬁa): f(p(ﬁb))) < lP(S(ﬁa,ﬁa, ﬁb)) - (I)(S(ﬁa:ﬁafﬁb))' (3-3)
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for all 4, D, € SP(X). Then £, has a unique soft fixed point in X.
Proof: Let 2 e SP(X) and let {42 } be a soft sequence defined as follows

artl = fo(ar ) = £, (), &, = S(aR,,an ,antl) foreachn € N U {0}.

an+1

We first prove that f;, has a soft fixed point in (f S, E). We may assume that £, > 0 for eachn € N U
{0}. From the contractive condition (3.3), we obtain

W (s(ams, aml, am2)) <y (s(uan az,, ﬁm)) ~ ¢( (az,az, ﬁz,tfl))

lIJ(£11+1) = qj(fn) - ¢(£n) < Lp(fn) (3-4)

Since y is non-decreasing function, {£,,} is a decreasing sequence of soft real numbers. Hence {f,,} has a
limit point. We put lim £, =  and suppose £ > 0. Letting n — oo in (3.4) and using continuity of s, we
n—->oo

obtain y(£,) < Y () — ¢ (£) < Y (£) which is a contradiction. So £ = 0.
Therefore, {£,,} converges to 0.

Now, we will prove that {#i;_} is a Cauchy sequence in (J? S, E) Suppose that {7z, } is not a Cauchy
sequence which means that there is a constant € > 0 and two subsequence {A”" } and {Am" } of {iig }
ng

such that for every neNuU{0}, we find that n, >m,>n, § (uank,aggk,uamk) >€ and

S(ﬁ”" Loamet it ) < €. For each n > 0, we put

ank 1’ ank 1'

B, =S (alk ,alk ,ﬁm" Then we have
ank an,’ “am

ES S(/\nk ﬁnk /\mk ) < ZS(Ankk ﬁle ,ﬁnk_l ) +S(Ank 1 ﬁnk 1 ﬁmk )

ank ank’ ank ank—l ank 1’ ank 1’ amk
<2t, ,+€
Since {£,,} converges to 0, we obtain {B,,} converges to E.

AN+l ~Np+l ~mp+1
Anp+1’ " Angp+1’ TAmy+1

Similarly, we can show that S( ) converges to €.

From the hypothesis, we deduce
~ ~ ~m ~Nk AN ~Mg ~Nk AN ~Mg
b (SCho@ne ) fo@ne ) fp(ame )) < (s (am ane ame ) - o (s (ane ame am )
/\nk+1 /\nk+1 /\mk+1 /\nk /\nk ~Mp _ ANk ANk ~Mg
( ( ank+1’ ank+1' amk+1 ( ank ank' amk)> q) (5 (uank' uank’ uamk)>

Letting k — oo, we obtain that (€) < ¢ (€) — $(€) < Y (€), which is contradiction. Hence, {fig } is
a Cauchy sequence. By completeness of (f S, E), {11z, } converges to some soft point ..
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Now, we show that W, is a fixed soft point of f,. If we substitute @i, = ﬁ{;;_ll and U, = w, in (3.3), we
obtain

W(S (@) o (BB, o (We)) < W (S(ant ant, ) ) — o (S(ant, an, )
W(S@2, k., fo(@))) < W (s(an a5, o)) — o (s(an, an, w)).

Taking limit as n — oo and using the continuity of y and £, we get

b (5 (Pe P £ (00))) < W(S e, B 90)) = b(S (P, P, ) = D,

which implies § (wc,wc, f(p(wc)) = 0 that is £, (W,) = W,

To prove the uniqueness, we assume that w, and 7; be two different fixed soft point of f,,. Then from
(3.3), we obtain that

W (5 (R @0, fo (B0, £ (7)) < W(S @, Bes 7)) = H(S (e, P, 7)
lp(S(Wc, Wcr f'd)) < LD(S(WC, WC' f'd)) - (I)(‘S(WC' WC' f‘d))
Which implies ¢(S (W, W, 73)) < 0. Thus, (S (W, W, 7)) = 0 and hence we get i, = 7.
Therefore, f,, has a soft unique fixed point.

Note: In Theorem 3.2, if we particularly take ¢(t) = (1 —k) Y(£), for all £ >0 where 0 <k <
1 then we obtain the result of Aras ]. Again, by taking y(t) = t for all £ > 0, in Theorem 3.2, we obtain
the result of Theorem 3.1.

Theorem 3.3: Let (X,S,E) be a complete soft S-metric space. Lety € ¥ and let f,: (X,S,E) -
(X, S, E) be a soft self mapping which satisfies the following condition:

Y {S (fo (@), £ (@), £, (0) )} < @ max{S (£, @), £ (@), Ba), S (fp (B1), £ (), )}

+.B l/) max{é‘(f(p (aa)' f(p (ﬁa)' 1’7\b)' S(f(p (ﬁb): f(p (ﬁb)' 1,7\b)}

+y ¥ max{S(f,(0a), £, (0a), D), S (f,, (Pn), £, (Dp), W)},
(3.5)
for all 4, Dye SP(X) with @, # D), and for some a, B,y > 0 with 3a + B + 3y < 1 then, f,, has a

unique soft fixed point w, € SP()? ) and moreover for each soft point i, we have lim f(p" i, = w,.

n—-oo

Proof: Let 2 e SP(X) be an arbitrary point and {42 } be a sequence defined as follows
antl = f(ar ) = £,"(ag,), for each n > 0. Then from (3.5) we obtain
pis (g, 2a, 1y}

IJSAT25048824 Volume 16, Issue 4, October-December 2025 7



https://www.ijsat.org/

IJSAT

_T_ International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org
w

= {5 (fo(at2) fo(at2). fo(22))]}

< aypmax{S(f,(an2), fo(an2), an2 ), s (fo (AR, fo(az,). a2}
+5 p max{S (fo (252, fo (03,2, 03, ). S (fo(23,). fo (83,), 02, )}

+y ¥ max(S (fo (45,2, fp(882,), 08, ), S (fy (22,), foo (82, 2872}

< ap max{s(ag a2, a5 ), s(anL, and ant )}

an+1’ uan+1’

+ﬁ l/) maX{S(ag’n, ﬁgn; ag'n); 5(713:31; ﬁg;;ll; ﬁgn)}

+y l/) max{g(ﬁgn’ agn' ﬁgn)’ S(ﬁg:jl' ﬁg:jl’ ﬁgr:—ll)}

sa 1/)5(1’13;_11, ﬁg:fv ﬁfrll;—l1) + ﬁ 1/;5(1’12;11, ﬁ‘rll;-lﬂ ﬁgn) + 14 lp(ﬁg;-ll’ ﬁg:+11' ﬁg;_ll
sa l/){2‘5’({'13:4-11’ ﬁg;-lﬂ ﬁ(rlln) + ‘S(ﬁ(rlln’ ﬁgn’ a‘rll;—l1 } + B 1/)5(1’12:4_11, ag:+11' afrlln)
+y pl2s (@, dal, ) + S84, i, 26,0}

which implies that

lp{g(ﬁgn’ ﬁgn' ﬁg:+11)} = (#) S(ﬁg;—ll’ ﬁg;_ll, ﬁgn)
Thus, we have
1)[){5(&311:‘&271’&2:31)} = ié 1!){5(1’12;_11, ag;_ll’ ﬁgn)} Where ié = 1—251-;—2)/
S ];2 1/){5(1’13;_22, ﬁg;_zz, ﬁg;—l1)}
lp{S(ﬁgn, ﬁgn’ ﬁg:+11)} S ]'En lp{g(ﬁgo’ ago’ ﬁgh)} (36)

Since 0 < k < 1, from (4.3.9) we obtain lim yis(az ,an agtl )} =0.
From the fact that 1 € ¥, we have lim s(a7 , a7 , 4zt ) = 0. (3.7)
n—-oo

Now, we will prove that {@% } is a Cauchy sequence in (X, S, E). Suppose that {47 } is not a Cauchy

sequence which means that there is a constant &, > 0 and two subsequence {ag;;k} and {a;’:;k} of {iig }

such that for every n € Nu{0}, we find that n, >m; > n, s(aggkaggka;”gk) > & and

s (ank—l gl pmi ) < &. For each n > 0, Then we have

ank—l’ ank—l’ amk

— ANE ANk ~AMg ANk ANk ~ANg—1 ~ANg—1 ~np—1 ~myg
< <
€0 <S9S (uank,uank,uamk) <238 (uank'uank'uank-1) +S (uank-1'uank-1'uamk

Taking limit as n — oo, from (3.7) we obtain
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J— ~Np ~Ng ~Mp j—
€ <SS (uank,uank,uamk) < €,

which implies that

lim S (d,¢ , 4% ,4,% ) = & (3.8)
ny’ 0

)
n-oo, Ang’ ~Amy

Similarly, we can show that

AN+l Anp+l ~mp+1 — . AN ~N ~mp+1 —
lim S( T P ) =& and lim § (ua’rjk,u kod, . ) =& (3.9)
n—-o0o

n-oo an +17 TAng+1’ TAmp+1 Ang’ “Amp+1

From the hypothesis, we deduce

ljJ(S(f(p(ﬁ ), f(p(ﬁank) f‘P(A‘Tlnrr,:k )

< aypmax{s (£, (a2 ). £, (222 ), “ng),S(ﬁp(ﬁinjk),fw(ﬁﬁnﬁk),ﬁﬁﬁk)}
+6 ymax{s (f, (221, ) fo (25,
+ywmaxs (£ (a7, ) o (221,

AN+l ~ng+l ~ng ~Mg+l ~mp+1l ~ng
<
sa lp max {5 (ua‘l’lk+1’ uank+1’ uank ’ S uamk+1’ uamk+1’ uank

~ANgt+l ~ngp+l ~mg ~Mg+l ~mip+1l ~my
+ﬁlpmax{5 (uank+1’uank+1’uamk ’5 uamk+1’ amk+1' amk

~ANgt+l ~Ngp+l ~m ~Mg+l ~mp+1l ~n
+ylpmax{5(u" Ugx u"),é‘(u" U, ~ u")}

ank+1’ ank+1' amk amk+1’ amk+1’ ank

Using (3.7), (3.8) and (3.9) we obtain
AN+l ~np+l ~mp+1
1,[)(E0) - hm l'I’I< ( a§k+1’uar’§k+1’uan’:k+1))
~Mp+l ~Mmp+1l ~ng AN+l N+l ~~my
= “,ll_r)ﬂlow{( amk+1’uamk+1’ ank)} +'8111_I)I(}o¢{ ( ank+1’uank+1'uamk)}

+y 1im¢{max{s (ank“ et amk) S(ﬁm"+1 gl gk )}}

L any 41 Yan 11 Yam, Amy+1’ Yam, 417 Yan,
< (a+B+v)Y(E).

Since €, is arbitrary, we get

Y(E) < (¥ + B+ 8)Y(ey),

as (y + B +6) € (0,1), thus we get a contradiction, then {1z, } is a Cauchy sequence in a complete

metric space (X, S, E). Thus there exist a soft point W, such that lim 4% = ..

n—-oo
Again taking i, = ti;, and D, = W, in (3.5) we get
Y {S(ad 2ar fo (W)}
= IIJ{S (fcp(uan) f(p(uan) f(p(Wc))}
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sa l/) maX{S(f(P (ﬁgn)' f‘P (agn)’ ﬁgn)’ 'S(f(P (W(;);f(p (WC)’ ﬁgn)}
+B8 Y max{S (fo (25,), fo (2,), W), S (fo (We), fip (W), We )}

+y ¥ max{S(fo (8, ). fo (82,) We). S (fo (e, fip (W), 87, )}

< ayp max{S(tg;),, 47, 15, ), S (fo (W), fo (We), g, )}
+B yp max{S (AL, AmFL, W), S (fo (W), fp (W), W)}
+y P max{S (L, AL, W), S (fp (W), fp W), 12, )},
limy {S(aL L, 8L o (0)} = lim S (£ (85,), £ (85, £o(0))
a (S (foWe), fio We), W)} + B WS (fio (We, fip (W), W)}
+y YIS (fip (W), fio (W), e )}
= P {S(We, We, fp (W)} < (& + B+ VIP{S (fip (W), fip (W), W)}

since @ + f +y < I, then v { (@, @, £, (@) )} = 0 = § (@, @, £, (@) ) = 0.

IA

Thus, f,(w.) = W,. Therefore, w, is a fixed soft point of f,.
Now we are going to establish the uniqueness of soft fixed point.
For that let us suppose that W, and £, be two soft fixed point of f,, with W, # ;.
Taking 1, = W, and ¥, = t, in (3.5) we get
Y {S (W, W, E)} = ¥ {8 (o (W), fio (W), fop(Ea) )}

< a p max{S(f, (W), fo(We), We), S (fo (Ea), fip (), Wc )}

+B ¥ max{S (fo, (W), fo (W), ), S (fo (Ba), fio (), )}

+y P max{S(fo (W), fo (W), Ea), S (fo (B, fio (Ba), W)}

< a Y max{S(w,, w,, w.),S(ty, tg, W)}

+B Y max{S (W, W, tq), S (T4, L4, Ta)}

+y Y max{S (W, W, £4), S (Ea, £, W)}
Y A{S W, We, Ea)} < (a + B+ V)Y {S (W, W, Ea) (3.10)
asa + f +y < 1, thus from (3.10), we get a contradiction and hence
P{S(W,, W, t4)} = 0= 8S(w, w,, ;) = 0 which further implies that w, = £,.
Therefore, the fixed soft point we get is unique.

Here completes the proof.
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Corollary 3.4: Let (X,S,E) be a complete soft S-metric space and let f,,: (X,S,E) - (X,S,E) be a
soft self mapping which satisfies the following condition:

S (fo (@), £ (@), £ (2)) < @ max{S (£, (), fp (), 1a), S (f (B, fp (B3, )}
+p max{S(f(p (Tg), fo (Tg), ﬁb), S(f(p (D), foo (Dp), ﬁb)}
+V max{é‘(f(p (ﬁa)» f(p (ﬁa)' ﬁb)' 'S(f(p (ﬁb)r f(p (ﬁb)' ﬁa)}a

for all 4, Dpe SP(X) with @, # 9),, and for some a, B,y > 0 with 3a +  + 3y < 1 then, f,, has a
unique soft fixed point w, € SP()?) and moreover for each soft point i, we have lim fq," U, = w,.

n—-oo

Proof: It is enough, if we consider y(t) = t in Theorem 3.3.

Corollary 4.3.6: Let (f S,E) be a complete soft S-metric space and let £, be soft self mapping on
(X, S, E) which satisfies the following condition:

f(;s(f(p(aa)rf(p(aa)rf(p(ﬁb)) E(t)dt

<a J‘Omax{s(f(p(ﬁa),fzp(ﬁa),ﬁa):s(ﬂp(ﬁb);fgo(9b)’ﬁa)} E(t)dt +ﬁ fomax{s(ﬂp(ﬁa);ﬂp(ﬁa)vﬁb)’s(f(p(ﬁb),f}p(ﬁb)ﬁb)} f(t)dt
+y J‘Omax{s(fq)(ﬁa);fq)(ﬁa),ﬁb):s(fzp(ﬁb);f(p(ﬁb)’ﬁa)} E(t)dt. (3-11)

For all 2, Dye SP(X) with @4, # ,, and for some a,B,y,n,8 > 0 with 3a + f + 3y <1, where
&:RY - R* is a Lesbesgue-integrable mapping which is summable on compact subset of R*, non-
negative and such that for each € > 0, foef(t)dt > 0 then, f, has a unique soft fixed point W, €
SP(X) and moreover for each soft point i, lim fo' Ug = We.

Proof: If we take ¥ (t) = fofé(t) dt in Theorem 3.3, we get desired result.
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