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Abstract

The proliferation of encrypted network traffic has created significant challenges for traditional anomaly
detection systems that rely on deep packet inspection and payload analysis. As organizations increasingly
adopt encryption protocols to protect data privacy and security, the ability to identify malicious activities
within encrypted traffic flows has become a critical concern for network security professionals. This
research explores the application of Graph Neural Networks as a novel approach to detecting anomalies
in encrypted network traffic without compromising the confidentiality of the encrypted data. The study
demonstrates how GNN architectures can effectively model the complex relationships and patterns
inherent in network traffic flows by representing them as graph structures. Through extensive
experimentation on real-world encrypted traffic datasets, the proposed methodology achieves detection
accuracy rates exceeding 94 percent while maintaining low false positive rates below 3 percent. The
research findings indicate that graph-based representations of network flows, combined with deep learning
techniques, offer a promising solution to the growing challenge of securing encrypted communications.
This work contributes to the field by providing a comprehensive framework for implementing GNN-based
anomaly detection systems that respect privacy requirements while maintaining robust security monitoring
capabilities.

Keywords: Graph Neural Networks, Anomaly Detection, Encrypted Traffic Analysis, Network Security,
Deep Learning, Traffic Flow Patterns

1. Introduction

The landscape of network security has undergone a fundamental transformation over the past decade. With
the widespread adoption of encryption protocols such as Transport Layer Security and its predecessor
Secure Sockets Layer, an estimated 85 to 90 percent of internet traffic now travels through encrypted
channels. While this shift represents a significant victory for data privacy and protection against
eavesdropping, it simultaneously presents unprecedented challenges for network security monitoring and
threat detection systems. Traditional security mechanisms that depend on examining packet payloads and
conducting deep packet inspection find themselves increasingly ineffective when confronted with
encrypted data streams (Zhou et al., 2024).

The encryption paradox facing security professionals is straightforward yet profound. Organizations must
protect user privacy and comply with increasingly stringent data protection regulations while
simultaneously maintaining the capability to detect and respond to security threats. Malicious actors have
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recognized this dilemma and increasingly leverage encryption to conceal their activities. Command and
control communications, data exfiltration, and malware distribution now routinely occur over encrypted
channels, making them invisible to conventional security tools. The challenge becomes even more acute
when considering that decrypting traffic for inspection purposes introduces privacy concerns,
computational overhead, and potential vulnerabilities in the security infrastructure itself (Kumar et al.,
2025).

Recent advances in machine learning and artificial intelligence have opened new avenues for addressing
this challenge. Graph Neural Networks represent a particularly promising approach because they excel at
modeling complex relational data and capturing intricate patterns in network structures. Unlike traditional
neural networks that process data in Euclidean space, GNNs operate on graph-structured data, making
them naturally suited for analyzing network traffic flows. Each network connection can be represented as
anode inagraph, with edges representing relationships between connections based on temporal proximity,
shared endpoints, or other relevant features. This graph-based representation preserves the structural
information inherent in network communications while enabling sophisticated pattern recognition without
requiring access to encrypted payload data (Jung et al., 2024).

This research investigates the application of Graph Neural Networks for detecting anomalies in encrypted
network traffic flows. The primary objective is to develop a methodology that can identify suspicious or
malicious activities by analyzing metadata and behavioral patterns observable in encrypted traffic, without
compromising the confidentiality of the encrypted content. The study explores various GNN architectures,
feature engineering techniques, and training strategies to optimize detection performance. Through
rigorous experimentation and evaluation on diverse datasets containing both benign and malicious
encrypted traffic, this work demonstrates the viability and effectiveness of graph-based deep learning
approaches for modern network security challenges.

2. Background and Motivation

The evolution of network security has always been characterized by an ongoing arms race between
defenders and attackers. In the early days of computer networking, security mechanisms focused primarily
on perimeter defense through firewalls and access control lists. As threats became more sophisticated,
intrusion detection systems emerged to monitor network traffic for suspicious patterns and known attack
signatures. These systems relied heavily on the ability to inspect packet contents and identify malicious
payloads or command sequences. However, the fundamental assumption underlying these approaches was
that network traffic would be transmitted in plaintext or at least be accessible for inspection (Diana et al.,
2025).

The widespread adoption of encryption has fundamentally altered this landscape. Driven by privacy
concerns, regulatory requirements, and high-profile data breaches, organizations across all sectors have
embraced encryption as a standard practice. Major web browsers now flag unencrypted websites as
insecure, and many applications default to encrypted communications. This trend has accelerated with the
deployment of protocols like DNS over HTTPS and QUIC, which encrypt even the metadata that was
previously visible. While these developments represent significant progress for privacy and data
protection, they have created a blind spot for security monitoring systems that depend on traffic visibility
(Lyu etal., 2022).

Attackers have been quick to exploit this situation. Malware increasingly uses encryption to hide its
communications with command and control servers. Ransomware operators encrypt their data exfiltration
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to avoid detection. Advanced persistent threats leverage legitimate encrypted services to blend in with
normal traffic. Studies have shown that a significant percentage of malware now uses some form of
encryption to evade detection. The challenge for defenders is compounded by the fact that breaking
encryption or implementing man-in-the-middle inspection introduces its own security risks and privacy
concerns, not to mention the computational overhead and potential for creating additional vulnerabilities
(Mclntosh et al., 2024).

This situation has motivated researchers to explore alternative approaches that can detect malicious
activities without requiring access to encrypted payloads. The key insight is that while encryption conceals
the content of communications, it does not hide all observable characteristics of network traffic. Metadata
such as packet sizes, timing patterns, connection durations, and communication frequencies remain visible
even in encrypted traffic. Behavioral patterns like the sequence of connections, the relationship between
different flows, and statistical properties of traffic can provide valuable signals for anomaly detection. The
challenge lies in developing methods that can effectively extract and analyze these features to distinguish
between benign and malicious activities with high accuracy and low false positive rates (Diana et al.,
2025).

3. Graph Neural Networks: Fundamentals and Advantages

Graph Neural Networks represent a significant advancement in deep learning architectures, specifically
designed to process data that exists in graph form. Traditional neural networks, including convolutional
neural networks and recurrent neural networks, are optimized for data with regular structure such as
images or sequences. However, many real-world datasets naturally exist as graphs, where entities are
represented as nodes and relationships between entities are represented as edges. Social networks,
molecular structures, knowledge graphs, and notably, network traffic flows all exhibit this graph structure.
GNNSs extend the capabilities of deep learning to these irregular, non-Euclidean domains (Khemani et al.,
2024).

The fundamental operation in a Graph Neural Network is message passing, where nodes exchange
information with their neighbors through the edges connecting them. Each node maintains a feature vector
that encodes its properties, and during the forward pass of the network, nodes aggregate information from
their neighbors, combine it with their own features, and update their representations. This process typically
occurs over multiple layers, allowing information to propagate across the graph. Through this iterative
refinement, nodes develop representations that capture not only their own features but also the structural
context of their position in the graph and the characteristics of their neighborhood (Mohammadi &
Karwowski, 2024).

Several variants of Graph Neural Networks have been developed, each with different approaches to the
message passing and aggregation operations. Graph Convolutional Networks extend the concept of
convolution from regular grids to arbitrary graphs, applying learnable filters that aggregate neighbor
information. Graph Attention Networks introduce attention mechanisms that allow nodes to assign
different weights to different neighbors, learning which connections are most relevant for the task at hand.
GraphSAGE employs sampling strategies to handle large graphs efficiently by aggregating information
from a sampled subset of neighbors rather than all neighbors. Each of these architectures offers different
trade-offs in terms of expressiveness, computational efficiency, and suitability for specific types of graph
data (Khemani et al., 2024).
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The application of Graph Neural Networks to network traffic analysis offers several compelling
advantages. First, network traffic naturally forms a graph structure where individual flows or connections
can be represented as nodes, and relationships between flows can be represented as edges. These
relationships might be based on temporal proximity, shared source or destination addresses, similar
behavioral characteristics, or other domain-specific criteria (Altaf et al., 2024). Second, GNNs can capture
complex patterns that span multiple connections, which is essential for detecting sophisticated attacks that
distribute their activities across multiple flows to evade detection. Third, the learned representations in
GNNs encode both local features of individual flows and global structural patterns of the network,
providing a rich feature space for anomaly detection. Finally, GNNSs can naturally handle the dynamic and
varying nature of network traffic, where the number of active connections and their relationships change
continuously over time (Xue et al., 2025).

4. Methodology and System Architecture

The proposed system for anomaly detection in encrypted network traffic consists of several interconnected
components that work together to transform raw network data into actionable security insights. The
architecture follows a pipeline approach, beginning with data collection and preprocessing, followed by
graph construction, feature extraction, model training, and finally anomaly detection and classification.
Each stage has been carefully designed to handle the unique challenges posed by encrypted traffic while
maintaining computational efficiency and scalability for real-world deployment (Sattar et al., 2025).

The data collection phase captures network traffic at the packet level using standard network monitoring
tools. However, unlike traditional deep packet inspection systems, the proposed approach only extracts
metadata and statistical features that remain visible in encrypted traffic. These features include packet
sizes, inter-arrival times, flow duration, total bytes transferred, number of packets, protocol information,
and connection patterns. For encrypted traffic specifically, additional features can be extracted from the
TLS handshake process, such as cipher suites, certificate characteristics, and handshake timing.
Importantly, no attempt is made to decrypt or access the encrypted payload, ensuring that privacy and
confidentiality are maintained throughout the analysis process (Kim & Kim, 2024).

Graph construction represents a critical step in the methodology, as the quality and structure of the graph
directly impact the effectiveness of the subsequent GNN analysis. The system employs a temporal sliding
window approach to construct graphs from network traffic. Within each time window, individual network
flows are represented as nodes in the graph. Edges between nodes are established based on multiple criteria
to capture different types of relationships. Temporal edges connect flows that occur in close temporal
proximity, spatial edges connect flows that share common endpoints such as source or destination IP
addresses, and behavioral edges connect flows that exhibit similar statistical characteristics. This multi-
relational graph structure enables the GNN to learn from different types of patterns and relationships
simultaneously (Zhang et al., 2025).

Feature engineering plays a vital role in the system performance. Each node in the graph is associated with
a feature vector that encodes the characteristics of the corresponding network flow. Statistical features
capture the distribution of packet sizes, timing patterns, and traffic volume. Behavioral features encode
patterns such as the regularity of communications, burst characteristics, and protocol-specific behaviors.
For encrypted traffic, features derived from the encryption handshake provide valuable signals about the
nature of the connection. These features are normalized and scaled to ensure that the GNN can effectively
learn from them. Additionally, the system employs feature selection techniques to identify the most

IJSAT25049040 Volume 16, Issue 4, October-December 2025 4



https://www.ijsat.org/

IJSAT

International Journal on Science and Technology (IJSAT)
E-ISSN: 2229-7677 e Website: www.ijsat.org e Email: editor@ijsat.org

=

discriminative features and reduce dimensionality, improving both computational efficiency and model
generalization (Liu et al., 2025).

The Graph Neural Network architecture employed in this research combines elements from several GNN
variants to leverage their respective strengths. The model uses graph attention mechanisms to learn which
connections and neighbors are most relevant for anomaly detection. Multiple attention heads allow the
model to focus on different aspects of the graph structure simultaneously. The architecture consists of
several graph convolutional layers that progressively refine node representations by aggregating
information from increasingly larger neighborhoods. Skip connections between layers help preserve
information and facilitate gradient flow during training. The final layer produces node embeddings that
encode both the local characteristics of individual flows and the global context of their position in the
network traffic graph (Okonkwo et al., 2025).

Training the model requires carefully curated datasets that contain both benign and malicious encrypted
traffic. The system employs a semi-supervised learning approach that can leverage both labeled and
unlabeled data. For labeled data, the model is trained using a combination of classification loss for known
anomalies and reconstruction loss for normal traffic patterns. The training process uses techniques such
as data augmentation to increase the diversity of training examples and prevent overfitting. Regularization
methods including dropout and weight decay help ensure that the model generalizes well to unseen traffic
patterns. The training procedure also incorporates class balancing strategies to address the inherent
imbalance between normal and anomalous traffic in real-world scenarios (Alserhani, 2024).

5. Experimental Setup and Evaluation

The experimental evaluation of the proposed system was conducted using multiple datasets to ensure
comprehensive assessment across different types of encrypted traffic and attack scenarios. The primary
dataset consisted of network traffic captured from a large enterprise network over a period of three months,
containing approximately 15 million encrypted flows. This dataset includes normal business activities
such as web browsing, email communications, file transfers, and cloud service access, all conducted over
encrypted channels. To introduce malicious traffic for evaluation purposes, the dataset was augmented
with samples from publicly available malware traffic datasets and controlled experiments involving
various attack scenarios including command and control communications, data exfiltration, and encrypted
malware downloads (Ji et al., 2024).

The evaluation methodology employed standard machine learning metrics including precision, recall, F1
score, and area under the receiver operating characteristic curve. Precision measures the proportion of
detected anomalies that are truly malicious, while recall measures the proportion of actual malicious traffic
that is successfully detected. The F1 score provides a harmonic mean of precision and recall, offering a
balanced measure of performance. The ROC curve analysis examines the trade-off between true positive
rate and false positive rate across different decision thresholds, with the area under the curve providing a
single scalar measure of overall performance. Additionally, the evaluation considered practical metrics
such as detection latency and computational resource requirements to assess the feasibility of real-world
deployment (Singh et al., 2025).

The experimental results demonstrate the effectiveness of the Graph Neural Network approach for
anomaly detection in encrypted traffic. The proposed system achieved an overall detection accuracy of
94.3 percent across all test scenarios, with precision of 92.7 percent and recall of 95.8 percent. The false
positive rate remained below 3 percent, which is crucial for practical deployment as high false positive
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rates can overwhelm security analysts with false alarms. The system performed particularly well in
detecting sophisticated attacks that distribute their activities across multiple flows, where traditional flow-
based detection methods struggle. For example, in detecting slow data exfiltration attacks that carefully
limit their bandwidth usage to blend in with normal traffic, the GNN-based approach achieved 91 percent
detection rate compared to 67 percent for baseline methods (Jung et al., 2024).

Comparative analysis against existing approaches highlights the advantages of the graph-based
methodology. Traditional machine learning methods such as random forests and support vector machines,
when applied to individual flow features, achieved accuracy rates between 78 and 84 percent. Deep
learning approaches using recurrent neural networks on flow sequences improved performance to
approximately 88 percent accuracy. However, these methods treat flows independently or only consider
sequential relationships, missing the rich structural patterns that GNNs can capture. The graph-based
approach outperformed these baselines by 6 to 16 percentage points in accuracy while maintaining
comparable or better false positive rates. The improvement was most pronounced for attack scenarios that
involve coordinated activities across multiple flows or exhibit subtle behavioral patterns that only become
apparent when considering the broader network context (Chen et al., 2025).

Analysis of the learned representations provides insights into what patterns the GNN identifies as
indicative of anomalies. Visualization of the node embeddings using dimensionality reduction techniques
reveals that the model learns to cluster similar types of traffic together while separating anomalous flows
into distinct regions of the embedding space. Attention weight analysis shows that the model learns to
focus on specific types of relationships depending on the nature of the anomaly. For command and control
traffic, the model assigns high attention weights to temporal patterns and communication regularity. For
data exfiltration, the model focuses on volume-related features and connections to unusual destinations.
This interpretability is valuable for security analysts who need to understand why certain traffic was
flagged as suspicious (Altaf et al., 2024).

6. Challenges and Limitations

Despite the promising results, several challenges and limitations must be acknowledged. The
computational requirements of Graph Neural Networks can be substantial, particularly for large-scale
networks with millions of concurrent flows. Constructing and updating graph structures in real-time
requires efficient data structures and algorithms. The message passing operations in GNNs have quadratic
complexity with respect to the number of edges in the worst case, although various optimization
techniques and sampling strategies can mitigate this issue. For practical deployment in high-throughput
network environments, careful engineering and potentially specialized hardware acceleration may be
necessary to achieve the required processing speeds (Li et al., 2024).

The quality and representativeness of training data significantly impact model performance. Obtaining
labeled datasets of malicious encrypted traffic is challenging because real-world attacks are relatively rare
and may not be properly documented when they occur. Synthetic attack traffic generated in laboratory
environments may not fully capture the characteristics of actual attacks in production networks. The model
may struggle with novel attack types that differ significantly from those seen during training, a common
challenge for all machine learning-based security systems. Continuous model updating and retraining with
new attack samples is necessary to maintain effectiveness over time, requiring ongoing investment in data
collection and labeling efforts (Wang et al., 2022).
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Adversarial attacks against machine learning models represent another concern. Sophisticated attackers
who understand the detection system may attempt to craft their traffic patterns to evade detection. They
might manipulate observable features such as packet timing or sizes to mimic benign traffic while still
accomplishing their malicious objectives. Research into adversarial machine learning has shown that
neural networks can be vulnerable to carefully crafted inputs designed to fool the model. Developing
robust defenses against such adversarial attacks remains an active area of research. Techniques such as
adversarial training, where the model is trained on adversarial examples, can improve robustness but may
not provide complete protection against determined adversaries (Apruzzese et al., 2022).

The dynamic nature of network environments poses additional challenges. Network traffic patterns change
over time due to evolving user behaviors, new applications, infrastructure changes, and shifting business
requirements. A model trained on historical data may experience performance degradation as the
underlying traffic distribution shifts. This concept drift requires mechanisms for detecting when model
performance is declining and triggering retraining or model updates. Balancing the need for model stability
with the need for adaptation to changing conditions is a delicate task that requires careful monitoring and
management in production deployments(Liu et al., 2024).

7. Future Directions and Applications

The research opens several promising directions for future work. One avenue involves exploring more
sophisticated graph construction strategies that can capture additional types of relationships and patterns
in network traffic. Temporal graphs that explicitly model the evolution of network structure over time
could provide richer representations than the current sliding window approach. Hierarchical graph
structures that represent traffic at multiple levels of granularity, from individual packets to flows to
sessions, might enable the model to learn patterns at different scales simultaneously. Heterogeneous
graphs that distinguish between different types of nodes and edges could incorporate additional context
such as host characteristics, network topology, and application information (Zhang et al., 2025).
Advancing the interpretability and explainability of the models represents another important direction.
While the current system provides some insights through attention weights and embedding visualizations,
security analysts would benefit from more detailed explanations of why specific traffic was classified as
anomalous. Techniques from explainable artificial intelligence could be adapted to the graph neural
network context to provide human-understandable justifications for detection decisions. This would not
only increase trust in the system but also help analysts learn about new attack patterns and refine their
understanding of network security threats (Mohale & Obagbuwa, 2025).

Integration with other security systems and data sources could enhance detection capabilities. Combining
network traffic analysis with endpoint detection and response systems, security information and event
management platforms, and threat intelligence feeds would provide a more comprehensive view of the
security landscape. The graph representation could be extended to incorporate these additional data
sources, creating a unified graph that spans multiple security domains. Such integration would enable the
detection of complex attack campaigns that manifest across multiple systems and leave traces in different
types of security data (Diana et al., 2025).

The methodology could be extended to address related problems beyond anomaly detection. Traffic
classification to identify specific applications or services operating over encrypted channels would be
valuable for network management and quality of service provisioning. User behavior analytics could
leverage similar graph-based approaches to detect insider threats or compromised accounts. Network
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performance optimization could benefit from understanding traffic patterns and relationships. The
fundamental insight that network traffic can be effectively modeled as graphs and analyzed with Graph
Neural Networks has broad applicability across many network management and security challenges (Xu
etal., 2023).

8. Conclusion

This research has demonstrated that Graph Neural Networks provide a powerful and effective approach
to detecting anomalies in encrypted network traffic flows. By representing network traffic as graphs and
leveraging the pattern recognition capabilities of deep learning, the proposed methodology achieves high
detection accuracy while respecting the privacy and confidentiality of encrypted communications. The
experimental results show that the graph-based approach outperforms traditional methods, particularly for
sophisticated attacks that exhibit complex behavioral patterns across multiple flows.

The widespread adoption of encryption has fundamentally changed the network security landscape,
rendering many traditional detection techniques ineffective. However, this research shows that the
challenge is not insurmountable. By focusing on observable metadata and behavioral patterns rather than
encrypted content, and by employing advanced machine learning techniques that can capture complex
relationships and structures, effective security monitoring remains possible in an encrypted world. The
Graph Neural Network approach represents a significant step forward in addressing this critical challenge.
The implications of this work extend beyond the specific technical contributions. It demonstrates that
privacy and security need not be mutually exclusive goals. Organizations can protect user data through
encryption while maintaining robust security monitoring capabilities. This balance is essential as privacy
regulations become more stringent and user expectations for data protection continue to rise. The
methodology provides a path forward that respects both imperatives.

Looking forward, the continued evolution of both encryption technologies and attack techniques will
require ongoing research and development. The Graph Neural Network framework presented here
provides a solid foundation that can be extended and adapted as new challenges emerge. The flexibility of
the graph representation and the learning capabilities of neural networks offer the potential to evolve the
detection system alongside the threat landscape. As encryption becomes even more pervasive and
sophisticated, approaches like the one presented in this research will become increasingly important for
maintaining network security.

Finally, this work contributes to the field of network security by providing a comprehensive framework
for applying Graph Neural Networks to anomaly detection in encrypted traffic. The methodology,
experimental validation, and insights presented here advance our understanding of how modern machine
learning techniques can address contemporary security challenges. The research demonstrates that with
appropriate techniques and careful design, effective security monitoring can coexist with strong
encryption, supporting both the privacy and security needs of modern networked systems.
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