

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Evaluation of Deep Learning Methods in Face Recognition: Datasets, Metrics, and Results

Saritha Kishore¹, Padmavathi H G², Sowmyshree C S³, Manjula K B⁴

^{1,2,3,4}SAIT-Bengaluru

¹sarithdevmgl@gmail.com,²padma.csebce@gmail.com, ³sowmyashree2724@gmail.com,⁴manjulakotturbheemaiah@gmail.com

ABSTRACT:

Face recognition has become a cornerstone technology in biometric authentication, surveillance, and social media applications. With the advent of deep learning, particularly convolutional neural networks (CNNs), face recognition systems have seen unprecedented improvements in accuracy, robustness, and scalability. This paper presents a comprehensive evaluation of deep learning methods applied to face recognition, focusing on three critical aspects: datasets, performance metrics, and empirical results.

we analyze and compare the performance of state-of-the-art deep learning models such as DeepFace, FaceNet, SphereFace, CosFace, and ArcFace across these datasets. The results demonstrate that while current models achieve near-perfect accuracy on constrained datasets, challenges persist in real-world scenarios due to variations in pose, illumination, occlusion, and demographic diversity.

Key Words: Convolutional Neural Networks (CNNs), DeepFace, FaceNet, SphereFace, CosFace, and ArcFace, HOG, OpenCV, RON

INTRODUCTION:

Face recognition is a rapidly evolving field within computer vision, with wide-ranging applications in security, surveillance, authentication, social media, and human-computer interaction. The primary goal of face recognition is to identify or verify individuals from images or video frames by analyzing their facial features.

Traditional face recognition systems relied heavily on handcrafted features and statistical models, such as Eigenfaces, Fisherfaces, or Local Binary Patterns (LBP). While these methods achieved moderate success under controlled conditions, they often struggled with variations in lighting, pose, occlusion, and facial expressions. As a result, their real-world effectiveness was limited.

In recent years, the advent of deep learning—particularly Convolutional Neural Networks (CNNs)—has significantly transformed the landscape of face recognition. Deep learning models automatically learn hierarchical feature representations from raw pixel data, eliminating the need for manual feature engineering. These models have demonstrated remarkable accuracy and robustness, even under challenging conditions, outperforming traditional techniques by a significant margin.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Popular deep learning-based face recognition frameworks such as DeepFace, DeepID, FaceNet, and ArcFace have achieved near-human or even superhuman performance on benchmark datasets. These models leverage large-scale training datasets, sophisticated network architectures, and advanced loss functions to learn discriminative facial embeddings.

Despite the success, deep learning-based face recognition systems face ongoing challenges, including bias and fairness, privacy concerns, dataset limitations, and vulnerability to adversarial attacks. Continued research is focused on addressing these issues and improving performance in real-world, unconstrained environments.

This survey aims to provide a comprehensive overview of deep learning approaches for face recognition, covering key architectures, datasets, evaluation metrics, applications, and open research challenges.

A COMPREHENSIVE REVIEW ON VARIOUS FACE RECOGNITION SYSTEM USING DEEP LEARNING

In this paper, on conducting an exhaustive literature review, we have identified some best and also latest techniques of Deep Learning particular specifically used in the research articles of Facial Recognition System which are suited for a type of facial recognition system working better to suffice the requirement of the problem having their own limitations under certain scenarios.

This research article[1] introduces FaceFilter, a novel system designed for face identification that overcomes common limitations in varying poses, illumination, and blur. The core of their method involves a deep convolutional network to extract essential face features, followed by a unique filter algorithm that selects only the most significant features (those greater than zero) and their corresponding indices. This approach reduces data dimensionality by half while maintaining high accuracy, achieving 99.7% on the Labeled Faces in the Wild dataset and 94.02% on YouTube Faces DB. Furthermore, FaceFilter incorporates a 360-degree rotation technique for images where a face might not be initially detected due to challenging angles, showcasing its robustness in unconstrained environments.

This article [2] introduces a Deep Learning Based Real-Time Face Recognition System designed to operate efficiently on low-cost computing devices. The authors developed a four-stage process: face detection using Histogram of Oriented Gradients (HOG), face posing and projecting with a modified facial landmark estimation for centering, deep learning-based face recognition leveraging a pre-trained model to generate 128 embeddings, and finally, face classification using a Support Vector Machine (SVM) to identify individuals. While the system achieved a 96.88% accuracy on a small dataset, it demonstrated real-time performance on an Intel Core i7 processor but not on the less powerful Raspberry Pi 3B, indicating that achieving real-time speeds is still dependent on processing power even with optimized algorithms.

This document [3] presents a research paper titled "Face Detection and Recognition Using Face Mesh and Deep Neural Network," published in Procedia Computer Science. The core purpose of the paper is to introduce a novel model for face detection and recognition that effectively addresses challenges faced by existing systems, such as varying illumination, background changes, and non-frontal facial poses. By

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

employing a Face Mesh technique, which reconstructs complete faces from 468 face landmarks, the proposed deep neural network achieves a 94.23% accuracy on a combination of the Labeled Faces in the Wild (LFW) dataset and real-time images. This research is significant for its application in security, surveillance, and access control systems, offering a more robust and accurate solution for identifying individuals under diverse conditions.

This academic paper [4] explores the development of a face recognition system using deep learning, specifically leveraging Python's OpenCV library. The core purpose is to create a secure and accurate method for identifying individuals, emphasizing its potential to replace traditional authentication like ID cards. The system operates in two main stages: face detection, primarily using Haar cascade techniques, and face identification, which involves extracting facial features through a combination of Convolutional Neural Networks (CNNs) and the Local Binary Pattern Histogram (LBPH) algorithm. The research outlines the hardware components and system architecture for implementation, including a Raspberry Pi and camera, ultimately aiming for applications such as automated attendance tracking, where detected faces are verified against a database to mark presence or absence.

This source, titled[3] "Face Detection and Recognition Using Face Mesh and Deep Neural Network," is a research paper published in Procedia Computer Science by Elsevier B.V. in 2023. Authored by Shivalila Hangaragi, Tripty Singh, and Neelima N. from Amrita Vishwa Vidyapeetham, India, the paper introduces a novel model for face detection and recognition. The authors explain that their deep neural network model utilizes Face Mesh technology to achieve 94.23% accuracy in identifying individuals, even under challenging conditions such as varying illumination, backgrounds, and non-frontal poses. The research details the model's application in security and surveillance, its methodology involving facial landmark detection and 3D face reconstruction, and a comparison of its performance against existing face recognition algorithms.

This academic article[5] **introduces an improved deep learning method for face detection**, focusing on the challenging task of identifying small, obscured, or oddly positioned faces in uncontrolled settings. The authors propose enhancements to the **RetinaNet architecture**, a single-stage face detector, by integrating a **Region Offering Network (RON)** and a prediction branch to suggest and then refine facial boundaries. Their approach, **trained on extensive datasets like WIDER FACE and FDDB**, demonstrates **superior accuracy and competitive speed** compared to existing methods, as evidenced by experimental results and performance metrics like Average Precision and F-measure. The paper details the **technical components** of their model, including **High Feature Generation Pyramid (HFGP)** and **Low Feature Generation Pyramid (LFGP)**, and discusses its **practical applications** in computer vision systems.

This document outlines [6] Rashmi Jatain1, Dr Manisha Jailia2 This article from the International Journal on Recent and Innovation Trends in Computing and Communication focuses on **automatic human face detection and recognition using deep learning, specifically convolutional neural networks (CNNs)**. It highlights how distinguishing individuals through facial features is crucial, even for genetically identical twins. The authors propose a deep learning approach that **demonstrates superior accuracy, precision, recall, and F1-score compared to other methods** for face identification. The paper also **explores the**

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

historical progression of facial recognition technology, detailing various techniques and the challenges that persist in achieving perfect recognition.

This article [7], published by Oxford University Press on behalf of The British Computer Society, explores face recognition using deep learning on the Raspberry Pi, a compact single-board computer. The authors, Abdulatif Ahmed Ali Aboluhom and Ismet Kandilli from Kocaeli University, investigate the feasibility of transfer learning for this task, comparing InceptionV3 and MobileNetV2 deep learning architectures. Their findings indicate that MobileNetV2 significantly outperforms InceptionV3 in accuracy and efficiency, making it a more suitable choice for resource-limited edge devices like the Raspberry Pi. This research contributes to developing efficient, real-time deep learning applications for facial recognition, especially in scenarios requiring reduced latency and low power consumption.

This scholarly article[8] introduces an automated human face detection and recognition system that leverages deep learning, specifically Convolutional Neural Networks (CNNs), to identify individuals based on their unique facial features. The authors highlight the increasing prevalence and importance of facial recognition in everyday technology and security, emphasizing that facial characteristics are the most significant identifiable traits for distinguishing people, even identical twins. The proposed system, which utilizes a VGG 16 CNN model, demonstrates superior accuracy, precision, recall, and F1-score compared to other existing methods like decision trees and random forests, suggesting a more robust and reliable approach to face identification in various environments, even with challenges like varying illumination or expressions.

The document[9] presents an academic paper detailing the development and comparison of four **deep learning techniques for facial recognition**, aiming to address challenges such as speed, accuracy, and variability in face pose and angle. The proposed methodologies include a basic **Convolutional Neural Network (CNN)**, an **Auto-Encoder** architecture designed to eliminate the need for retraining when adding new users, and two **Capsule Network (CapsNet)** topologies: one using a standard CNN layer and another integrated with the robust **VGG-19** feature extractor. The results, tested on the **COMSATS Face Dataset**, indicate that the Auto-Encoder and the CapsNet with VGG-19 both achieved the highest **99% accuracy**, with the latter proving superior in recognizing faces from diverse viewing angles.

The article titled [10] "Combining MTCNN and Enhanced FaceNet with Adaptive Feature Fusion for Robust Face Recognition," authored by Sasan Karamizadeh, Saman Shojae Chaeikar, and Hamidreza Salarian, which was published in **Technologies** in **October 2025**. This research focuses on proposing a **hybrid deep learning architecture** to enhance the accuracy and **robustness of face recognition** against real-world challenges like occlusion, pose, and lighting variations. The core innovation is the integration of **Multi-task Cascaded Convolutional Networks** (MTCNN) for precise face detection and alignment, an **attention-enhanced FaceNet** for feature extraction, and a **Transformer-based Adaptive Feature Fusion** module that dynamically incorporates contextual cues. Evaluation on benchmark datasets like **CelebA**, **LFW**, and the highly challenging **IJB-C** demonstrates that the proposed model achieves **superior performance**, significantly outperforming baseline and state-of-the-art methods in unconstrained scenarios.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

Table1: Overview of different papers in terms of the deep learning technique used and its limitations.

Article	Technique Used	Limitations
[1]	The specific architecture used	the rotation technique for
	is an NN4 neural network	360° is used for the images
	structure, which is a deep	that have the face in different
	neural network.	angles, while this kind of
		rotation cannot be done in the
		augmentation method in deep
		learning.
[2]	HOG) was used to identify	limited dataset is used, Intel i7
	faces in digital images. SVM	core platform achieved real-
	is used to determine. The	time recognition. When tried
	system uses a pre-trained	on a Raspberry Pi 3B, it was
	deep learning (DL) based	unable to run in real-time.
	face recognition model.	
[3]	Haar cascade is used for edges	If a test image contains a face
	and lines to detect the face.	whose landmarks do not
	Algorithms used for feature	match any entry in the
	extraction, are Eigen Faces,	database, the model will
	Local Binary Pattern	correctly identify the face but
	Histograms, Fisher faces,	tag it as "unknown". This
	Machine learning algorithms	behavior was observed in
	tested in related work, such as	experiments where a test
	Random Forests, SVM,	image contained three faces,
	Linear Regression, Logistic	but only one (the militant
	Regression, and KNN.	Abdel_Nasser_Assidi) was
		recognized because the other
		two faces lacked matching
		face landmarks in the database
[4]	ResNet-50 CNN utilized for	Deep learning models 'need a
	extracting facial features and	lot of data to be trained".
	performing classification,	Similarly, deep learning face
	(LBPH) / (LBP) algorithm:	recognition systems often
	Employed for face recognition	require a "huge collection of
	purpose, Siamese networks	facial photos" to train a
	and triplet networks These	neural network effectively
	are deep learning-based	
	methods mentioned for	
	optimizing the matching	
	process in face recognition	
	systems	

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

[5]	1	The second state of the second second
[5]	he proposed methodology	The main challenges and
	utilizes the RetinaNet	limitations acknowledged are
	baseline, a single-stage deep	that the difficulty of detecting
	learning face detector,	small, blurry, and closely
	designed to handle	occluded faces in
	challenging face detection	uncontrolled conditions has
	problems by improving speed	not yet been entirely resolved,
	and accuracy. This	and future work is required to
	architecture is fundamentally	solve blurry image problems
	composed of a Region	under dark conditions and
	Offering Network (RON),	increase the overall accuracy
	which compiles area	of the approach
	suggestions likely to include	
	faces, and a prediction	
	branch for classification and	
	refining bounding box	
	boundaries. The model is	
	trained using the PyTorch	
	framework, incorporating a	
	critical step of hard negative	
	mining on the WIDER FACE	
	dataset to reduce false	
	positives.	
[6]	The methodology operates in	The main limitation identified
	sequential steps: real-time	is that the identification
	face detection is achieved	procedure is significantly
	using the Open CV library	•
		causing the recognition
	detection method. Finally,	system to be more likely to
	the features are classified and	make mistakes when the
	recognized against a database	lighting is poor. To address
	using the VGG 16	this, future efforts should
	Convolutional Neural	, , , , , , , , , , , , , , , , , , ,
		involve using additional low-
	Network (CNN) model.	light-quality training photos
		to create a more robust face
		classifier and developing
		strategies for selecting
		optimal features to improve
		accuracy in uncontrolled
		environments
[7]	The methodology centers on	
	implementing efficient facial	
	recognition on the resource-	

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

	li i i i D. I. Di 4	
	limited Raspberry Pi 4 using	
	transfer learning. This	
	involves leveraging the pre-	
	trained architectures of two	
	Deep Neural Networks,	
	MobileNetV2 and	
	InceptionV3 , as feature	
	extraction layers. To facilitate	
	classification, additional	
	layers, including a Softmax	
	output layer for 10 celebrity	
	classes, are appended,	
	completing the system	
	pipeline which handles image	
	capture, face detection,	
	feature extraction, and	
	matching in real-time	
[8]	The methodology centers on	The system's recognition
	implementing a real-time face	accuracy is challenged by
	recognition system using a	external factors like low-
	deep learning algorithm	resolution images, various
	based on a transfer learning	types of noise , and adverse
	approach. The core technique	light and shadow falling on
	involves adapting the pre-	the face. Accuracy also
	trained VGG16	decreases due to changes in
	Convolutional Neural	facial expressions (e.g., laugh
	Network (CNN)	or crying), which alter face
	architecture for feature	geometry, and occlusion
	extraction and classification.	caused by items like face
	For the initial stage of	masks, spectacles, hair, or
	detection in a continuous	beards
	video stream, the system	beards
	utilizes the Haar cascade	
	pre-trained classifier in	
	-	
	conjunction with the OpenCV	
[0]	library The methodology utilized in	The standard CNN model is
[9]	= -	
	this work involved proposing	limited because it struggles to
	and evaluating four distinct	detect faces that are not frontal
	deep learning techniques for	and requires retraining from
	facial recognition. These	scratch whenever a new
	include a standard	person is added, rendering it
	Convolutional Neural	unsuitable for the production

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

	Network (CNN)	phase. Additionally, the
	architecture, a CNN	CapsNet with CNN model
	Decoder (Auto-Encoder),	experienced poor
	and two Capsule Network	performance issues (81%
	(CapsNet) topologies	accuracy) due to a poor
	(CapsNet with CNN, and	feature extraction layer
	CapsNet with VGG-19). The	
	COMSATS Face Dataset was	
	used for testing, training, and	
	assessment of these models	
[10]	The methodology proposes a	The current model still
	hybrid system combining	encounters challenges with
	three main elements: Multi-	extremely low-resolution
	task Cascaded	images or severe motion
	Convolutional Networks	blur, which can affect the
	(MTCNN) for precise face	quality of facial embeddings.
	detection and alignment; an	Additionally, initial analysis
	Enhanced FaceNet	indicated performance
	architecture utilizing attention	differences across subgroups
	mechanisms to extract robust,	such as gender, age, and skin
	discriminative 128-D facial	tone, highlighting the ongoing
	embeddings, particularly	necessity for fair training
	against occlusions; and an	
	Adaptive Feature Fusion	
	module, which uses a	
	lightweight transformer	
	encoder to dynamically	
	integrate these embeddings	
	with contextual vectors (pose,	
	lighting, masks) to maximize	
	recognition accuracy in	
	challenging scenarios.	

CONCLUSION

These sources collectively examine the field of **face detection and recognition**, with a particular focus on **deep learning (DL) and convolutional neural networks (CNNs)** for real-time applications. Several papers explore various techniques, including **Histogram of Oriented Gradients (HOG)** and **Support Vector Machines (SVM)**, to improve the **accuracy and efficiency** of these systems. A recurring theme involves the development and evaluation of **lightweight models** suitable for deployment on **resource-constrained devices** like the Raspberry Pi, often leveraging **transfer learning** from pre-trained networks like MobileNetV2 and InceptionV3. The authors frequently compare model performance across different hardware and datasets, assessing metrics such as **accuracy, processing speed (frames per second), precision, and recall** in diverse conditions, including varying illumination and non-frontal facial poses.

E-ISSN: 2229-7677 • Website: www.ijsat.org • Email: editor@ijsat.org

The research aims to advance reliable and accessible facial recognition technology for various uses, from security to mobile applications within the Internet of Things (IoT).

REFRENCES

- 1. Ismael, Yasir Saeed, Mohammed Y. Shakor, and Peshraw Ahmed Abdalla. "Deep learning based real-time face recognition system." NeuroQuantology 20.6 (2022): 7355-7366.
- 2. Alruwais, Nuha Mohammed, and Mohammed Zakariah. "Student recognition and activity monitoring in e-classes using deep learning in higher education." IEEE access 12 (2024): 66110-66128.
- 3. Hangaragi, Shivalila, and Tripty Singh. "Face detection and Recognition using Face Mesh and deep neural network." Procedia Computer Science 218 (2023): 741-749.
- 4. Koodalsamy, Banumalar, Manikandan Bairavan Veerayan, and Vanaja Narayanasamy. "Face recognition using deep learning." E3S Web of Conferences. Vol. 387. EDP Sciences, 2023.
- 5. Mamieva, Dilnoza, et al. "Improved face detection method via learning small faces on hard images based on a deep learning approach." Sensors 23.1 (2023): 502.
- 6. Jatain, Rashmi, and Manisha Jailia. "Automatic human face detection and recognition based on facial features using deep learning approach." International Journal on Recent and Innovation Trends in Computing and Communication 11.2s (2023): 268-277.
- 7. Ahmed Ali Aboluhom, Abdulatif, and Ismet Kandilli. "Face recognition using deep learning on Raspberry Pi." The Computer Journal 67.10 (2024): 3020-3030.
- 8. Gayathry, Dr. R. Latha "REAL TIME FACE RECOGNITION AND DETECTION USING DEEP LEARNING ALGORITHM" IIP Series, Volume 3, Book 7, Part 3, Chapter 3
- 9. Hossam M. Elian1, Gamal M. Dousoky ,Ali Hafez" Developing Deep Learning Based Facial Recognition Technique",journal of advanced engineering treands, Vol. 44, No. 1, January 2025
- 10. S. Karamizadeh, S. S. Chaeikar, and H. Salarian, "Combining MTCNN and Enhanced FaceNet with Adaptive Feature Fusion for Robust Face Recognition," Technologies, vol. 13, no. 10, p. 450, Oct. 2025, doi: 10.3390/technologies13100450.